Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 30(8): 1907-1920, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33624366

RESUMEN

Hybridization in nature offers unique insights into the process of natural selection in incipient species and their hybrids. In order to evaluate the patterns and targets of selection, we examine a recently discovered baboon hybrid zone in the Kafue River Valley of Zambia, where Kinda baboons (Papio kindae) and grey-footed chacma baboons (P. ursinus griseipes) coexist with hybridization. We genotyped baboons at 14,962 variable genome-wide autosomal markers using double-digest RADseq. We compared ancestry patterns from this genome-wide data set to previously reported ancestry from mitochondrial-DNA and Y-chromosome sources. We also fit a Bayesian genomic cline model to scan for genes with extreme patterns of introgression. We show that the Kinda baboon Y chromosome has penetrated the species boundary to a greater extent than either mitochondrial DNA or the autosomal chromosomes. We also find evidence for overall restricted introgression in the JAK/STAT signalling pathway. Echoing results in other species including humans, we find evidence for enhanced and/or directional introgression of immune-related genes or pathways including the toll-like receptor pathway, the blood coagulation pathway, and the LY96 gene. Finally we show enhanced introgression and excess chacma baboon ancestry in the sperm tail gene ODF2. Together, our results elucidate the dynamics of introgressive hybridization in a primate system while identifying genes and pathways possibly under selection.


Asunto(s)
ADN Mitocondrial , Hibridación Genética , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Papio/genética , Zambia
2.
Am J Bot ; 107(6): 923-940, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32498125

RESUMEN

PREMISE: Delimiting biodiversity units is difficult in organisms in which differentiation is obscured by hybridization, plasticity, and other factors that blur phenotypic boundaries. Such work is more complicated when the focal units are subspecies, the definition of which has not been broadly explored in the era of modern genetic methods. Eastwood manzanita (Arctostaphylos glandulosa Eastw.) is a widely distributed and morphologically complex chaparral shrub species with much subspecific variation, which has proven challenging to categorize. Currently 10 subspecies are recognized, however, many of them are not geographically segregated, and morphological intermediates are common. Subspecies delimitation is of particular importance in this species because two of the subspecies are rare. The goal of this study was to apply an evolutionary definition of "subspecies" to characterize structure within Eastwood manzanita. METHODS: We used publicly available geospatial environmental data and reduced-representation genome sequencing to characterize environmental and genetic differentiation among subspecies. In addition, we tested whether subspecies could be differentiated by environmentally associated genetic variation. RESULTS: Our analyses do not show genetic differentiation among subspecies of Eastwood manzanita, with the exception of one of the two rare subspecies. In addition, our environmental analyses did not show ecological differentiation, though limitations of the analysis prevent strong conclusions. CONCLUSIONS: Genetic structure within Eastwood manzanita does not correspond to current subspecies circumscriptions, but rather reflects geographic distribution. Our study suggests that subspecies concepts need to be reconsidered in long-lived plant species, especially in the age of next-generation sequencing.


Asunto(s)
Evolución Biológica , Flujo Genético , Biodiversidad , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Genética , Filogenia
3.
Mol Ecol Resour ; 20(5): 1228-1247, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32306514

RESUMEN

Species' responses at the genetic level are key to understanding the long-term consequences of anthropogenic global change. Herbaria document such responses, and, with contemporary sampling, provide high-resolution time-series of plant evolutionary change. Characterizing genetic diversity is straightforward for model species with small genomes and a reference sequence. For nonmodel species-with small or large genomes-diversity is traditionally assessed using restriction-enzyme-based sequencing. However, age-related DNA damage and fragmentation preclude the use of this approach for ancient herbarium DNA. Here, we combine reduced-representation sequencing and hybridization-capture to overcome this challenge and efficiently compare contemporary and historical specimens. Specifically, we describe how homemade DNA baits can be produced from reduced-representation libraries of fresh samples, and used to efficiently enrich historical libraries for the same fraction of the genome to produce compatible sets of sequence data from both types of material. Applying this approach to both Arabidopsis thaliana and the nonmodel plant Cardamine bulbifera, we discovered polymorphisms de novo in an unbiased, reference-free manner. We show that the recovered genetic variation recapitulates known genetic diversity in A. thaliana, and recovers geographical origin in both species and over time, independent of bait diversity. Hence, our method enables fast, cost-efficient, large-scale integration of contemporary and historical specimens for assessment of genome-wide genetic trends over time, independent of genome size and presence of a reference genome.


