RESUMEN
Phenotypic plasticity is the ability of a single genotype to vary its phenotype in response to the environment. Plasticity of the skeletal system in response to mechanical input is widely studied, but the timing of its transcriptional regulation is not well understood. Here, we used the cichlid feeding apparatus to examine the transcriptional dynamics of skeletal plasticity over time. Using three closely related species that vary in their ability to remodel bone and a panel of 11 genes, including well-studied skeletal differentiation markers and newly characterized environmentally sensitive genes, we examined plasticity at one, two, four and eight weeks following the onset of alternate foraging challenges. We found that the plastic species exhibited environment-specific bursts in gene expression beginning at one week, followed by a sharp decline in levels, while the species with more limited plasticity exhibited consistently low levels of gene expression. This trend held across nearly all genes, suggesting that it is a hallmark of the larger plasticity regulatory network. We conclude that plasticity of the cichlid feeding apparatus is not the result of slowly accumulating gene expression difference over time, but rather is stimulated by early bursts of environment-specific gene expression followed by a return to homeostatic levels.
Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Cíclidos/fisiología , Conducta Alimentaria , Cráneo , Regulación de la Expresión Génica , FenotipoRESUMEN
Prehensile raptorial forelegs are prey capturing and grasping devices, best known for praying mantises (Mantodea) within insects. They show strong morphological and behavioral adaptations toward a lifestyle as generalist arthropod predators. In the past, few species of Mantodea were investigated, concerning morphological variability of the raptorial forelegs. Especially the knowledge of foreleg anatomy in the light of functional and comparative morphology is scarce. Our comparative approach is based on the, for arthropods very common, "female-biased sexual size dimorphism" (SSD) that occurs in almost every Mantodea species. Within Mantodea, this SSD is likely leading to a shift of the exploited ecological niche between male and female individuals due to changes in, for example, the possible prey size; which might be reflected in the chosen ecomorphs. In this context, we analyzed the musculature of the raptorial forelegs of female and male specimens in five different species with varying SSD, using high-resolution microcomputed tomography and dissection. We were able to confirm the presence of 15 extrinsic and 15 intrinsic muscles-including one previously undescribed muscle present in all species. Thus, presenting a detailed description and illustrative three-dimensional anatomical visualization of the musculature in Mantodea. Interestingly, almost no observable differences were found, neither between species, nor between the sexes. Furthermore, we homologized all described muscles, due to their attachment points, to the comprehensive nomenclature established by Friedrich and Beutel (2008), discussed potential functionality of the muscles and possible homologies to the neuropteran Mantispa styriaca (Büsse et al., 2021) and the newly introduced leg nomenclature by Aibekova et al. (2022). By elucidating the anatomy, particularly in the context of functionality and SSD, our results complement previous knowledge of the raptorial forelegs, and facilitate a better understanding of the underlying biomechanical system of the predatory strike, and ultimately, a future comparison to other insect taxa.
Asunto(s)
Mantódeos , Caracteres Sexuales , Animales , Masculino , Femenino , Mantódeos/fisiología , Microtomografía por Rayos X , Insectos , Conducta Predatoria/fisiologíaRESUMEN
Environmental conditions often affect developmental processes and consequently influence the range of phenotypic variation expressed at population level. Expansion of urban sites poses new challenges for native species, as urbanization usually affects the intensity of solar exposure and shade availability, determining the thermal regimes organisms are exposed to. In this study, we evaluate the effects of different developmental conditions in a Tropidurus lizard commonly found in Brazilian urban sites. After incubating embryos of Tropidurus catalanensis in two different thermal regimes (Developmental Environments [DE]: cold 24°C and warm 30°C), we measured morphological traits in the neonates and quantified locomotor performance in horizontal and vertical surfaces at three temperatures [Test Temperatures (TT) = 24°C, 30°C and 36°C]. Results indicate effects of developmental temperatures on morphological features, expressing functional implications that might be decisive for the viability of T. catalanensis in urbanized areas. Lizards ran similarly on horizontal and vertical surfaces, and isolated analyses did not identify significant effects of DE or TT on the sprint speeds measured. Absolute Vmax (i.e., the maximum sprint speed reached among all TTs) positively correlated with body size (SVL), and neonates from the warm DE (30°C) were larger than those from the cold DE (24°C). Morpho-functional associations of absolute Vmax also involved pelvic girdle width and forelimb, hindlimb, trunk, and tail lengths. Emerging discussions aim to understand how animals cope with abrupt environmental shifts, a likely common challenge in urbanized sites. Our findings add a new dimension to the topic, providing evidence that temperature, an environmental parameter often affected by urbanization, influences the thermal sensitivity of locomotion and the morphological profile of T. catalanensis neonates. Thermal sensitivity of specific developmental processes may influence the ability of these lizards to remain in habitats that change fast, as those suffering rapid urbanization due to city growth.
