Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.314
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124990, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39186874

RESUMEN

Kaolin, a naturally occurring clay mineral renowned for its distinctive properties, holds significant importance across various industries. The integration of dimethyl sulfoxide (DMSO) into kaolin matrices, both in the presence and absence of water, has been extensively explored for its potential to enhance material characteristics. Addressing debates surrounding the proposed adsorption mechanism for the type I structure of DMSO, this study undertook a comprehensive physicochemical characterization of DMSO-kaolin complexes (DMSO-KCs) derived from untreated (UnK) and HCl-treated (HK) Egyptian ore, with a focus on elucidating the loading mechanism facilitated by water. Key insights gleaned from electrical conductivity, dielectric constant, and Fine Testing Technology - Fourier-transform infrared (FTT-FTIR) measurements, shedding light on the bonding nature of DMSO-KCs. FTT-FTIR analysis revealed two stages of water departure at 180 °C, with the final stage coinciding with the release of pyrolysis gases, confirming the catalytic degradation of DMSO. Through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), two distinct bonding types of DMSO molecules with kaolinite were identified: amorphous adsorbed (type I) and lattice-oriented intercalated (type II). Electrical characteristic evaluations within the temperature range of room temperature (RT) to 260 °C and frequency range of 42 Hz-1 MHz revealed that DMSO intercalation enhances the electrical properties of kaolin. Hydrated DMSO-KCs exhibited higher values of σac and ɛ' compared to non-hydrated samples. The activation energy (Ea) values for HCl-treated samples were smaller than those of untreated ones. Alternating current (AC) conductivity analysis indicated predominantly ionic behavior with frequency and temperature dependency in both HCl-treated and untreated kaolin. Our findings substantiate the adsorption mechanism of Type I DMSO, highlighting its amorphous nature, instability, and catalytic degradation over time, in contrast to the intercalated type II. This elucidation is pivotal for understanding the behavior of DMSO-KCs across diverse applications, including electronics, ceramics, and materialsscience.

2.
Healthc Technol Lett ; 11(5): 271-282, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39359686

RESUMEN

Electrical impedance tomography (EIT) is a promising non-invasive imaging technique that visualizes the electrical conductivity of an anatomic structure to form based on measured boundary voltages. However, the EIT inverse problem for the image reconstruction is nonlinear and highly ill-posed. Therefore, in this work, a simulated dataset that mimics the human thorax was generated with boundary voltages based on given conductivity distributions. To overcome the challenges of image reconstruction, an ensemble learning method was proposed. The ensemble method combines several convolutional neural network models, which are the simple Convolutional Neural Network (CNN) model, AlexNet, AlexNet with residual block, and the modified AlexNet model. The ensemble models' weights selection was based on average technique giving the best coefficient of determination (R2 score). The reconstruction quality is quantitatively evaluated by calculating the root mean square error (RMSE), the coefficient of determination (R2 score), and the image correlation coefficient (ICC). The proposed method's best performance is an RMSE of 0.09404, an R2 score of 0.926186, and an ICC of 0.95783 using an ensemble model. The proposed method is promising as it can construct valuable images for clinical EIT applications and measurements compared to previous studies.

3.
J Colloid Interface Sci ; 678(Pt A): 979-986, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39226838

RESUMEN

Precise deposition of metal-organic framework (MOF) materials is important for fabricating high-performing MOF-based devices. Electric-field assisted drop-casting of poly(3,4-ethylenedioxythiophene)-functionalized (PEDOT) MIL-101(Cr) nanoparticles onto interdigitated electrodes allowed their precise spatioselective deposition as percolating nanoparticle chains in the interelectrode gaps. The resulting aligned materials were investigated for resistive and capacitive humidity sensing and compared with unaligned samples prepared via regular drop-casting. The spatioselective deposition of MOFs resulted in up to over 500 times improved conductivity and approximately 6 times increased responsivity during resistive humidity sensing. The aligned samples also showed good capacitive humidity sensing performance, with up to 310 times capacitance gain at 10 versus 90 % relative humidity. In contrast, the resistive behavior of the unaligned samples rendered them unsuitable for capacitive sensing. This work demonstrates that applying an alternating potential during drop-casting is a simple yet effective method to control MOF deposition for greater efficiency, conductivity, and enhanced humidity sensing performance.

