Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.765
Filtrar
1.
Food Chem ; 462: 140985, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217749

RESUMEN

This study aimed to develop a double-layer film composed of an intelligent, gelatin-based film integrated with active polyvinyl alcohol electrospun nanofibers (PVANFs). Eggplant skin extract (ESE), a colorimetric indicator, was incorporated into the gelatin-based film at varying concentrations ranging from 0 % to 8 % w/w. The gelatin film containing 8 % ESE was identified as the optimal formulation based on its superior color indication, water barrier, and mechanical properties. Savory essential oil (SEO)-loaded PVANFs were electrospun onto the optimized gelatin film to fabricate the double-layer film. Analysis of the chemical and crystalline structures and the double-layer film's thermal properties confirmed the gelatin film's physical integration with PVANFs. Morphological examination revealed a smooth surface on the film and a uniform fibrillar structure within the PVANFs. Furthermore, the developed double-layer film effectively detected spoilage in trout fish while controlling pH, oxidation, and microbial changes during storage.


Asunto(s)
Embalaje de Alimentos , Gelatina , Nanofibras , Alcohol Polivinílico , Gelatina/química , Nanofibras/química , Alcohol Polivinílico/química , Embalaje de Alimentos/instrumentación , Animales , Productos Pesqueros/análisis , Conservación de Alimentos/instrumentación , Conservación de Alimentos/métodos
2.
J Colloid Interface Sci ; 677(Pt B): 560-570, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39154448

RESUMEN

The unique design of the core-shell heterostructure is significant for obtaining electrode materials with excellent electrochemical properties. In this paper, porous carbon nanofibers (NPC@PPZ) embedded with N-doped porous carbon nanoparticles are used to construct flexible electrodes (NPC@PPZ@Bi2O3). Zeolite imidazole skeleton (ZIF)-8 and poly(methyl methacrylate) (PMMA) derived porous carbon fibers and Bi2O3 nanosheets, were utilized as the porous core and multilayer shell, respectively. The unique core and shell result in abundant pores and channels for fast ion transport and storage, high specific surface area, and additional electroactive sites. This perfect structural design enables the NPC@PPZ@Bi2O3 composite electrode to have excellent electrochemical performance. The results show that this electrode can obtain a high specific capacitance of 697 F g-1 at a current density of 1 A g-1 and a stable cycling performance at a high current density of 5 A g-1. The strategy developed in this study provides a new approach for the design and fabrication of flexible supercapacitors by electrostatic spinning combined with hierarchical porous structures.

3.
Biomater Transl ; 5(2): 129-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351162

RESUMEN

Exosomes, a specialised type of extracellular vesicle, have attracted significant attention in the realm of tendon/ligament repair as a potential biologic therapeutic tool. While the competence of key substances responsible for the delivery function was gradually elucidated, series of shortcomings exemplified by the limited stability still need to be improved. Therefore, how to take maximum advantage of the biological characteristics of exosomes is of great importance. Recently, the comprehensive exploration and application of biomedical engineering has improved the availability of exosomes and revealed the future direction of exosomes combined with biomaterials. This review delves into the present application of biomaterials such as nanomaterials, hydrogels, and electrospun scaffolds, serving as the carriers of exosomes in tendon/ligament repair. By pinpointing and exploring their strengths and limitations, it offers valuable insights, paving the way the future direction of biomaterials in the application of exosomes in tendon/ligament repair in this field.