RESUMEN
Vertebral morphology has profound biomechanical implications and plays an important role in adaptation to different habitats and foraging strategies for cetaceans. Extant porpoise species (Phocoenidae) display analogous evolutionary patterns in both hemispheres associated with convergent evolution to coastal versus oceanic environments. We employed 3D geometric morphometrics to study vertebral morphology in five porpoise species with contrasting habitats: the coastal Indo-Pacific finless porpoise (Neophocaena phocaenoides); the mostly coastal harbor porpoise (Phocoena phocoena) and Burmeister's porpoise (Phocoena spinipinnis); and the oceanic spectacled porpoise (Phocoena dioptrica) and Dall's porpoise (Phocoenoides dalli). We evaluated the radiation of vertebral morphology, both in size and shape, using multivariate statistics. We supplemented data with samples of an early-radiating delphinoid species, the narwhal (Monodon monoceros); and an early-radiating delphinid species, the white-beaked dolphin (Lagenorhynchus albirostris). Principal component analyses were used to map shape variation onto phylogenies, and phylogenetic constraints were investigated through permutation tests. We established links between vertebral morphology and movement patterns through biomechanical inferences from morphological presentations. We evidenced divergence in size between species with contrasting habitats, with coastal species tending to decrease in size from their estimated ancestral state, and oceanic species tending to increase in size. Regarding vertebral shape, coastal species had longer centra and shorter neural processes, but longer transverse processes, while oceanic species tended to have disk-shaped vertebrae with longer neural processes. Within Phocoenidae, the absence of phylogenetic constraints in vertebral morphology suggests a high level of evolutionary lability. Overall, our results are in accordance with the hypothesis of speciation within the family from a coastal ancestor, through adaptation to particular habitats. Variation in vertebral morphology in this group of small odontocetes highlights the importance of environmental complexity and particular selective pressures for the speciation process through the development of adaptations that minimize energetic costs during locomotion and prey capture.
Asunto(s)
Delfines , Phocoena , Marsopas , Animales , Ecosistema , Filogenia , Marsopas/anatomía & histología , Columna VertebralRESUMEN
Research and engineering efforts are establishing a vast number of stream restoration planning approaches, design testing frameworks, construction techniques, and performance evaluation methods. A primary question arises as to the lifespan of stream restoration features. This study develops a framework to identify relevant parameters, design criteria and survival thresholds for ten multidisciplinary restoration techniques: â¢Parameterize relevant features, notably, (1) bar and floodplain grading; (2) berm setback; (3) vegetation plantings; (4) riprap placement; (5) sediment replenishment; (6) side cavities; (7) side channel and anabranches; (8) streambed reshaping; (9) structure removal; and (10) placement of wood in the shape of engineered logjams and rootstocks.â¢Identify survival thresholds for parameters, where the feature life ends when the threshold value is exceeded.â¢Compare parameter thresholds with spatial data of topographic change and hydrodynamic forces as a result of hydrodynamic modelling of multiple discharges. The discharge or topographic change rate that is related to the lowest (flood) return period spatially determines the feature's lifespan in years.