4.
Small ; : e2406701, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308274

RESUMEN

The development of electrically conductive membranes is essential for advancing future technologies like electronic devices, supercapacitors, and batteries. Newly synthesized doubly interpenetrated 3D-Cd-MOF (Metal-Organic-Framework) containing angular tetra-carboxylate is found to display very poor electrical conductivity (10-11 S cm-1). However, it exhibits an exceptional ability to adsorb I2 (I2@Cd-MOF) which shows increased electrical conductivity of the order of 10-8 S cm-1. Following these results, the Cd-MOF is integrated into the PVDF-PVP (Polyvinylidene fluoride-Polyvinylpyrrolidone) polymeric mixed matrix membrane (MMM) and explores their I2 adsorption capabilities and electrical conductivities before and after I2 adsorption. Four polymeric MMMs with the loading of Cd-MOF 0, 20, 40, and 50% are tested for their I2 adsorption ability and their respective electrical conductivities. The 50% Cd-MOF-loaded MMM is found to exhibit higher adsorption of I2 (685 mg g-1) and significant enhancement in conductivity from 10-11 to 10-4 S cm-1. The raise in the electrical conductivity by 10 million times is attributed to the synergistic interactions between I2, Cd-MOF, PVDF, and PVP polymers as well as the increase in the concentration of charge carriers (holes) within the frameworks. This work serves as blueprint for controlling charge transfer in MMM to tune their electrical conductivity which opens a large window for advanced device applications.

5.
Small ; : e2403149, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308290

RESUMEN

MXene-based films have garnered significant attention for their remarkable electrical and mechanical properties. Nevertheless, the practical application of MXene is impeded by its intrinsic instability caused by spontaneous oxidation. The traditional anti-oxidative strategies frequently lead to a compromise in stability, electrical conductivity, and mechanical properties. In this study, a novel approach is proposed involving metal nano-armoring, wherein a copper layer with nano thickness is deposited onto MXene film surfaces to establish a uniform and seamless heterogeneous interface (MXene@Cu). The precise tunability and uniformity of this heterostructure are consistently demonstrated through both theoretical calculations and experimental results. The MXene@Cu films exhibit exceptional electrical conductivity of 1.17 × 106 S m-1, electromagnetic interference shielding effectiveness of 77.1 dB, and tensile strength of 43.4 MPa. More importantly, this heterostructure significantly improves MXene's stability against oxidation. After exposure to air for 30 days, the resultant MXene@Cu films exhibit a remarkable conductivity retention of 72.0%, significantly exceeding that of pristine MXene films (44.3%). This scalable synthesis approach holds significant promise for electronic device applications, particularly in electromagnetic shielding and thermal management.

6.
Angew Chem Int Ed Engl ; : e202417493, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292224

RESUMEN

The rational design of porous covalent organic frameworks (COFs) with high conductivity and reversible redox activity is the key to improving their performance in sodium-ion batteries (SIBs). Herein, we report a series of COFs (FPDC-TPA-COF, FPDC-TPB-COF, and FPDC-TPT-COF) based on an organosulfur linker, (trioxocyclohexane-triylidene)tris(dithiole-diylylidene))hexabenzaldehyde (FPDC). These COFs feature two-dimensional crystalline structures, high porosity, good conductivity, and densely packed redox-active sites, making them suitable for energy storage devices. Among them, FPDC-TPT-COF demonstrates a remarkably high specific capacity of 420 mAh g-1 (0.2 A g-1), excellent cycling stability (~87% capacity retention after 3000 cycles, 1.0 A g-1) and high rate performance (339 mAh g-1 at 2.0 A g-1) as an anode for SIBs, surpassing most reported COF-based electrodes. The superior performance is attributed to the dithiole moieties enhancing the conductivity and the presence of redox-active carbonyl, imine, and triazine sites facilitating Na storage. Furthermore, the sodiation mechanism was elucidated through in-situ experiments and density functional theory (DFT) calculations. This work highlights the advantages of integrating multiple functional groups into redox-active COFs for the rational design of efficient and stable SIBs.

