Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 568
Filtrar
1.
Front Plant Sci ; 15: 1414181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962243

RESUMEN

Introduction: Growing grass-legume mixtures for forage production improves both yield productivity and nutritional quality, while also benefiting the environment by promoting species biodiversity and enhancing soil fertility (through nitrogen fixation). Consequently, assessing legume proportions in grass-legume mixed swards is essential for breeding and cultivation. This study introduces an approach for automated classification and mapping of species in mixed grass-clover swards using object-based image analysis (OBIA). Methods: The OBIA procedure was established for both RGB and ten band multispectral (MS) images capturedby an unmanned aerial vehicle (UAV). The workflow integrated structural (canopy heights) and spectral variables (bands, vegetation indices) along with a machine learning algorithm (Random Forest) to perform image segmentation and classification. Spatial k-fold cross-validation was employed to assess accuracy. Results and discussion: Results demonstrated good performance, achieving an overall accuracy of approximately 70%, for both RGB and MS-based imagery, with grass and clover classes yielding similar F1 scores, exceeding 0.7 values. The effectiveness of the OBIA procedure and classification was examined by analyzing correlations between predicted clover fractions and dry matter yield (DMY) proportions. This quantification revealed a positive and strong relationship, with R2 values exceeding 0.8 for RGB and MS-based classification outcomes. This indicates the potential of estimating (relative) clover coverage, which could assist breeders but also farmers in a precision agriculture context.

2.
Psychiatry Res ; 339: 116056, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38968918

RESUMEN

We aimed to assess the mental health of adults living in Ukraine one year after onset of the Russo-Ukrainian war, along with quality of life and coping strategies. Quota sampling was used to collect online survey data from 2364 adults aged 18-79 years living in Ukraine from April 5, 2023 to May 15, 2023. Among adults living in Ukraine, 14.4 % had probable post-traumatic stress disorder (PTSD), another 8.9 % had complex PTSD (CPTSD), 44.2 % had probable depressive disorder, 23.1 % had anxiety disorder and 38.6 % showed significant loneliness. In adjusted models, the number of trauma events experienced during the war showed a dose-response association with PTSD/CPTSD and was associated with depressive disorder and anxiety disorder. Quality of life domains, particularly physical quality of life, were negatively associated with PTSD/CPTSD, depressive disorder, anxiety disorder, and number of trauma events. Maladaptive coping was positively associated with depressive disorder, anxiety disorder, PTSD/CPTSD and loneliness. All quality of life domains were positively associated with using adaptive coping strategies. Mental health disorders are highly prevalent in adults living in Ukraine one year into the war. Policy and services can promote adaptive coping strategies to improve mental health and quality of life for increased resilience during war.

3.
Sci Rep ; 14(1): 15465, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965394

RESUMEN

Cliffs contain one of the least known plant communities, which has been overlooked in biodiversity assessments due to the inherent inaccessibility. Our study adopted the unmanned aerial vehicle (UAV) with the telephoto camera to remotely clarify floristic variability across unreachable cliffs. Studied cliffs comprised 17 coastal and 13 inland cliffs in Gageodo of South Korea, among which 9 and 5 cliffs were grazed by the introduced cliff-dwelling goats. The UAV telephotography showed 154 and 166 plant species from coastal and inland cliffs, respectively. Inland cliffs contained more vascular plant species (P < 0.001), increased proportions of fern and woody species (P < 0.05), and decreased proportion of herbaceous species (P < 0.001) than coastal cliffs. It was also found that coastal and inland cliffs differed in the species composition (P < 0.001) rather than taxonomic beta diversity (P = 0.29). Furthermore, grazed coastal cliffs featured the elevated proportions of alien and annual herb species than ungrazed coastal cliffs (P < 0.05). This suggests that coastal cliffs might not be totally immune to grazing if the introduced herbivores are able to access cliff microhabitats; therefore, such anthropogenic introduction of cliff-dwelling herbivores should be excluded to conserve the native cliff plant communities.