4.
Mater Today Bio ; 29: 101249, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39351488

RESUMEN

Inflammation is a major impediment to the healing of cartilage injuries, yet bioactive scaffolds suitable for cartilage repair in inflammatory environments are extremely rare. Herein, we utilized electrospinning to fabricate a two-dimensional nanofiber scaffold (2DS), which was then subjected to gas foaming to obtain a three-dimensional scaffold (3DS). 3DS was modified with metal phenolic networks (MPNs) composed of epigallocatechin gallate (EGCG) and strontium ions (Sr2+) to afford a MPNs-modified 3D scaffold (3DS-E). Gas-foamed scaffold exhibited multilayered structure conducive to cellular infiltration and proliferation. Compared to other groups, 3DS-E better preserved chondrocytes under interleukin (IL)-1ß induced inflammatory environment, showing less apoptosis of chondrocytes and higher expression of cartilage matrix. Additionally, 3DS-E facilitated the regeneration of more mature cartilage in vivo, reduced cell apoptosis, and decreased the expression of pro-inflammatory cytokines. Taken together, 3DS-E may offer an ideal candidate for cartilage regeneration.

5.
Nano Lett ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356651

RESUMEN

High-performance separation materials for oil-water emulsions are crucial to environmental protection and resource recovery; however, most existing fibrous separation materials are subject to large pore size and low porosity, resulting in limited separation performance. Herein, we create high-performance membranes consisting of spherical-beaded nanofibers and nanoarchitectured networks (nano-nets) using electrostatic spinning/netting technology, for water-in-oil emulsion separation. By manipulating the nonequilibrium stretching of jets, spherical-beaded nanofibers capable of generating a robust microelectric field are fabricated as scaffolds, on which charged droplets are induced to eject and phase separate to self-assemble nano-nets with small pores. Benefiting from 3D undulating networks with cavities originating from 2D nano-nets supported by 1D spherical-beaded nanofibers, the membranes exhibit under-oil superhydrophobicity (>152°), a striking separation performance with an efficiency of >99.2% and a flux of 5775 L m-2 h-1, together with wide pressure applicability, antifouling, and reusability. This work may open up new horizons in developing fibrous materials for separation and purification.

6.
J Environ Manage ; 370: 122714, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39383756

RESUMEN

This work aims to apply carbon quantum dots (CQDs) from agriculture cellulosic waste (agro wastes), produced via an economically and eco-friendly single-step method, to be used into cellulose acetate composite microfibrous membranes as an innovative solution specifically designed to adsorb methylene blue (MB) and other cationic dyes that are present in various water effluents. Batch adsorption tests were conducted, with variations in contact time (1-24 h), initial MB concentration (25-300 ppm), and adsorbent doses (1-20 g/L). The maximum adsorption capacity of the membrane was 198 mg/g with an initial concentration of 300 ppm at 298 K. Thermodynamic parameters showed that the process is endothermic. Equilibrium experimental data for MB adsorption onto electrospun adsorbent were fitted using different isothermal models, with the Freundlich model showing the best fit. The pseudo-second-order model accurately described the kinetic data with high reliability (R2 > 0.99), and the calculated adsorption capacity was very close to the experimental data. N-CQDs loaded membranes were also tested for removing methyl violet and rhodamine B, demonstrating remarkably high dye removal efficiency. The underlying adsorption mechanism was also reported. Finally, it is worth mentioning that composite adsorbents can be efficiently applied to actual industrial cases because of the possibility of reusing them, opening the route to the fabrication of novel and highly performant adsorbents. These findings underscore N-CQDs' effectiveness in enhancing pollutant removal efficiency from wastewater, highlighting their environmental benefits and promoting a more sustainable approach to water treatment. Therefore, the prepared adsorbent, showing excellent adsorption performance, places them among adsorbents for practical applications in wastewater purification.

7.
Food Chem ; 463(Pt 4): 141476, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39383795

RESUMEN

Citrus fruits are highly susceptible to pathogenic fungal infections after harvesting, which causes serious economic losses. Therefore, it's necessary to develop new antifungal packaging. In this study, gamma-Decanolactone (DL) was successfully encapsulated in a polycaprolactone (PCL)/ß-cyclodextrin (ß-CD) composite system using electrostatic spinning technology. PCL/ß-CD was compounded in different ratios, the ratio was screened through other indicators such as fiber morphologies and mechanical properties. Then, antifungal mats were prepared by adding different concentrations of DL to the PCL/ß-CD solution. The results showed that when the mixture ratio of PCL/ß-CD was 6:1 and loaded with 6 % DL, the antifungal felt had strong mechanical, significantly inhibiting the growth of three citrus pathogens (P. digitatum, P. italicum and G. candidum), released DL for up to 204 h and effectively reduced the morbidity rate of citrus fruits. Therefore, the antifungal pad prepared in this study has great potential in the field of citrus disease control.

