Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
SAGE Open Med ; 8: 2050312120960568, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33029351

RESUMEN

OBJECTIVES: Symptoms of sore throat result from oropharyngeal inflammation, for which prostaglandin E2 is a key mediator. Flurbiprofen is a non-steroidal anti-inflammatory that provides sore throat relief. The preliminary objective of this study was to develop an in vitro model for assessing prostaglandin E2 stimulation by viral and bacterial triggers. The primary objective was to investigate the effect of diluted flurbiprofen-containing lozenges on prostaglandin E2 concentrations in stimulated cells. METHODS: Prostaglandin E2 production was stimulated in three epithelial cell lines (A549, HEp2, and clonetics bronchial/tracheal epithelial) with influenza A virus (4.5 log10 tissue culture infectious dose50/mL), or bacterial lipopolysaccharide (10µ g/mL) and peptidoglycan (3µ g/mL) and incubated overnight. Prostaglandin E2 levels were assessed by enzyme-linked immunosorbent assay up to 24 h after stimulation. The effect of flurbiprofen 8.75 mg lozenges (diluted to 0.44 mg/mL) on PGE2 production in stimulated cells was assessed in parallel; prior to viral/LPS/PEP stimulation of cells, 300 µL of test product or control was added and incubated for 30 s, 2 and 5 min (and 10 min for bacterial trigger). Prostaglandin E2 levels were measured following stimulation. RESULTS: Viral and lipopolysaccharide/peptidoglycan infection did not consistently stimulate HEp2 cells and bronchial/tracheal epithelial cells to produce prostaglandin E2. Influenza virus, and lipopolysaccharide/peptidoglycan stimulated high prostaglandin E2 concentrations in A549: mean prostaglandin E2 concentration 106.48 pg/mL with viral stimulation vs 33.82 pg/mL for uninfected cells; 83.84 pg/mL with lipopolysaccharide/peptidoglycan vs 71.96 pg/mL for uninfected cells. Flurbiprofen produced significant reductions in virus-stimulated prostaglandin E2 vs stimulated untreated cells at 2 min (p = 0.03). Flurbiprofen produced significant reductions in lipopolysaccharide/peptidoglycan-stimulated prostaglandin E2 concentrations from 30 s (p = 0.02), and at 2, 5 and 10 min (all p < 0.005) vs stimulated untreated cells. CONCLUSIONS: A549 cells provide a suitable model for assessment of prostaglandin E2 stimulation by viral and bacterial triggers. Diluted flurbiprofen-containing lozenges demonstrated rapid anti-inflammatory activity in viral- and lipopolysaccharide/peptidoglycan-stimulated A549 cells.

2.
J Pharm Pharmacol ; 71(4): 483-509, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29770440

RESUMEN

OBJECTIVES: Supersaturating formulations hold great promise for delivery of poorly soluble active pharmaceutical ingredients (APIs). To profit from supersaturating formulations, precipitation is hindered with precipitation inhibitors (PIs), maintaining drug concentrations for as long as possible. This review provides a brief overview of supersaturation and precipitation, focusing on precipitation inhibition. Trial-and-error PI selection will be examined alongside established PI screening techniques. Primarily, however, this review will focus on recent advances that utilise advanced analytical techniques to increase mechanistic understanding of PI action and systematic PI selection. KEY FINDINGS: Advances in mechanistic understanding have been made possible by the use of analytical tools such as spectroscopy, microscopy and mathematical and molecular modelling, which have been reviewed herein. Using these techniques, PI selection can be guided by molecular rationale. However, more work is required to see widespread application of such an approach for PI selection. SUMMARY: Precipitation inhibitors are becoming increasingly important in enabling formulations. Trial-and-error approaches have seen success thus far. However, it is essential to learn more about the mode of action of PIs if the most optimal formulations are to be realised. Robust analytical tools, and the knowledge of where and how they can be applied, will be essential in this endeavour.


Asunto(s)
Precipitación Química/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas/administración & dosificación , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Humanos , Modelos Moleculares , Preparaciones Farmacéuticas/química , Solubilidad , Tecnología Farmacéutica/métodos
3.
J Pharm Pharmacol ; 70(5): 584-594, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28872677

RESUMEN

OBJECTIVE: Here we provide a critical review of the state of the art with respect to non-clinical assessments of immunogenicity for therapeutic proteins. KEY FINDINGS: The number of studies on immunogenicity published annually has more than doubled in the last 5 years. The science and technology, which have reached a critical mass, provide multiple of non-clinical approaches (computational, in vitro, ex vivo and animal models) to first predict and then to modify or eliminate T-cell or B-cell epitopes via de-immunization strategies. We discuss how these may be used in the context of drug development in assigning the immunogenicity risk of new and marketed therapeutic proteins. SUMMARY: Protein therapeutics represents a large share of the pharma market and provide medical interventions for some of the most complex and intractable diseases. Immunogenicity (the development of antibodies to therapeutic proteins) is an important concern for both the safety and efficacy of protein therapeutics as immune responses may neutralize the activity of life-saving and highly effective protein therapeutics and induce hypersensitivity responses including anaphylaxis. The non-clinical computational tools and experimental technologies that offer a comprehensive and increasingly accurate estimation of immunogenic potential are surveyed here. This critical review also discusses technologies which are promising but are not as yet ready for routine use.


Asunto(s)
Anticuerpos/inmunología , Diseño de Fármacos , Proteínas/administración & dosificación , Anafilaxia/etiología , Anafilaxia/inmunología , Animales , Hipersensibilidad a las Drogas/inmunología , Humanos , Proteínas/efectos adversos , Proteínas/inmunología , Tecnología Farmacéutica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...