Asunto(s)
Biodiversidad , Plantas , Animales , República de Corea , Islas , Dispositivos Aéreos No Tripulados , Herbivoria , Cabras , Ecosistema
4.
Appl Ergon ; 121: 104355, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029306

RESUMEN

This analysis examined systemic causes of Uncrewed Air Vehicle (UAV) accidents identifying operator, environmental, supervisory, and organisational factors through the use of the Human Factors Analysis and Classification System (HFACS). HFACS is a system-based analysis method for investigating the causal factors associated with accidents and incidents and has previously been used to reliably and systematically identify active and latent failures associated with both military and general aviation accidents. Whilst HFACS has previously been applied to UAV accidents, the last known application was conducted in 2014. Using reports retrieved from nine accident investigation organisations' databases, causal factors were coded against unsafe acts, preconditions, and failures at the supervisory, organisational, and environmental levels. Causal factors were assessed on 77 medium or large UAV mishaps/accidents that occurred over a 12-year period up to 2024. 42 mishap reports were deemed to involve a human factor as a causal factor. A large proportion of the mishaps contained factors attributed to Decision Errors at level 1 (Unsafe Acts) which was found to be associated with both the Technological Environment and Adverse Mental State at level 2 (Pre-conditions). Causal factors were identified at each of the other 3 levels (Supervisory, Organisational and External) with a number of emergent associations between causal factors. These data provide support for the identification and development of interventions aimed at improving the safety of organisations and advice of regulators for Uncrewed Air Systems.

5.
Resuscitation ; : 110312, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996906

RESUMEN

BACKGROUND: Drones are able to deliver automated external defibrillators in cases of out-of-hospital cardiac arrest (OHCA) but can be deployed for other purposes. Our aim was to evaluate the feasibility of sending live photos to dispatch centres before arrival of other units during time-critical incidents. METHODS: In this retrospective observational study, the regional dispatch centre implemented a new service using five existing AED-drone systems covering an estimated 200000 inhabitants in Sweden. Drones were deployed automatically over a 4-month study period (December 2022-April 2023) in emergency calls involving suspected OHCAs, traffic accidents and fires in buildings. Upon arrival at the scene, an overhead photo was taken and transmitted to the dispatch centre. Feasibility of providing photos in real time, and time delays intervals were examined. RESULTS: Overall, drones were deployed in 59/440 (13%) of all emergency calls: 26/59 (44%) of suspected OHCAs, 20/59 (34%) of traffic accidents, and 13/59 (22%) of fires in buildings. The main reasons for non-deployment were closed airspace and unfavourable weather conditions (68%). Drones arrived safely at the exact location in 58/59 cases (98%). Their overall median response time was 3:49 min, (IQR 3:18-4:26) vs. emergency medical services (EMS), 05:51 (IQR: 04:29-08:04) p-value for time difference between drone and EMS = 0,05. Drones arrived first on scene in 47/52 cases (90%) and the largest median time difference was found in suspected OHCAs 4:10 min, (IQR: 02:57-05:28). The time difference in the 5/52 (10%) cases when EMS arrived first the time difference was 5:18 min (IQR 2:19-7:38), p = NA. Photos were transmitted correctly in all 59 alerts. No adverse events occurred. CONCLUSION: In a newly implemented drone dispatch service, drones were dispatched to 13% of relevant EMS calls. When drones were dispatched, they arrived at scene earlier than EMS services in 90% of cases. Drones were able to relay photos to the dispatch centre in all cases. Although severely affected by closed airspace and weather conditions, this novel method may facilitate additional decision-making information during time-critical incidents.