7.
Polymers (Basel) ; 16(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39339059

RESUMEN

The demand for polymer composites with improved mechanical and electrical properties is crucial for advanced aerospace, electronics, and energy storage applications. Single-walled carbon nanotubes (SWCNTs) and iron oxide (Fe3O4) nanoparticles are key fillers that enhance these properties, yet challenges like orientation, uniform dispersion, and agglomeration must be addressed to realize their full potential. This study focuses on developing SWCNTs/Fe3O4 epoxy composites by keeping the SWCNT concentration constant at 0.03 Vol.% and varying with Fe3O4 concentrations at 0.1, 0.5, and 1 Vol.% for two different configurations: randomly orientated (R-) and magnetic field-assisted horizontally aligned (A-) SWCNTs/Fe3O4 epoxy composites, and investigates the effects of filler concentration, dispersion, and magnetic alignment on the mechanical and electrical properties. The research reveals that both composite configurations achieve an optimal mechanical performance at 0.5 Vol.% Fe3O4, while A- SWCNTs/Fe3O4 epoxy composites outperformed at all concentrations. However, at 1 Vol.% Fe3O4, mechanical properties decline due to nanoparticle agglomeration, which disrupts stress distribution. In contrast, electrical conductivity peaks at 1 Vol.% Fe3O4, indicating that the higher density of Fe3O4 nanoparticles enhances the conductive network despite the mechanical losses. This study highlights the need for precise control over filler content and alignment to optimize mechanical strength and electrical conductivity in SWCNTs/Fe3O4 epoxy nanocomposites.

8.
Materials (Basel) ; 17(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39274783

RESUMEN

The processing of pure copper (Cu) has been a challenge for laser-based additive manufacturing for many years since copper powders have a high reflectivity of up to 83% of electromagnetic radiation at a wavelength of 1070 nm. In this study, Cu particles were coated with sub-micrometer tungsten (W) particles to increase the laser beam absorptivity. The coated powders were processed by powder bed fusion-laser beam for metals (PBF-LB/M) with a conventional laser system of <300 watts laser power and a wavelength of 1070 nm. Two different powder manufacturing routes were developed. The first manufacturing route was gas atomization combined with a milling process by a planetary mill. The second manufacturing method was gas atomization with particle co-injection, where a separate W particle jet was sprayed into the atomized Cu jet. As part of the investigations, an extensive characterization of powder and additively manufactured test specimens was carried out. The specimens of Cu/W powders manufactured by the milling process have shown superior results. The laser absorptivity of the Cu/W powder was increased from 22.5% (pure Cu powder) to up to 71.6% for powders with 3 vol% W. In addition, a relative density of test specimens up to 98.2% (optically) and 95.6% (Archimedes) was reached. Furthermore, thermal conductivity was measured by laser flash analysis (LFA) and thermo-optical measurement (TOM). By using eddy current measurement, the electrical conductivity was analyzed. In comparison to the Cu reference, a thermal conductivity of 88.9% and an electrical conductivity of 85.8% were determined. Moreover, the Vickers hardness was measured. The effect of porosity on conductivity properties and hardness was investigated and showed a linear correlation. Finally, a demonstrator was built in which a wall thickness of down to 200 µm was achieved. This demonstrates that the Cu/W composite can be used for heat exchangers, heat sinks, and coils.

9.
Materials (Basel) ; 17(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39274818

RESUMEN

This study examines the impact of high-pressure torsion (HPT) processing at various temperatures on the precipitation behavior of Cu-Cr alloys. The introduction of defects through HPT is observed to promote the precipitation of Cr atoms. Unlike the traditional large-scale precipitation that typically occurs around 400 °C, HPT can induce the precipitation of solute atoms even at room temperature. Furthermore, the temperature at which HPT is performed significantly influences the behavior of the precipitated phase during subsequent aging, ultimately affecting the alloy's overall properties. At elevated temperatures (ETs) and room temperature (RT), Cr atoms tend to aggregate, forming Guinier-Preston (GP) zones or precipitates, which coarsen into incoherent precipitates after annealing. In contrast, when HPT is conducted at liquid nitrogen temperature (LNT), Cr atoms are retained in their original positions, leading to the formation of uniformly distributed, high-density small precipitates post-annealing. This phenomenon results in superior properties for HPT-LNT-treated samples, evidenced by a microhardness of 191.8 ± 3.2 HV and an electrical conductivity of 84.6 ± 1.8% IACS.

