Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Periodontal Res ; 57(1): 131-141, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34839547

RESUMEN

INTRODUCTION: The functional interplay between cementum of the root and alveolar bone of the socket is tuned by a uniquely positioned 70-80 µm wide fibrous and lubricious ligament in a dentoalveolar joint (DAJ). In this study, structural and biomechanical properties of the DAJ, periodontal ligament space (PDL-space also known as the joint space), alveolar bone of the socket, and cementum of the tooth root that govern the biomechanics of a lipopolysaccharide (LPS)-affected DAJ were mapped both in space and time. METHODS: The hemi-maxillae from 20 rats (4 control at 6 weeks of age, 4 control and 4 LPS-affected at 12 weeks of age, 4 control and 4 LPS-affected at 16 weeks of age) were investigated using a hybrid technique; micro-X-ray computed tomography (5 µm resolution) in combination with biomechanical testing in situ. Temporal variations in bone and cementum volume fractions were evaluated. Trends in mineral apposition rates (MAR) in additional six Sprague Dawley rats (3 controls, 3 LPS-affected) were revealed by transforming spatial fluorochrome signals to functional growth rates (linearity factor - RW) of bone, dentin, and cementum using a fast Fourier transform on fluorochrome signals from 100-µm hemi-maxillae sections. RESULTS: An overall change in LPS-affected DAJ biomechanics (a 2.5-4.5X increase in tooth displacement and 2X tooth rotation at 6 weeks, no increase in displacement and a 7X increase in rotation at 12 weeks; 27% increase in bone effective strain at 6 weeks and 11% at 12 weeks relative to control) was associated with structural changes in the coronal regions of the DAJ (15% increase in PDL-space from 0 to 6 weeks but only 5% from 6 to 12 weeks compared to control). A significant increase (p < 0.05) in PDL-space between ligated and age-matched control was observed. The bone fraction of ligated at 12 weeks was significantly lower than its age-matched control, and no significant differences (p > 0.05) between groups were observed at 6 weeks. Cementum in the apical regions grew faster but nonlinearly (11% and 20% increase in cementum fraction (CF) at 6 and 12 weeks) compared to control. Alveolar bone revealed site-specific nonlinear growth with an overall increase in MAR (108.5 µm/week to 126.7 µm/week after LPS treatment) compared to dentin (28.3 µm/week in control vs. 26.1 µm/week in LPS-affected) and cementum (126.5 µm/week in control vs. 119.9 µm/week in LPS-affected). A significant increase in CF (p < 0.05) in ligated specimens was observed at 6 weeks of age. CONCLUSIONS: Anatomy-specific responses of cementum and bone to the mechano-chemo stimuli, and their collective temporal contribution to observed changes in PDL-space were perpetuated by altered tooth movement. Data highlight the "resilience" of DAJ function through the predominance of nonlinear growth response of cementum, changes in PDL-space, and bone architecture. Despite the significant differences in bone and cementum architectures, data provided insights into the reactionary effects of cementum as a built-in compensatory mechanism to reestablish functional competence of the DAJ. The spatial shifts in architectures of alveolar bone and cementum, and consequently ligament space, highlight adaptations farther away from the site of insult, which also is another novel insight from this study. These adaptations when correlated within the context of joint function (biomechanics) illustrate that they are indeed necessary to sustain DAJ function albeit being pathological.


Asunto(s)
Cemento Dental , Lipopolisacáridos , Animales , Maxilar , Ligamento Periodontal/diagnóstico por imagen , Ratas , Ratas Sprague-Dawley
2.
Dent Mater ; 37(3): 486-495, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33589268

RESUMEN

OBJECTIVES: The effects of reduced chewing loads on load bearing integrity of interradicular bone (IB) within dentoalveolar joints (DAJ) in rats were investigated. METHODS: Four-week-old Sprague Dawley rats (N = 60) were divided into two groups; rats were either fed normal food, which is hard-pellet food (HF) (N = 30), or soft-powdered chow (SF) (N = 30). Biomechanical testing of intact DAJs and mapping of the resulting mechanical strains within IBs from 8- through 24-week-old rats fed HF or SF were performed. Tension- and compression-based mechanical strain profiles were mapped by correlating digital volumes of IBs at no load with the same IBs under load. Heterogeneity within IB was identified by mapping cement lines and TRAP-positive multinucleated cells using histology, and mechanical properties using nanoindentation technique. RESULTS: Significantly decreased interradicular functional space, IB volume fraction, and elastic modulus of IB in the SF group compared with the HF group were observed, and these trends varied with an increase in age. The elastic modulus values illustrated significant heterogeneity within IB from HF or SF groups. Both compression- and tension-based strains were localized at the coronal portion of the IB and the variation in strain profiles complemented the observed material heterogeneity using histology and nanoindentation. SIGNIFICANCE: Interradicular space and IB material-related mechanoadaptations in a DAJ are optimized to meet soft food related chewing demands. Results provided insights into age-specific regulation of chewing loads as a plausible "therapeutic dose" to reverse adaptations within the periodontal complex as an attempt to regain functional competence of a dynamic DAJ.