6.
Drones ; 8(3): 1-15, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-39027417

RESUMEN

Laboratory and field tests examined the potential for unmanned aircraft system (UAS) rotor wash effects on gas and particle measurements from a biomass combustion source. Tests compared simultaneous placement of two sets of CO and CO2 gas sensors and PM2.5 instruments on a UAS body and on a vertical or horizontal extension arm beyond the rotors. For 1 Hz temporal concentration comparisons, correlations of body versus arm placement for the PM2.5 particle sensors yielded R2 = 0.85 and for both gas sensor pairs exceeded R2 of 0.90. Increasing the timestep to 10 s average concentrations throughout the burns improved the R2 value for the PM2.5 to 0.95 from 0.85. Finally, comparison of whole-test average concentrations further increased the correlations between body- and arm-mounted sensors, exceeding R2 of 0.98 for both gases and particle measurements. Evaluation of PM2.5 emission factors with single factor ANOVA analyses showed no significant differences between the values derived from the arm, either vertical or horizontal, and those from the body. These results suggest that rotor wash effects on body- and arm-mounted sensors are minimal in scenarios where short duration, time-averaged concentrations are used to calculate emission factors and whole-area flux values.

7.
ISA Trans ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38910091

RESUMEN

Splendid Unmanned Aerial Vehicle (UAV) applications upshot its enormous use in densely inhabited areas, which is a matter of concern. In such areas, a proper tracking system is required to track an unauthorized/invader drone to ensure safety. With the flexibility of reaching inaccessible places, an Unmanned Aerial Vehicle Mounted Adaptable Radar Antenna Array (UAVMARAA) could be used. In this regard, a Hybrid Unscented Kalman-Continuous Ant Colony Filter (HUK-CACF) is proposed to estimate the position of the invader drone efficiently. Simulation results demonstrate the efficiency and robustness of the proposed filter for tracking system compared to the existing filters in terms of success rate. Further, for various Adaptable Radar Antenna Array (ARAA) patterns such as Uniform Linear Array (ULA), Uniform Rectangular Array (URA), and Uniform Circular Array (UCA), analysis is done for pertaining actual tracking effect for various parameters such as bearing, Doppler shift, ranging, and Radar Cross Section (RCS) by considering wobbling and mutual coupling (MC) effect. The result shows that the proposed filter outperforms in all the scenarios. Among the various ARAA, URA performs better than the other configurations.

8.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931611

RESUMEN

This article investigates the causes of occasional flight instability observed in Unmanned Aerial Vehicles (UAVs). The issue manifests as unexpected oscillations that can lead to emergency landings. The analysis focuses on delays in the Extended Kalman Filter (EKF) algorithm used to estimate the drone's attitude, position, and velocity. These delays disrupt the flight stabilization process. The research identifies two potential causes for the delays. First cause is magnetic field distrurbances created by UAV motors and external magnetic fields (e.g., power lines) that can interfere with magnetometer readings, leading to extended EKF calculations. Second cause is EKF fusion step implementation of the PX4-ECL library combining magnetometer data with other sensor measurements, which can become computionally expensive, especially when dealing with inconsistent magnetic field readings. This can significantly increase EKF processing time. The authors propose a solution of moving the magnetic field estimation calculations to a separate, lower-priority thread. This would prevent them from blocking the main EKF loop and causing delays. The implemented monitoring techniques allow for continuous observation of the real-time operating system's behavior. Since addressing the identified issues, no significant problems have been encountered during flights. However, ongoing monitoring is crucial due to the infrequent and unpredictable nature of the disturbances.

9.
Ecol Evol ; 14(6): e11399, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38826169

RESUMEN

While morphological abnormalities have been widely reported in batomorphs, ontogenetic deformities of the posterior pectoral fin are rare. In this paper, we present two individuals of the bluespotted ribbontail ray, Taeniura lymma (Forsskål, 1775), with symmetrically deformed posterior pectoral fins. Both individuals were observed through aerial imagery on a coastal sandflat in the central Red Sea (22.30° N, 39.09° E). The similarity of this symmetrical deformity in both individuals indicates it likely has a genetic base. However, lacking access to the specimens, the ultimate cause of the abnormality remains uncertain. The incomplete disk closure did not seem to affect survival, as both individuals had reached a disk width of 22 cm, well above the typical birth size of the species. Our observations constitute both the first report of a morphological abnormality in T. lymma and the first record of a batomorph with a symmetrically deformed posterior pectoral fin.