8.
ACS Sens ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373016

RESUMEN

Love-mode surface acoustic wave (SAW) sensors show great promise for biodetection applications owing to their low cost, digital output, and wireless passive capability, but their performance is often restricted by the availability of suitable sensitive membrane layers. Herein, a composite layer of electrospun fibers made from cellulose acetate and polyethylenimine, coated with gold nanoparticles, is proposed as a porous and sensitive membrane coated onto a love-mode SAW biosensor for monitoring gene sequences of Staphylococcus aureus. The results showed that the developed sensor exhibited an impressive sensitivity of 122.56 Hz/(nmol/L) for detecting gene sequences of S. aureus, surpassing the sensitivity of conventional SAW sensors employing a bare Au film as the sensitive layer by 5-fold. The analysis revealed a remarkably linear detection (R2 of 0.97827) of S. aureus gene sequences within the range of 0 to 100 nmol/L. The limit of detection was impressively low at 0.9116 nmol/L. The good stability and specificity of the biosensor in liquid environments were demonstrated for clinical diagnostics.

9.
ACS Nano ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377726

RESUMEN

Barium aluminate (BAO) ceramics are highly sought after as a kind of high-temperature refractory material due to their exceptional thermal stability in both vacuum and oxygen atmospheres, but their inherent brittleness results in rapid hardening, imposing a negative impact on the overall construction performance. Here, we report a strategy to synthesize flexible BAO nanofibers with a needle-like structure through confined-gelation electrospinning followed by in situ mineralization. The confined gelation among the colloidal particles promotes the formation of precursor nanofibers with high continuity and a large aspect ratio. The resulting flexible BAO nanofiber membranes are bendable, stretchable, and can even be woven, exhibiting a softness (12 mN) that is lower than that of tissue paper (27 mN). Additionally, they are capable of withstanding hundreds to thousands of continuous buckling and bending at 50% deformation without tearing. More importantly, the low emissivity of the flexible BAO nanofiber membranes ensures excellent thermal insulation at 1300 °C while preserving structural integrity and performance stability. In this sense, our strategy can be easily scaled up to produce flexible yet tough oxide ceramic membranes for a wider range of applications.

10.
Eur J Pharm Biopharm ; : 114529, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389187

RESUMEN

In this study, a novel quality assurance system was developed utilizing Process analytical technology (PAT) tools and artificial intelligence (AI). Our goal was to monitor the critical quality attributes (CQAs) like drug concentration, morphology and fiber diameter of electrospun amorphous solid dispersion (ASD) formulations with fast at-line techniques. Doxycycline-hyclate (DOX), a tetracycline-type antibiotic was used as a model drug with 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as the matrix excipient. The water-based formulations were electrospun with high-speed electrospinning (HSES). Raman and NIR sensors and machine vision-based color measurement techniques were employed to accurately determine the drug concentration. Given that morphology can influence the solubility of the drug, a convolutional neural network (CNN)-based AI model was developed to examine this property and detect manufacturing defects. Additionally, the diameter of electrospun fibrous samples was measured using camera images and a trained AI model, enabling rapid analysis of fiber diameter with results similar to that of scanning electron microscopy (SEM). These methods and models demonstrate potential in-line analytical tools, offering rapid, cheap and non-destructive analysis of ASD formulations.