10.
Sci Rep ; 14(1): 21138, 2024 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256422

RESUMEN

In the present study the authors' main goal is to avoid the corrosive attack of the chloride ions of 3.5% NaCl solution in saline medium on the mild steel (MS), by addition of small amount of a new derivative of the hydrazide called ligand (HL), as a corrosion inhibitor. This study had been achieved by employing different electrochemical measurements such as, open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentio-dynamic polarization (PDP) methods. The results of the electrochemical test (OCP), showed that, the open circuit potential of the mild steel in saline solution, was guided to more positive direction in presence of the ligand (HL), at its ideal concentration (1 × 10-3 M), compared to the (OCP), of the mild steel in absence of (HL). The results of the electrochemical methods, EIS and PDP presented that, the ligand (HL), was acted as a good corrosion inhibitor for hindering the corrosion process of the mild steel in 3.5% sodium chloride, as it was recorded a good percentage of the inhibition efficiency (77.45%, 53.41%, by EIS and PDP techniques respectively), at its optimum concentration (1 × 10-3 M). Also, the corrosion rate of the mild steel in the saline medium without (HL), was listed about (0.0017 mm/year), while in existence of (HL), was decreased to a value about (0.00061 mm/year). As well, some of electrical properties of (HL), and its derivative [Pd(II), Cr(III), and Ru(III)], complexes were investigated such as; the activation energy (Ea(ac)), which recorded values in the range of 0.02-0.44 (eV) range and electrical conductivity which listed values at room temperature in the range of 10-5-10-8 S.cm-1. The results of the AC and DC electrical conductivity measurements for (HL), and its derivative [Pd(II), Cr(III) and Ru(III)] complexes indicate semiconducting nature which suggests that these compounds could be used in electronic devices. Also, the complexes exhibited higher conductivity values than (HL). Photophysical studies showed good florescence properties of HL that indicated that it can be used to determine most of the drugs with no fluorescence properties by quenching and calculating quantum yield. Moreover, the hydrazide ligand (HL), has shown selectivity as an active anticancer candidate drug for both breast and colon cancer in humans. Density function theory demonstrated that, the frontier molecular orbital HOMOs of the complexes have exhibited similar behavior and the charge density has localized in the metallic region of all the studied complexes. Also, the values of the energy gap of the ligand (HL), and its complexes Pd(II), Cr(III) and Ru(III), had been arranged in this order HL > Cr(III) > Ru(III) > Pd(II). All characterization using different spectroscopic techniques were reported to elucidate the proposed structures such as; thermal analysis, elemental analysis of C, H, and N atoms, spectral analysis using IR, UV, 1H NMR techniques, scanning electron microscopy and energy dispersive X-ray analyses.


Asunto(s)
Antineoplásicos , Hidrazinas , Acero , Corrosión , Acero/química , Hidrazinas/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Espectroscopía Dieléctrica , Técnicas Electroquímicas/métodos , Cloruro de Sodio/química
11.
Heliyon ; 10(17): e37120, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296117

RESUMEN

Multi-functional textiles have become a growing trend among smart customers who dream of having multiple functionalities in a single product. Thus, this study aimed to develop a multi-functional textile from a common textile substrate like cotton equipped with electrically conductive, anti-bacterial, and flame-retardant properties. Herein, a bunch of compounds from various sources like petro-based poly-aniline (PANI), phosphoric acid (H3PO4), inorganic silver nanoparticles (Ag-NPs), and biomass-sourced fish scale protein (FSP) were used. The coating was prepared via in-situ polymerization of PANI with the cotton substrate, followed by the dipping in AGNPs solution, layer-by-layer deposition of FSP and sodium alginate, and finally, a dip-dry-cure technique after immersing the modified cotton substrate into the H3PO4 and citric acid solution. The key results indicated that the fabric treated with PANI/Ag-NPs/FSP/P-compound exhibited a balanced improvement in all three desired properties as the electrical resistance was reduced by 44.44 % while showing superior bacterial inhibition against gram-positive bacteria (S. aureus) and gram-negative bacteria (E. coli), and produced dense-black carbonaceous char residues, indicating its flame retardant properties as well. Thus, such amicable developments made the cotton textile substrate a multi-functional textile, which showed potential to be used in medical textiles, wearable electronics, fire-fighter suits, etc.