10.
ArXiv ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38827459

RESUMEN

Introduction: Quantification of dynamic contrast-enhanced (DCE)-MRI has the potential to provide valuable clinical information, but robust pharmacokinetic modeling remains a challenge for clinical adoption. Methods: A 7-layer neural network called DCE-Qnet was trained on simulated DCE-MRI signals derived from the Extended Tofts model with the Parker arterial input function. Network training incorporated B1 inhomogeneities to estimate perfusion (Ktrans, vp, ve), tissue T1 relaxation, proton density and bolus arrival time (BAT). The accuracy was tested in a digital phantom in comparison to a conventional nonlinear least-squares fitting (NLSQ). In vivo testing was conducted in 10 healthy subjects. Regions of interest in the cervix and uterine myometrium were used to calculate the inter-subject variability. The clinical utility was demonstrated on a cervical cancer patient. Test-retest experiments were used to assess reproducibility of the parameter maps in the tumor. Results: The DCE-Qnet reconstruction outperformed NLSQ in the phantom. The coefficient of variation (CV) in the healthy cervix varied between 5-51% depending on the parameter. Parameter values in the tumor agreed with previous studies despite differences in methodology. The CV in the tumor varied between 1-47%. Conclusion: The proposed approach provides comprehensive DCE-MRI quantification from a single acquisition. DCE-Qnet eliminates the need for separate T1 scan or BAT processing, leading to a reduction of 10 minutes per scan and more accurate quantification.

11.
Environ Monit Assess ; 196(6): 530, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724828

RESUMEN

Increasingly, dry conifer forest restoration has focused on reestablishing horizontal and vertical complexity and ecological functions associated with frequent, low-intensity fires that characterize these systems. However, most forest inventory approaches lack the resolution, extent, or spatial explicitness for describing tree-level spatial aggregation and openings that were characteristic of historical forests. Uncrewed aerial system (UAS) structure from motion (SfM) remote sensing has potential for creating spatially explicit forest inventory data. This study evaluates the accuracy of SfM-estimated tree, clump, and stand structural attributes across 11 ponderosa pine-dominated stands treated with four different silvicultural prescriptions. Specifically, UAS-estimated tree height and diameter-at-breast-height (DBH) and stand-level canopy cover, density, and metrics of individual trees, tree clumps, and canopy openings were compared to forest survey data. Overall, tree detection success was high in all stands (F-scores of 0.64 to 0.89), with average F-scores > 0.81 for all size classes except understory trees (< 5.0 m tall). We observed average height and DBH errors of 0.34 m and - 0.04 cm, respectively. The UAS stand density was overestimated by 53 trees ha-1 (27.9%) on average, with most errors associated with understory trees. Focusing on trees > 5.0 m tall, reduced error to an underestimation of 10 trees ha-1 (5.7%). Mean absolute errors of bole basal area, bole quadratic mean diameter, and canopy cover were 11.4%, 16.6%, and 13.8%, respectively. While no differences were found between stem-mapped and UAS-derived metrics of individual trees, clumps of trees, canopy openings, and inter-clump tree characteristics, the UAS method overestimated crown area in two of the five comparisons. Results indicate that in ponderosa pine forests, UAS can reliably describe large- and small-grained forest structures to effectively inform spatially explicit management objectives.


Asunto(s)
Monitoreo del Ambiente , Bosques , Pinus ponderosa , Tecnología de Sensores Remotos , Monitoreo del Ambiente/métodos , Árboles
13.
Int J Health Geogr ; 23(1): 13, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764024