11.
J Colloid Interface Sci ; 679(Pt A): 171-180, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39362142

RESUMEN

Hydrazine oxidation reaction (HzOR), an alternative to oxygen evolution reaction, effectively mitigates hydrazine pollution while achieving energy-efficient hydrogen production. Herein, partially oxidized Ru/Rh nanoparticles embedded in carbon nanofibers (CNFs) are fabricated as a bifunctional electrocatalyst for hydrogen evolution reaction (HER) and HzOR. The presence of multiple components including metallic Ru and Rh and their oxides provides numerous electrochemically active sites and superior charge transfer properties, thus improving the electrocatalytic performance. Additionally, the confinement of the active components within CNFs further enhances structural stability. Consequently, the optimized electrocatalyst exhibits ultralow overpotentials of 16 mV at 10 mA cm-2 and 176 mV to reach an industry-level current density of 1 A cm-2 for HER, considerably outperforming the benchmark Pt/C catalyst. Furthermore, it shows an outstanding anodic HzOR activity, achieving a small potential of -0.019 V to generate 10 mAcm-2. A two-electrode overall hydrazine splitting (OHzS) cell prepared using the electrocatalyst operates at a compelling voltage that is 1.953 V lower than that of the overall water splitting (OWS) cell at 200 mA cm-2. Furthermore, the OHzS cell achieves a hydrogen production rate of 1.17 mmol h-1, which is 15-fold that of OWS. Additionally, Rh1Ru1Ox-CNFs-350 is used to construct a Zn-hydrazine battery with excellent performance. This study presents an effective system for achieving high-yielding green H2 production with low energy consumption while simultaneously addressing hydrazine pollution.

12.
Sci Rep ; 14(1): 23192, 2024 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369012

RESUMEN

Liver disease cases are rapidly expanding worldwide, and transplantation remains the only effective cure for end-stage disease. There is an increasing demand for developing potential drug treatments, and regenerative therapies using in-vitro culture platforms. Human decellularized extracellular matrix (dECM) is an appealing alternative to conventional animal tissues as it contains human-specific proteins and can serve as scaffolding materials. Herein we exploit this with human donor tissue from discarded liver which was not suitable for transplant using a synergistic approach to combining biological and topographical cues in electrospun materials as an in-vitro culture platform. To realise this, we developed a methodology for incorporating human liver dECM into electrospun polycaprolactone (PCL) fibres with surface nanotopographies (230-580 nm). The hybrid scaffolds were fabricated using varying concentrations of dECM; their morphology, mechanical properties, hydrophilicity and stability were analysed. The scaffolds were validated using HepG2 and primary mouse hepatocytes, with subsequent results indicating that the modified scaffolds-maintained cell growth and influenced cell attachment, proliferation and hepatic-related gene expression. This work demonstrates a novel approach to harvesting the potential from decellularized human tissues in the form of innovative in-vitro culture platforms for liver.


Asunto(s)
Hepatocitos , Hígado , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Animales , Hígado/metabolismo , Ratones , Hepatocitos/citología , Células Hep G2 , Matriz Extracelular/metabolismo , Poliésteres/química , Matriz Extracelular Descelularizada/química , Proliferación Celular , Microambiente Celular , Adhesión Celular
13.
J Nanobiotechnology ; 22(1): 598, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363196