12.
Adv Mater ; : e2404397, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246234

RESUMEN

Molecular doping is a key strategy to enhance the electrical conductivity of organic semiconductors. Typically, the electrical conductivity shows a maximum value upon increased doping, after which the conductivity decreases. This decrease in conductivity is commonly attributed to unfavorable changes in the morphology. However, in recent simulation work, has shown, that the conductivity-at high doping-is instead limited by electron-electron repulsion rather than by morphology, at least for some material combinations. Based on the simulations, this limitation is expected to show up in the dependence of the Seebeck coefficient versus carrier density: the Seebeck coefficient will follow Heike's formula if carrier-carrier repulsion limits the conductivity. Here, the electrical conductivity and Seebeck coefficient are measured as a function of doping for a series of n-type organic semiconductors. Additionally, the resulting carrier density is measured using metal-insulator-semiconductor diodes, which link dopant loading and the number of charge carriers. At high carrier densities, the Seebeck coefficient indeed follows Heike's formula, confirming that the conductivity is limited by carrier-carrier repulsion rather than by morphological effects. This study shows that current models of hopping transport in organic semiconductors may be incomplete. As a result, this study offers novel insights in the design of organic semiconductors.

13.
Molecules ; 29(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39275014

RESUMEN

Surfactants are hailed as "industrial monosodium glutamate", and are widely used as emulsifiers, demulsifiers, water treatment agents, etc., in the petroleum industry. However, due to the unidirectivity of conventional surfactants, the difficulty in demulsifying petroleum emulsions generated after emulsification with such surfactants increases sharply. Therefore, it is of great significance and application value to design and develop a novel switchable surfactant for oil exploitation. In this study, a CO2-switchable Gemini surfactant of N,N'-dimethyl-N,N'-didodecyl butylene diamine (DMDBA) was synthesized from 1, 4-dibromobutane, dodecylamine, formic acid, and formaldehyde. Then, the synthesized surfactant was structurally characterized by infrared (IR) spectroscopy, hydrogen nuclear magnetic resonance (1H NMR) spectroscopy, and electrospray ionization mass spectrometry (ESI-MS); the changes in conductivity and Zeta potential of DMDBA before and after CO2/N2 injection were also studied. The results show that DMDBA had a good CO2 response and cycle reversibility. The critical micelle concentration (CMC) of cationic surfactant obtained from DMDBA by injecting CO2 was 1.45 × 10-4 mol/L, the surface tension at CMC was 33.4 mN·m-1, and the contact angle with paraffin was less than 90°, indicating that it had a good surface activity and wettability. In addition, the kinetic law of the process of producing surfactant by injecting CO2 was studied, and it was found that the process was a second-order reaction. The influence of temperature and gas velocity on the reaction dynamics was explored. The calculated values from the equation were in good agreement with the measured values, with a correlation coefficient greater than 0.9950. The activation energy measured during the formation of surfactant was Ea = 91.16 kJ/mol.

14.
Proc Natl Acad Sci U S A ; 121(34): e2403000121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39136982

RESUMEN

Electron transport in complex fluids, biology, and soft matter is a valuable characteristic in processes ranging from redox reactions to electrochemical energy storage. These processes often employ conductor-insulator composites in which electron transport properties are fundamentally linked to the microstructure and dynamics of the conductive phase. While microstructure and dynamics are well recognized as key determinants of the electrical properties, a unified description of their effect has yet to be determined, especially under flowing conditions. In this work, the conductivity and shear viscosity are measured for conductive colloidal suspensions to build a unified description by exploiting both recent quantification of the effect of flow-induced dynamics on electron transport and well-established relationships between electrical properties, microstructure, and flow. These model suspensions consist of conductive carbon black (CB) particles dispersed in fluids of varying viscosities and dielectric constants. In a stable, well-characterized shear rate regime where all suspensions undergo self-similar agglomerate breakup, competing relationships between conductivity and shear rate were observed. To account for the role of variable agglomerate size, equivalent microstructural states were identified using a dimensionless fluid Mason number, [Formula: see text], which allowed for isolation of the role of dynamics on the flow-induced electron transport rate. At equivalent microstructural states, shear-enhanced particle-particle collisions are found to dominate the electron transport rate. This work rationalizes seemingly contradictory experimental observations in literature concerning the shear-dependent electrical properties of CB suspensions and can be extended to other flowing composite systems.