RESUMEN

BACKGROUND: In the near future, the incidence of mosquito-borne diseases may expand to new sites due to changes in temperature and rainfall patterns caused by climate change. Therefore, there is a need to use recent technological advances to improve vector surveillance methodologies. Unoccupied Aerial Vehicles (UAVs), often called drones, have been used to collect high-resolution imagery to map detailed information on mosquito habitats and direct control measures to specific areas. Supervised classification approaches have been largely used to automatically detect vector habitats. However, manual data labelling for model training limits their use for rapid responses. Open-source foundation models such as the Meta AI Segment Anything Model (SAM) can facilitate the manual digitalization of high-resolution images. This pre-trained model can assist in extracting features of interest in a diverse range of images. Here, we evaluated the performance of SAM through the Samgeo package, a Python-based wrapper for geospatial data, as it has not been applied to analyse remote sensing images for epidemiological studies. RESULTS: We tested the identification of two land cover classes of interest: water bodies and human settlements, using different UAV acquired imagery across five malaria-endemic areas in Africa, South America, and Southeast Asia. We employed manually placed point prompts and text prompts associated with specific classes of interest to guide the image segmentation and assessed the performance in the different geographic contexts. An average Dice coefficient value of 0.67 was obtained for buildings segmentation and 0.73 for water bodies using point prompts. Regarding the use of text prompts, the highest Dice coefficient value reached 0.72 for buildings and 0.70 for water bodies. Nevertheless, the performance was closely dependent on each object, landscape characteristics and selected words, resulting in varying performance. CONCLUSIONS: Recent models such as SAM can potentially assist manual digitalization of imagery by vector control programs, quickly identifying key features when surveying an area of interest. However, accurate segmentation still requires user-provided manual prompts and corrections to obtain precise segmentation. Further evaluations are necessary, especially for applications in rural areas.


Asunto(s)
Cambio Climático , Humanos , Animales , Malaria/epidemiología , Mosquitos Vectores , Tecnología de Sensores Remotos/métodos , Sistemas de Información Geográfica , Procesamiento de Imagen Asistido por Computador/métodos
14.
Artículo en Inglés | MEDLINE | ID: mdl-38772999

RESUMEN

Bee drone brood is a beehive by-product with high hormonal activity used in natural medicine to treat male infertility. The aim of the study was to assess the effect of drone brood on stallion spermatozoa during a short-term incubation for its potential use in the equine semen extenders. Three different forms of fixed drone brood (frozen (FR), freeze-dried (FD), and dried extract (DE)) were used. Solutions of drone brood were compared in terms of testosterone, protein, total phenolic content, and antioxidant activity. The stallion semen was diluted with prepared drone brood solutions. The computer-assisted semen analysis (CASA) method was employed to evaluate the movement characteristics of the diluted ejaculate. To determine spermatozoa viability, the mitochondrial toxicity test (MTT) and Alamar Blue test were performed. In terms of testosterone content and antioxidant activity, a close likeness between FR and FD was found whereas DE's composition differed notably. FR had a positive effect mainly on progressive motility, but also on sperm distance and speed parameters after 2 and 3 h of incubation. On the contrary, FD and DE acted negatively, depending on increasing dose and time. For the first time, a positive dose-dependent effect of fixed drone brood on spermatozoa survival in vitro was demonstrated.

15.
Ecol Evol ; 14(5): e11433, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38756690

RESUMEN

Recreational boats are common in many coastal waters, yet their effects on cetaceans and other sensitive marine species remain poorly understood. To address this knowledge gap, we used drone video footage recorded from a recreational boat to quantify how harbour porpoises (Phocoena phocoena) responded to the boat approaching at different speeds (10 or 20 knots). Furthermore, we used a hydrophone to record boat noise levels at full bandwidth (0.1-150 kHz) and at the 1/3 octave 16 kHz frequency band for both experimental speeds. The experiments were carried out in shallow waters near Funen, Denmark (55.51° N, 10.79° E) between July and September 2022. Porpoises were more likely to move further away from the path of the boat when approached at 10 knots, but not when approached at 20 knots. In contrast, they swam faster when approached at 20 knots, but not when approached at 10 knots. The recorded received sound level did not depend on how fast the boat approached, suggesting that differences in porpoise responses were related to the speed of the approaching boat rather than to sound intensity. In addition, porpoises generally reacted within close proximity (<200 m) to the approaching boat and quickly (<50 s) resumed their natural behaviour once the boat had passed, indicating that the direct impact of small vessels on porpoise behaviour was most likely small. Nevertheless, repeated exposure to noise from small vessels may influence porpoises' activity or energy budget, and cause them to relocate from disturbed areas. The approach used in this study increases our understanding of recreational boats' impact on harbour porpoises and can be used to inform efficient mitigation measures to help focus conservation efforts.