Asunto(s)
ADN de Plantas/genética , Genética de Población , Genómica , Plantas/genética , Arabidopsis , Cardamine , Hibridación de Ácido Nucleico , Análisis de Secuencia de ADN
4.
Mol Ecol ; 28(5): 980-997, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30450714

RESUMEN

Wallace's Riverine Barrier hypothesis is one of the earliest biogeographic explanations for Amazon speciation, but it has rarely been tested in plants. In this study, we used three woody Amazonian plant species to evaluate Wallace's Hypothesis using tools of landscape genomics. We generated unlinked single-nucleotide polymorphism (SNP) data from the nuclear genomes of 234 individuals (78 for each plant species) across 13 sampling sites along the Rio Branco, Brazil, for Amphirrhox longifolia (8,075 SNPs), Psychotria lupulina (9,501 SNPs) and Passiflora spinosa (14,536 SNPs). Although significantly different migration rates were estimated between species, the population structure data do not support the hypothesis that the Rio Branco-an allopatric barrier for primates and birds-is a significant genetic barrier for Amphirrhox longifolia, Passiflora spinosa or Psychotria lupulina. Overall, we demonstrated that medium-sized rivers in the Amazon Basin, such as the Rio Branco, are permeable barriers to gene flow for animal-dispersed and animal-pollinated plant species.


Asunto(s)
Especiación Genética , Genómica , Violaceae/genética , Brasil , Flujo Génico , Genoma de Planta/genética , Polimorfismo de Nucleótido Simple/genética , Ríos
5.
Mol Ecol ; 26(14): 3636-3648, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28393442

RESUMEN

Wallace's riverine barrier hypothesis postulates that large rivers, such as the Amazon and its tributaries, reduce or prevent gene flow between populations on opposite banks, leading to allopatry and areas of species endemism occupying interfluvial regions. Several studies have shown that two major tributaries, Rio Branco and Rio Negro, are important barriers to gene flow for birds, amphibians and primates. No botanical studies have considered the potential role of the Rio Branco as a barrier, while a single botanical study has evaluated the Rio Negro as a barrier. We studied an Amazon shrub, Amphirrhox longifolia (A. St.-Hil.) Spreng (Violaceae), as a model to test the riverine barrier hypothesis. Twenty-six populations of A. longifolia were sampled on both banks of the Rio Branco and Rio Negro in the core Amazon Basin. Double-digest RADseq was used to identify 8,010 unlinked SNP markers from the nuclear genome of 156 individuals. Data relating to population structure support the hypothesis that the Rio Negro acted as a significant genetic barrier for A. longifolia. On the other hand, no genetic differentiation was detected among populations spanning the narrower Rio Branco, which is a tributary of the Rio Negro. This study shows that the strength of riverine barriers for Amazon plants is dependent on the width of the river separating populations and species-specific dispersal traits. Future studies of plants with contrasting life history traits will further improve our understanding of the landscape genetics and allopatric speciation history of Amazon plant diversity.


Asunto(s)
Flujo Génico , Dispersión de las Plantas , Ríos , Violaceae/genética , Brasil , Fenotipo , Polimorfismo de Nucleótido Simple
6.
BMC Genomics ; 17: 466, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27317430