RESUMEN
Anthropogenic, eco-morphological degradation of lotic waters necessitates laws, directives, and voluntary actions involving stream restoration and habitat enhancement. Research and engineering efforts are establishing a vast number of stream restoration planning approaches, design testing frameworks, construction techniques, and performance evaluation methods. As the practice of restoration scales up from an individual action at a single site to sequences of actions at many sites in a long river segment, a primary question arises as to the lifespan of such a sequence. This study develops a new framework to identify relevant parameters, design criteria and survival thresholds for ten multidisciplinary restoration techniques, adequate for site-scale to segment-scale application, in a comprehensive review: (1) bar and floodplain grading; (2) berm setback; (3) vegetation plantings; (4) riprap placement; (5) sediment replenishment; (6) side cavities; (7) side channel and anabranches; (8) streambed reshaping; (9) structure removal; and (10) placement of wood in the shape of engineered logjams and rootstocks. Survival thresholds are applied to a sequence of proposed habitat enhancement features for the lower Yuba River in California, USA. Spatially explicit hydraulic and sediment data, together with numerical model predictions of the measures, were vetted against the survival thresholds to produce discharge-dependent lifespan maps. Discharges related to specific flood-return periods enabled probabilistic estimates of the longevity of particular design features. Thus, the lifespan maps indicate the temporal stability of particular stream restoration and habitat enhancement features and techniques. Areas with particularly low or high lifespans help planners optimise the design and positioning of restoration features.
Asunto(s)
Longevidad , Ríos , California , Ecosistema , InundacionesRESUMEN
Terrestrial isopods, as successful colonizers of land habitats, show a great variety in species distribution patterns on a global, continental, or regional scale. On a local, within-habitat level these patterns reflect the species' tolerance limits and the presence of suitable hiding places (shelter sites, refugia). Humidity preference reflects a species' capability for water retention which, in turn, depends on the integumental barrier. Desiccation resistance is a key feature in isopod survival under different environmental conditions. The present study shows a correlation between cuticle thickness and desiccation resistance under three relative humidity (RH) ranges (about 30, 75 and 100% RH) in nine species, relating these to the species' differences in meso- and microhabitat choices. Habitat preferences are also associated with differences in cuticle surface morphology. The results support our hypothesis that species distribution and desiccation resistance are associated with particular cuticular morphological traits. Phylogenetic relations seem to be less important in desiccation resistance than cuticle thickness and external morphology.
RESUMEN
This study presents a detailed comparative analysis of external morphology of four of the most invasive goby species in Europe (round goby Neogobius melanostomus, bighead goby Ponticola kessleri, monkey goby Neogobius fluviatilis and racer goby Ponticola gymnotrachelus) and interprets some ecological requirements of these species based on their morphological attributes. The results are evaluated within an ontogenetic context, and the morphological differences between the species are discussed in terms of the question: can special external shape adaptations help to assess the invasive potential of each species? The morphometric analyses demonstrate important differences between the four invasive gobies. Neogobius melanostomus appears to have the least specialized external morphology that may favour its invasive success: little specialization to habitat or diet means reduced restraints on overall ecological requirements. The other three species were found to possess some morphological specializations (P. kessleri to large prey, N. fluviatilis to sandy habitats and P. gymnotrachelus to macrophytes), but none of these gobies have managed to colonize such large areas or to reach such overall abundances as N. melanostomus.
Asunto(s)
Conducta Animal , Especies Introducidas , Perciformes/anatomía & histología , Animales , Ecología , Ecosistema , Europa (Continente) , Perciformes/fisiología , Especificidad de la EspecieRESUMEN
We carried out a multidisciplinary study linking behavioral and morphological data from a little-known guenon species, Cercopithecus solatus, endemic to Gabon. Over a period of 9 months, we documented the pattern of stratum use associated with postural and locomotor behavior by direct observation (650 hrs) of a semi-free-ranging breeding colony. We also conducted a morphometric analysis of the humerus and limb proportions of 90 adult specimens from 16 guenon species, including C. solatus. Field observations indicated that C. solatus monkeys spent a third of their time on the ground, similar to semi-terrestrial guenon species. We detected two patterns of stratum use: at ground level, and in trees, at a height of 3-10 m. The monkeys spent more time on the ground during the dry season than the wet season, feeding mainly at ground level, while resting, and social behaviors occurred more frequently in the tree strata. Our study of humerus size and shape, together with the analysis of limb proportions, indicated morphofunctional adaptation of C. solatus to greater terrestriality than previously thought. We therefore characterize C. solatus as a semi-terrestrial guenon, and propose a new hypothesis for the ancestral condition. By combining behavioral and morphological results, we provide new information about the adaptive strategies of the species, and the evolutionary history of guenons, thus contributing to the conservation of the sun-tailed monkey in the wild.