RESUMEN

BACKGROUND: Surgeries for treating pelvic organ prolapse involving the utilization of synthetic mesh have been associated with complications such as mesh erosion, postoperative pain, and dyspareunia. This work aimed to reduce the surgical implantation-associated complications by nanofibrous membranes on the surface of the polypropylene mesh. The nanofiber of the nanofibrous membrane, which was fabricated by co-axial electrospinning, was composed of polyurethane as fiber core and gelatin as the fiber out layer. The biocompatibility of the modified mesh was evaluated in vitro by cell proliferation assay, immunofluorescence stain, hematoxylin-eosin (HE) staining, and mRNA sequencing. Polypropylene mesh and modified mesh were implanted in a rat pelvic organ prolapse model. Mesh-associated complications were documented. HE and Picro-Sirius red staining, immunohistochemistry, and western blotting were conducted to assess the interactions between the modified mesh and vaginal tissues. RESULTS: The modified mesh significantly enhanced the proliferation of fibroblasts and exerted a positive regulatory effect on the extracellular matrix anabolism in vitro. When evaluated in vivo, no instances of mesh exposure were observed in the modified mesh group. The modified mesh maintained a relatively stable histological position without penetrating the muscle layer or breaching the epidermis. The collagen content in the vaginal wall of rats with modified mesh was significantly higher, and the collagen I/III ratio was lower, indicating better tissue elasticity. The expression of metalloproteinase was decreased while the expression levels of tissue inhibitor of metalloproteinase were increased in the modified mesh group, suggesting an inhibition of collagen catabolism. The expression of TGF-ß1 and the phosphorylation levels of Smad3, p38 and ERK1/2 were significantly increased in the modified mesh group. NM significantly improved the biocompatibility of PP mesh, as evidenced by a reduction in macrophage count, decreased expression levels of TNF-α, and an increase in microvascular density. CONCLUSIONS: The nanofibrous membrane-coated PP mesh effectively reduced the surgical implantation complications by inhibiting the catabolism of collagen in tissues and improving the biocampibility of PP mesh. The incorporation of co-axial fibers composed of polyurethane and gelatin with polypropylene mesh holds promise for the development of enhanced surgical materials for pelvic organ prolapse in clinical applications.


Asunto(s)
Proliferación Celular , Nanofibras , Prolapso de Órgano Pélvico , Polipropilenos , Ratas Sprague-Dawley , Mallas Quirúrgicas , Animales , Nanofibras/química , Femenino , Ratas , Polipropilenos/química , Prolapso de Órgano Pélvico/cirugía , Vagina/cirugía , Vagina/metabolismo , Fibroblastos/metabolismo , Complicaciones Posoperatorias , Poliuretanos/química , Materiales Biocompatibles/química , Membranas Artificiales
14.
Artículo en Inglés | MEDLINE | ID: mdl-39367812

RESUMEN

Compared to conventional fibers, electrospun porous nanofibers with hierarchical structures often involve additional active sites, interfaces, and internal spaces which boost the performances of functional materials. Here in this study, coaxial composite cellulose acetate@silk fibroin (CA@SF) fibrous membranes are constructed through an electrostatic spinning technique combining solvent-induced phase separation. Hierarchical core-shell structures on the fibers are achieved, which significantly increases the surface area and benefits the mechanical property, flux, as well as the electroless deposition of Ag nanoparticles. The total electromagnetic shielding efficiency of the sandwiched hierarchical CA@SF@Ag composite membrane with a thickness of only 100 µm reaches up to 100 dB, surpassing around 82% beyond nonhierarchical ones. To be noticed, when post-treated by ethanol, the membrane enables an enhanced tensile strength of up to 10 MPa with a thickness of only 50 µm. Our findings pave the way to the application of electrospun fiber membranes in the field of ultrathin electromagnetic shielding films.