15.
ACS Appl Mater Interfaces ; 16(35): 46191-46199, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39166740

RESUMEN

The pursuit of high-performance thermoelectric materials is of paramount importance in addressing energy sustainability and environmental concerns. Here, we explore the multifaceted impact of sulfur passivation in the matrix of tellurium nanowires (TeNWs), encompassing environmental control, thermoelectric properties, and charge carrier mobility. In this study, we present the facile production of TeNWs using an aqueous solution synthesis approach. The synthesized TeNWs were subsequently subjected to surface modification involving sulfur moieties. Our findings demonstrate that sulfur passivation not only effectively safeguards the nanowires from environmental degradation but also significantly augments their thermoelectric properties. Notably, the highest recorded values were achieved at 560 K for passivated tellurium nanowires, exhibiting a Seebeck coefficient of 246 µV/K, an electrical conductivity of 14.2 S/cm, and power factors of 86.7 µW/m-K2. This strategy presents a promising avenue for the development of advanced thermoelectric materials for applications in energy harvesting, waste heat recovery, and sustainable energy conversion technologies.

16.
BMC Chem ; 18(1): 144, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103926

RESUMEN

The combination of hydrogel and fertilizer as slow release fertilizer hydrogel (SRFH) has become one of the most promising materials to overcome the shortcomings of conventional fertilizer by decreasing fertilizer loss rate, supplying nutrients sustainably, and lowering the frequency of irrigation. The hydrogel based on carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) (CMC/PAA) was synthesized. All materials, Vinasse, hydrogel (CMC/PAA) and (Vinasse/CMC-PAA) were characterized by FTIR, XRD, and SEM. The formed hydrogel was applied to control the salinity of Vinasse to use it as a cheap and economical fertilizer. The results showed that using the prepared hydrogel with Vinasse (V/CMC-PAA) as a slow-release organic fertilizer decreased the EC value through the first six hours from 1.77 to 0.35 mmohs/cm. Also, using V/CMC-PAA can control and keep the potassium as fertilizer for 50 days. The productivity per feddan from the sugar cane crop increased by about 15%, and the number of irrigations decreased from 5 to 4 times.

17.
ACS Appl Mater Interfaces ; 16(36): 47551-47562, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39163587

RESUMEN

All-solid-state lithium batteries, including sulfide electrolytes and nickel-rich layered oxide cathode materials, promise safer electrochemical energy storage with high gravimetric and volumetric densities. However, the poor electrical conductivity of the active material results in the requirement for additional conducive additives, which tend to react negatively with the sulfide electrolyte. The fundamental scientific principle uncovered through this work is simple and suggests that the electrical network benefits associated with the introduction of short-length carbons will eventually be overpowered by the increase in bulk resistance associated with their instability in the sulfide electrolyte. However, applying just the right amount of short carbon fibres minimizes degradation of the sulfide solid electrolyte and maximizes the electron movement. Therefore, we propose the application of a low-weight-percent carbon nanotubes (CNTs) coating on the nickel-rich cathode LiNi0.8Co0.1Mn0.1O2 (NCM811) along with large-aspect-ratio carbon nanofibers (CNFs) as the primary conductive additive. When only 0.3 wt % CNTs was utilized with 4.7 wt % CNFs, an initial Coulombic efficiency of 83.55% at 0.05C and a notably excellent capacity retention of 90.1% over 50 cycles at 0.5C were achieved along with a low ionic resistance. This work helps to confirm the validity of applying short carbon pathways in sulfide-electrolyte-based cathode composites and proposes their combination with a larger primary carbon additive as a solution to the ongoing all-solid-state battery rate and instability issues.