Asunto(s)
Masticación , Diente , Animales , Fenómenos Biomecánicos , Huesos , Ligamento Periodontal , Ratas , Ratas Sprague-Dawley
3.
Periodontol 2000 ; 82(1): 238-256, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31850635

RESUMEN

Spatial and temporal adaptations within periodontal tissues and their interfaces result from functional loads. Functional loads can be physiologic and/or pathologic in nature. The prolonged effect of these loads can alter the overall biomechanics of a dentoalveolar fibrous joint (dentoalveolar joint) by changing the form of the tooth root and its socket. This "sculpting" of the tooth root and alveolar bony socket is a consequence of several mechano-biological changes that occur within the periodontal complex of a load-bearing dentoalveolar joint. These include changes in biochemical expressions, structure, elemental composition, and mechanical properties of alveolar bone, the underlying tissues of the roots of teeth, and their interfaces. These physicochemical changes in tissues continue to prompt mechano-responsive biochemical activities at the attachment sites of periodontal ligament (soft) with bone (hard), and ligament with cementum (hard), which are the entheses of a load-bearing dentoalveolar joint. Forces at soft-hard tissue attachment sites between disparate materials with different stiffness values theoretically generate strain singularities or discontinuities. These discontinuities under prolonged functional loading increase the probability for failure to occur specifically at the enthesial zones. However, in a normal dentoalveolar joint, gradual stiffness gradients exist from ligament to bone, and from ligament to cementum. The gradual transitions in stiffness from softer ligament (lower stiffness) to harder bone or cementum (higher stiffness) or vice versa optimize tissue and interfacial strains. Optimization of tissue and ligament-enthesial physical and chemical properties facilitates transmission of cyclic forces of varying magnitudes and frequencies that collectively maintain the overall biomechanics of a dentoalveolar joint. The objectives of this review are 3-fold: (i) to illustrate physicochemical adaptations at the periodontal ligament entheses of a human periodontal complex affected by subgingival calculus; (ii) to demonstrate how to "program" the hallmarks of periodontitis in small-scale vertebrates in vivo to generate spatiotemporal maps of physicochemical adaptations in a diseased dentoalveolar joint; and (iii) to correlate dentoalveolar joint biomechanics in healthy and diseased states to spatiotemporal maps of physicochemical adaptations within respective periodontal tissues. This interdisciplinary approach demonstrates that physicochemical adaptations within periodontal tissues using the mechanics of materials (tissue mechanics), materials science (tissue composition), and mechano-biology (matrix molecules) can help explain the mechano-adaptation of dentoalveolar joints in normal and diseased functional states. Multiscale biomechanics and mechano-biology approaches can provide insights into the functional competence of a diseased relative to a normal dentoalveolar joint. Insights gathered from interdisciplinary and multiscale biomechanics approaches include the following: (i) physiologic loads related to chewing maintain a balance between mineral-forming and-resorbing biochemical cellular events, resulting in gradual stiffness gradients at the periodontal ligament entheses, and, in turn, sustain the overall biomechanics of a normal "healthy" dentoalveolar joint; (ii) pathologic loads resulting from tissue degradation and physical changes to the periodontal complex promote an abrupt stiffness gradient at the periodontal ligament entheses. The shift from gradual to an abrupt stiffness gradient could prompt a shift in the biochemical cascades, exacerbate mechano-responsive biochemical expressions at periodontal ligament entheses farther away from the site of insult, and culminate in joint degradation; (iii) sustained pathologic function on periodontally diseased joints exacerbates degradation of periodontal ligament entheses providing insights into "rescue therapy", such as the use of an adequate "mechanocal dose" to regain joint function; and (iv) spatiotemporal maps of changes in biochemical expressions, and physicochemical properties of strain-dominated affected sites, including the periodontal ligament entheses, can guide anatomy-specific therapeutics for tissue regeneration and/or disease control with the purpose of regaining dentoalveolar joint function. Modulation of occlusal loads could minimize disease progression and potentially assist in regaining functional attachment of ligament to bone and/or ligament to cementum of the dentoalveolar joint. Elucidating mechanisms that drive the breakdown of the functionally active periodontal complex burdened with microbes will provide the required critical insights into regenerative medicine and/or biomimetic approaches that would facilitate rescue/regain of dentoalveolar joint function.


Asunto(s)
Ligamento Periodontal , Diente , Animales , Cemento Dental , Humanos , Periodoncio , Raíz del Diente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...