16.
Data Brief ; 54: 110497, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38774243

RESUMEN

The "EscaYard" dataset comprises multimodal data collected from vineyards to support agricultural research, specifically focusing on vine health and productivity. Data collection involved two primary methods: (1) unmanned aerial vehicle (UAV) for capturing multispectral images and 3D point clouds, and (2) smartphones for detailed ground-level photography. The UAV used was DJI Matrice 210 V2 RTK, equipped with a Micasense Altum sensor, flying at 30 m above ground level to ensure detailed coverage. Ground-level data were collected using smartphones (iPhone X and Xiaomi Poco X3 Pro), which provided high-resolution images of individual plants. These images were geotagged, enabling location mapping, and included data on the phytosanitary status and number of grape clusters per plant. Additionally, the dataset contains RTK GNSS data, offering high-precision location information for each vine, enhancing the dataset's value for spatial analysis. Moreover, the dataset is structured to support various research applications, including agronomy, remote sensing, and machine learning. It is particularly suited for studying disease detection, yield estimation, and vineyard management strategies. The high-resolution and multispectral nature of the data allows for a detailed analysis of vineyard conditions. Potential reuse of the dataset spans multiple disciplines, enabling studies on environmental monitoring, geographic information systems (GIS), and precision agriculture. Its comprehensive nature makes it a valuable resource for developing and testing algorithms for disease classification, yield prediction, and plant phenotyping. For instance, the images of bunches and grape leaves can be used to train object detection algorithms for accurate disease detection and consequent precise spraying. Moreover, yield prediction algorithms can be trained by extracting the phenotypic traits of the grape bunches. The "EscaYard" dataset provides a foundation for advancing research in sustainable farming practices, optimising crop health, and improving productivity through precise agricultural technologies.

17.
Resusc Plus ; 18: 100652, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38716383

RESUMEN

Introduction: Medical drones have potential for improving the response times to out-of-hospital emergencies. However, widespread adoption is hindered by unanswered questions surrounding medical dispatch and bystander safety. This study evaluated the impact of novel drone-specific dispatch instructions (DSDI) on bystanders' ability to interact effectively with a medical drone and provide prompt, safe, and high-quality treatment in a simulated emergency scenario. We hypothesized DSDI would improve bystanders' performance and facilitate safer bystander-drone interactions. Methods: Twenty-four volunteers were randomized to receive either DSDI and standard Medical Priority Dispatch (MPD) instructions or MPD alone in a simulated out-of-hospital cardiac arrest (OHCA) or pediatric anaphylaxis.,3 Participants in the DSDI group received detailed instructions on locating and interacting with the drone and its enclosed medical kit. The simulations were video recorded. Participants completed a semi-structured interview and survey. Results: The addition of DSDI did not lead to statistically significant changes to the overall time to provide care in either the anaphylaxis or OHCA simulations. However, DSDI did have an impact on bystander safety. In the MPD only group, 50% (6/12) of participants ignored the audio and visual safety cues from the drone instead of waiting for it to be declared safe compared to no DSDI participants ignoring these safety cues. Conclusions: All participants successfully provided patient care. However, this study indicates that DSDI may be useful to ensure bystander safety and should be incorporated in the continued development of emergency medical drones.

18.
Mar Pollut Bull ; 202: 116405, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663345

RESUMEN

In the context of marine litter monitoring, reporting the weight of beached litter can contribute to a better understanding of pollution sources and support clean-up activities. However, the litter scaling task requires considerable effort and specific equipment. This experimental study proposes and evaluates three methods to estimate beached litter weight from aerial images, employing different levels of litter categorization. The most promising approach (accuracy of 80 %) combined the outcomes of manual image screening with a generalized litter mean weight (14 g) derived from studies in the literature. Although the other two methods returned values of the same magnitude as the ground-truth, they were found less feasible for the aim. This study represents the first attempt to assess marine litter weight using remote sensing technology. Considering the exploratory nature of this study, further research is needed to enhance the reliability and robustness of the methods.