18.
Sci Total Environ ; 951: 175773, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39197780

RESUMEN

This study investigates the potential of using bulk soil electrical conductivity (ECbulk) to predict pore water conductivity (ECpw) for assessing the contamination in the unsaturated zone of an old municipal solid waste (MSW) landfill. ECbulk, ECpw, and water content were evaluated with depth at an old MSW landfill in Bhalswa, Delhi, using the Hydraulic Profiling Tool (HPT) and a dual tube soil sampling system. This data was also supplemented by a cone penetration test (CPTu) for high-resolution soil type identification. The correlation of ECbulk with ECpw was primarily influenced by volumetric water content and mineral conductivity with the latter being negligible at this site due to the high conductivity of the leachate. A reasonable linear correlation between normalized EC (ECbulk/ECpw) was observed with volumetric water content, except at low water contents. ECbulk and ECpw profiles with depth indicated attenuation of contaminants in clay layers, while sand layers exhibited constant profile with depth. ECpw was contributed by macro ions generally found in the leachate, including Na+, Mg2+, K+, Ca2+, NH4+, Cl-, SO42-, and HCO3-, as demonstrated by a strong correlation with their cumulative ionic strength. The results indicate that ECbulk profile can be used as a rapid semi-quantitative method for assessing contaminant migration in the unsaturated soil zone, supporting the remediation or control strategies at old landfills.

19.
Sci Total Environ ; 951: 175503, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147045

RESUMEN

Soil salinization is a gradual degradation process that begins as a minor problem and grows to become a significant economic loss if no control action is taken. It progressively alters the soil environment which eventually negatively affects plants and organism that were not originally adapted for saline conditions. Soil salinization arises from diverse sources such as side-effects of long-term use of agro-chemicals, saline parent rocks, periodic inundation of soil with saline water, etc. In Africa, soil salinization has not been adequately documented particularly in the croplands. The objective of this study was to identify trends of cropland salinization in Africa and how its relationship with long-term land use practices affected the soil environment. The study analysed soil salinization between 1965 and 2020 using measured electrical conductivity (EC), spatial modelling with environmental covariates, and national statistics on cropland expansion and application of mineral fertilizers, herbicides, and pesticides. The results showed increasing trends of EC in Africa due to climatic and land use drivers. Increasing trends of EC, which evidenced salinization, was found in 31 million hectares of topsoils and 18 million hectares of subsoils. About 2 million hectares of croplands were depicted with salinization and >25 million hectares at the risk of salinization in the arid and semi-arid areas. The study also found statistical relationships between semi-arid cropland salinization and trends of agro-chemical use and cropland sizes. There were significant (p < 0.001) positive correlations between semi-arid cropland salinization and trends of cropland expansion and applied nitrogenous fertilizers. It found that increasing trend of applied mineral nitrogenous fertilizers could double the odds of salinization in semi-arid croplands while cropland expansion could increase the odds of semi-arid cropland salinization by >10 %. These findings present ground-breaking baseline information for future works on sustainable land-use practices that can control cropland soil salinization in Africa.

20.
ACS Nano ; 18(34): 23477-23488, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39133538

RESUMEN

MXenes have garnered significant attention due to their atomically thin two-dimensional structure with metallic electronic properties. However, it has not yet been fully achieved to discover semiconducting MXenes to implement them into gate-tunable electronics such as field-effect transistors and phototransistors. Here, a semiconducting Ti4N3Tx MXene synthesized by using a modified oxygen-assisted molten salt etching method under ambient conditions, is reported. The oxygen-rich synthesis environment significantly enhances the etching reaction rate and selectivity of Al from a Ti4AlN3 MAX phase, resulting in well-delaminated and highly crystalline Ti4N3Tx MXene with minimal defects and high content of F and O, which led to its improved hydrophobicity and thermal stability. Notably, the synthesized Ti4N3Tx MXene exhibited p-type semiconducting characteristics, including gate-tunable electrical conductivity, with a current on-off ratio of 5 × 103 and a hole mobility of ∼0.008 cm2 V-1 s-1 at 243 K. The semiconducting property crucial for thin-film transistor applications is evidently associated with the surface terminations and the partial substitution of oxygen in the nitrogen lattice, as corroborated by density functional theory (DFT) calculations. Furthermore, the synthesized Ti4N3Tx exhibits strong light absorption characteristics and photocurrent generation. These findings highlight the delaminated Ti4N3Tx as an emerging two-dimensional semiconducting material for potential electronic and optoelectronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...