RESUMEN

BACKGROUND: The sacred lotus (Nelumbo nucifera) is widely cultivated in China for its edible rhizomes and seeds. Traditional plant breeding methods have been used to breed cultivars with increased yields and quality of rhizomes and seeds with limited success. Currently, the available genetic maps and molecular markers in lotus are too limited to be useful for molecular genetics based breeding programs. However, the development of next-generation sequencing (NGS) technologies has enabled large-scale identification of single-nucleotide polymorphisms (SNPs) for genetic map construction. In this study, we constructed an SNP-based high-density genetic map for cultivated lotus using double digest restriction site-associated DNA sequencing (ddRADseq). RESULTS: An F2 population of 96 individuals was derived from a cross between the rhizome lotus cultivar 'Juwuba' (male parent) and the seed lotus cultivar 'Mantianxing' (female parent). Genomic DNAs from this population were digested with the restriction enzymes EcoRI and MspI and then sequenced. In total, 133.65 Gb of raw data containing 1,088,935,610 pair-end reads were obtained. The coverage of reads on a reference genome was 7.2 % for the female parent, 6.56 % for the male parent, and 1.46 % for F2 individuals. From these reads, 10,753 valid SNP markers were used for genetic map construction. Finally, 791 bin markers (so-segregated adjacent SNPs treated as a bin marker), consisting of 8,971 SNP markers, were sorted into 8 linkage groups (LGs) that spanned 581.3 cM, with an average marker interval of 0.74 cM. A total of 809 genome sequence scaffolds, covering about 565.9 cM of the wild sacred lotus genome, were anchored on the genetic map, accounting for 70.6 % of the genome assembly. CONCLUSIONS: This study reports the large-scale discovery of SNPs between cultivars of rhizome and seed lotus using a ddRADseq library combined with NGS. These SNPs have been used to construct the first high-density genetic map for cultivated lotus that can serve as a genomic reference and will facilitate genetic mapping of important traits in the parental cultivars.


Asunto(s)
Mapeo Cromosómico , Genoma de Planta , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Nelumbo/genética , Genómica/métodos , Genotipo , Repeticiones de Microsatélite , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
7.
Evol Appl ; 8(7): 662-78, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26240604

RESUMEN

Evaluating the genetic and demographic independence of populations of threatened species is important for determining appropriate conservation measures, but different technologies can yield different conclusions. Despite multiple studies, the taxonomic status and extent of gene flow between the main breeding populations of Black-footed Albatross (Phoebastria nigripes), a Near-Threatened philopatric seabird, are still controversial. Here, we employ double digest RADseq to quantify the extent of genomewide divergence and gene flow in this species. Our genomewide data set of 9760 loci containing 3455 single nucleotide polymorphisms yielded estimates of genetic diversity and gene flow that were generally robust across seven different filtering and sampling protocols and suggest a low level of genomic variation (θ per site = âˆ¼0.00002-0.00028), with estimates of effective population size (N e = âˆ¼500-15 881) falling far below current census size. Genetic differentiation was small but detectable between Japan and Hawaii (F ST ≈ 0.038-0.049), with no F ST outliers. Additionally, using museum specimens, we found that effect sizes of morphological differences by sex or population rarely exceeded 4%. These patterns suggest that the Hawaiian and Japanese populations exhibit small but significant differences and should be considered separate management units, although the evolutionary and adaptive consequences of this differentiation remain to be identified.

8.
G3 (Bethesda) ; 3(1): 65-74, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23316439

RESUMEN

Cichlid fishes are an excellent model system for studying speciation and the formation of adaptive radiations because of their tremendous species richness and astonishing phenotypic diversity. Most research has focused on African rift lake fishes, although Neotropical cichlid species display much variability as well. Almost one dozen species of the Midas cichlid species complex (Amphilophus spp.) have been described so far and have formed repeated adaptive radiations in several Nicaraguan crater lakes. Here we apply double-digest restriction-site associated DNA sequencing to obtain a high-density linkage map of an interspecific cross between the benthic Amphilophus astorquii and the limnetic Amphilophus zaliosus, which are sympatric species endemic to Crater Lake Apoyo, Nicaragua. A total of 755 RAD markers were genotyped in 343 F(2) hybrids. The map resolved 25 linkage groups and spans a total distance of 1427 cM with an average marker spacing distance of 1.95 cM, almost matching the total number of chromosomes (n = 24) in these species. Regions of segregation distortion were identified in five linkage groups. Based on the pedigree of parents to F(2) offspring, we calculated a genome-wide mutation rate of 6.6 × 10(-8) mutations per nucleotide per generation. This genetic map will facilitate the mapping of ecomorphologically relevant adaptive traits in the repeated phenotypes that evolved within the Midas cichlid lineage and, as the first linkage map of a Neotropical cichlid, facilitate comparative genomic analyses between African cichlids, Neotropical cichlids and other teleost fishes.


Asunto(s)
Mapeo Cromosómico/métodos , Cíclidos/genética , Hibridación Genética , Animales , Secuencia de Bases , Cruzamientos Genéticos , Marcadores Genéticos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Lagos , Datos de Secuencia Molecular , Tasa de Mutación , Nicaragua , Polimorfismo de Nucleótido Simple/genética , Mapeo Restrictivo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...