15.
ACS Biomater Sci Eng ; 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367819

RESUMEN

"Soft" hydrogel-based macroporous scaffolds have been widely used in tissue engineering and drug delivery applications due to their hydrated interfaces and macroporous structures, but have drawbacks related to their weak mechanics and often weak adhesion to cells. In contrast, "hard" poly(caprolactone) (PCL) electrospun fibrous networks have desirable mechanical strength and ductility but offer minimal interfacial hydration and thus limited capacity for cell proliferation. Herein, we demonstrate the fabrication of interpenetrating nanofibrous networks based on coelectrospun PCL and poly(oligoethylene glycol methacrylate) (POEGMA) nanofibers that exhibit the mechanical benefits of PCL but the interfacial hydration benefits of hydrogels. The electrospinning process results in partially aligned but interpenetrating fiber network with minimal internal phase separation, leading to anisotropic but strong mechanical properties even in the hydrated state; apparent ultimate tensile strengths of the swollen scaffolds ranged from 429 ± 39 kPa in the direction of fiber alignment (longitudinal) to 86 ± 25 kPa perpendicular to fiber alignment (cross-longitudinal), typical of PCL-based scaffolds and enabling efficient suture retention in different directions. However, contact angle measurements indicate hydrogel-like interfacial properties due to the presence of the interpenetrating POEGMA network. C2C12 myoblast proliferation in the PCL-POEGMA scaffolds was 50% higher than that observed on PCL-only scaffolds, a result attributed to the presence of the more hydrophilic POEGMA interpenetrating nanofiber network. Overall, this method is demonstrated to represent a facile single-step strategy to fabricate strong macroporous but still interfacially hydrophilic scaffolds for tissue engineering applications.

16.
Chem Asian J ; : e202400815, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382345

RESUMEN

Despite being potential electrode materials for supercapacitors, Spinel ferrites suffer from poor electronic conductivity and low specific capacity. We have addressed this limitation by synthesizing composite hollow carbon nanofibers (HCNF) embedded with nanostructured Nickel Zinc Ferrite (NZF) and Multiwalled carbon nanotubes (CNT), through coaxial electrospinning. These ternary composite nanofibers NZF-CNT-HCNF have a high specific capacity of 833 C g-1 at a current density of 1 A g-1 and have a capacity retention of 90% after 3000 cycles. This is much better than that of pure NZF fibers (180 C g-1) or hollow carbon nanofibers (96 C g-1), suggesting synergy between various constituents of the composite. A symmetric supercapacitor fabricated from NZF-CNT-HCNF composite nanofibers (30% NZF) has a high specific capacity of 302 C g-1 (302 A g-1) at a current density of 1 A g-1 and has a capacity retention of 95% after 5000 cycles. At the same current density, the device has a high energy density of 39 Whkg-1 and power density of 1000 Wkg-1 at a current density of 1 A g-1. This performance can be attributed to high specific surface area (776 m2 g-1), mesoporosity (pore size ~ 4 nm) and high electrical conductivity of CNTs..

17.
ACS Appl Bio Mater ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365939

RESUMEN

The current treatments to restore skeletal muscle defects present several injuries. The creation of scaffolds and implant that allow the regeneration of this tissue is a solution that is reaching the researchers' interest. To achieve this, electrospinning is a useful technique to manufacture scaffolds with nanofibers with different orientation. In this work, polycaprolactone and gelatin solutions were tested to fabricate electrospun scaffolds with two degrees of alignment between their fibers: random and aligned. These scaffolds can be seeded with myoblast C2C12 and then stimulated with a mechanical bioreactor that mimics the physiological conditions of the tissue. Cell viability as well as cytoskeletal morphology and functionality was measured. Myotubes in aligned scaffolds (9.84 ± 1.15 µm) were thinner than in random scaffolds (11.55 ± 3.39 µm; P = 0.001). Mechanical stimulation increased the width of myotubes (12.92 ± 3.29 µm; P < 0.001), nuclear fusion (95.73 ± 1.05%; P = 0.004), and actin density (80.13 ± 13.52%; P = 0.017) in aligned scaffolds regarding the control. Moreover, both scaffolds showed high myotube contractility, which was increased in mechanically stimulated aligned scaffolds. These scaffolds were also electrostimulated at different frequencies and they showed promising results. In general, mechanically stimulated aligned scaffolds allow the regeneration of skeletal muscle, increasing viability, fiber thickness, alignment, nuclear fusion, nuclear differentiation, and functionality.