Asunto(s)
Monitoreo del Ambiente , Tecnología de Sensores Remotos , Monitoreo del Ambiente/métodos , Reproducibilidad de los Resultados
19.
J Pharm Sci ; 113(7): 1816-1822, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38582280

RESUMEN

In the field of healthcare logistics, the reliance on conventional transport methods such as cars for the delivery of monoclonal antibodies (mAbs) is susceptible to challenges posed by traffic and infrastructure, leading to increased and unpredictable transport times. Recognizing the potential role of drones in mitigating these challenges, we aimed to investigate the impact of medical drone transport on the stability of mAbs. Compromised stability could lead to aggregation and immunogenicity, thereby jeopardizing the efficacy and safety of mAbs. We studied the transportation of vials as well as ready-to-administer infusion bags with blinatumomab, tocilizumab, and daratumumab. The methodology involved the measurement of both temperature and mechanical shock during drone transport. Moreover, the analytical techniques High Performance Size-Exclusion Chromatography (HP-SEC), Dynamic Light Scattering (DLS), Light Obscuration (LO), Micro-Flow Imaging (MFI), and Nanoparticle Tracking Analysis (NTA) were employed to comprehensively assess the presence of aggregates and particle formation. The key findings revealed no significant differences between car and drone transport, indicating that the stability of mAbs in both vials and infusion bags was adequately maintained during drone transport. This suggests that medical drones are a viable and reliable means for the inter-hospital transport of mAbs, paving the way for more efficient and predictable logistics in healthcare delivery.


Asunto(s)
Anticuerpos Monoclonales , Estabilidad de Medicamentos , Transportes , Anticuerpos Monoclonales/química , Transportes/métodos , Humanos , Embalaje de Medicamentos/métodos , Hospitales , Temperatura
20.
Sci Total Environ ; 927: 172284, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588743

RESUMEN

Mangrove canopy height (MCH) has been described as a leading characteristic of mangrove forests, protecting coastal economic interests from hurricanes. Meanwhile, winter temperature has been considered the main factor controlling the MCH along subtropical coastlines. However, the MCH in Cedar Key, Florida (∼12 m), is significantly higher than in Port Fourchon, Louisiana (∼2.5 m), even though these two subtropical locations have similar winter temperatures. Port Fourchon has been more frequently impacted by hurricanes than Cedar Key, suggesting that hurricanes may have limited the MCH in Port Fourchon rather than simply winter temperatures. This hypothesis was evaluated using novel high-resolution remote sensing techniques that tracked the MCH changes between 2002 and 2023. Results indicate that hurricanes were the limiting factor keeping the mean MCH at Port Fourchon to <1 m (2002-2013), as the absence of hurricane impacts between 2013 and 2018 allowed the mean MCH to increase by 60 cm despite the winter freezes in Jan/2014 and Jan/2018. Hurricanes Zeta (2020) and Ida (2021) caused a decrease in the mean MCH by 20 cm, breaking branches, defoliating the canopy, and toppling trees. The mean MCH (∼1.6 m) attained before Zeta and Ida has not yet been recovered as of August 2023 (∼1.4 m), suggesting a longer-lasting impact (>4 years) of hurricanes on mangroves than winter freezes (<1 year). The high frequency of hurricanes affecting mangroves at Port Fourchon has acted as a periodic "pruning," particularly of the tallest Avicennia trees, inhibiting their natural growth rates even during quiet periods following hurricane events (e.g., 12 cm/yr, 2013-2018). By contrast, the absence of hurricanes in Cedar Key (2000-2020) has allowed the MCH to reach 12 m (44-50 cm/yr), implying that, besides the winter temperature, the frequency and intensity of hurricanes are important factors limiting the MCH on their latitudinal range limits in the Gulf of Mexico.


Asunto(s)
Tormentas Ciclónicas , Humedales , Golfo de México , Florida , Monitoreo del Ambiente/métodos , Louisiana , Estaciones del Año , Rhizophoraceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...