18.
Sci Rep ; 14(1): 24012, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39402383

RESUMEN

The presented work brings new knowledge in the field of spinning electrodes for AC­electrospinning technology, which is used for producing nanofibrous structures using a solution of polyvinyl butyral. It presents new types of spinning weir­electrodes and describes research on the influence of electrode design parameters on the stability of the spinning process and the productivity of nanofiber production. The multistage spinning electrode is presented in the ratio of stages one to five. Research is also focused on the effect of the parameters of the electric signal used as a source for the spinning electrode on spinning stability and productivity. Observed parameters were voltage level, frequency and shape such as sine wave, rectangle wave and modified sine wave. An analysis of the influence of the spinning conditions on the resulting nanofibrous structure was also performed by analyzing results gained by SEM; the defects were investigated mainly. The results of the research presented in the thesis open up new possibilities for follow-up research in the field of AC-electrospinning.

19.
Nanomaterials (Basel) ; 14(19)2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39404296

RESUMEN

Lopinavir (LPV) and ritonavir (RTV) are two of the essential antiretroviral active pharmaceutical ingredients (APIs) characterized by poor solubility. Hence, attempts have been made to improve both their solubility and dissolution rate. One of the most effective approaches used for this purpose is to prepare amorphous solid dispersions (ASDs). To our best knowledge, this is the first attempt aimed at developing ASDs via the electrospinning technique in the form of fibers containing LPV and RTV. In particular, the impact of the various polymeric carriers, i.e., Kollidon K30 (PVP), Kollidon VA64 (KVA), and Eudragit® E100 (E100), as well as the drug content as a result of the LPV and RTV amorphization were investigated. The characterization of the electrospun fibers included microscopic, DSC, and XRD analyses, the assessment of their wettability, and equilibrium solubility and dissolution studies. The application of the electrospinning process led to the full amorphization of both the APIs, regardless of the drug content and the type of polymer matrix used. The utilization of E100 as a polymeric carrier for LPV and KVA for RTV, despite the beads-on-string morphology, had a favorable impact on the equilibrium solubility and dissolution rate. The results showed that the electrospinning method can be successfully used to manufacture ASDs with poorly soluble APIs.

20.
J Control Release ; 376: 253-265, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39389367

RESUMEN

Approximately one in five individuals experience alveolar osteitis (AO) following wisdom tooth extraction. AO is characterised by loss of the blood clot from the tooth extraction socket leading to infection and pain, resulting in repeated hospital visits that impose a substantial burden on healthcare systems. Current treatments are sub-optimal; to address this we developed a novel drug-loaded mucoadhesive patch composed of dual electrospun polyvinyl pyrrolidone/Eudragit RS100 (PVP/RS100) and poly(N-isopropylacrylamide) (PNIPAM) fibres protected by a poly(ε-caprolactone) (PCL) backing layer. These patches demonstrated controlled release of the long-acting analgesic bupivacaine HCl and the anti-inflammatory drug prednisolone. Topical application of patches to tissue-engineered gingival mucosa showed that patch-released bupivacaine and prednisolone achieved sustained tissue permeation with 54.8 ± 3.3 % bupivacaine HCl and 65.8 ± 5.1 % prednisolone permeating the epithelium after 24 h. The drugs retained their functionality after release; bupivacaine HCl significantly (p < 0.05) inhibited veratridine-induced intracellular calcium flux in SH-SY5Y neuronal cells, while prednisolone significantly reduced gene expression of IL-6 (2-fold; p < 0.001), CXCL8 (5.1-fold; p < 0.01) and TNF-α (1.5-fold; p < 0.001) in stimulated THP-1 monocytes. Taken together, these data show that dual electrospun patches have the potential to provide a mucoadhesive covering to prevent blood clot loss while delivering pain relief and anti-inflammatory therapeutics at tooth extraction sites to prevent and treat AO. This study not only offers a future therapeutic pathway for AO but also contributes valuable insights into future advancements in drug delivery devices for periodontal or oral mucosal tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...