RESUMEN
A major roadblock in implementing engineered tissues clinically lies in their limited vascularization. After implantation, such tissues do not integrate with the host's circulation as quickly as needed, commonly resulting in loss of viability and functionality. This study presents a solution to the vascularization problem that could enable the survival and function of large, transplantable, and vascularized engineered tissues. The technique allows vascularization of a cell laden hydrogel through angiogenesis from a suturable tissue-engineered vascular graft (TEVG) constructed from electrospun polycaprolactone with macropores. The graft is surrounded by a layer of cell-laden gelatin-methacryloyl hydrogel. The constructs are suturable and possess mechanical properties like native vessels. Angiogenesis occurs through the pores in the graft, resulting in a hydrogel containing an extensive vascular network that is connected to an implantable TEVG. The size of the engineered tissue and the degree of vascularization can be increased by adding multiple TEVGs into a single construct. The engineered tissue has the potential to be immediately perfused by the patient's blood upon surgical anastomosis to host vessels, enabling survival of implanted cells. These findings provide a meaningful step to address the longstanding problem of fabricating suturable pre-vascularized tissues which could survive upon implantation in vivo. STATEMENT OF SIGNIFICANCE: Creating vascularized engineered tissues that can be transplanted and rapidly perfused by the host blood supply is a major challenge which has limited the clinical impact of tissue engineering. In this study we demonstrate a technique to fabricate vascularized tissue constructs via angiogenesis from a suturable tissue-engineered vascular graft. The macroporous graft is surrounded with hydrogel, allowing endothelial cells to migrate from the lumen and vascularize the hydrogel layer with capillary-like structures connected to the macrovessel. The graft has comparable mechanical properties to native blood vessels and larger constructs can be fabricated by incorporating multiple grafts. These constructs could potentially be connected surgically to the circulation at an implantation site to support their immediate perfusion and survival.
RESUMEN
Significance: The polarimetric properties of biological tissues are often difficult to ascertain independent of their complex structural and organizational features. Conventional polarimetric tissue phantoms have well-characterized optical properties but are overly simplified. We demonstrate that an innovative, biologically sourced, engineered tissue construct better recapitulates the desired structural and polarimetric properties of native collagenous tissues, with the added benefit of potential tunability of the polarimetric response. We bridge the gap between non-biological polarimetric phantoms and native tissues. Aim: We aim to evaluate a synthesized tissue construct for its effectiveness as a phantom that mimics the polarimetric properties in typical collagenous tissues. Approach: We use a fibroblast-derived, ring-shaped engineered tissue construct as an innovative tissue phantom for polarimetric imaging. We perform polarimetry measurements and subsequent analysis using the Mueller matrix decomposition and Mueller matrix transformation methods. Scalar polarimetric parameters of the engineered tissue are analyzed at different time points for both a control group and for those treated with the transforming growth factor ( TGF ) - ß 1 . Second-harmonic generation (SHG) imaging and three-dimensional collagen fiber organization analysis are also applied. Results: We identify linear retardance and circular depolarization as the parameters that are most sensitive to the tissue culture time and the addition of TGF - ß 1 . Aside from a statistically significant increase over time, the behavior of linear retardance and circular depolarization indicates that the addition of TGF - ß 1 accelerates the growth of the engineered tissue, which is consistent with expectations. We also find through SHG images that collagen fiber organization becomes more aligned over time but is not susceptible to the addition of TGF - ß 1 . Conclusions: The engineered tissue construct exhibits changes in polarimetric properties, especially linear retardance and circular depolarization, over culture time and under TGF - ß 1 treatments. This tissue construct has the potential to act as a controlled modular optical phantom for polarimetric-based methods.
Asunto(s)
Fibroblastos , Fantasmas de Imagen , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Fibroblastos/química , Fibroblastos/citología , Colágeno/química , Humanos , Factor de Crecimiento Transformador beta1/química , Factor de Crecimiento Transformador beta1/farmacologíaRESUMEN
Bioengineered allogeneic cellularised constructs (BACC) exert pro-healing effects in burn wounds and skew macrophage phenotype towards a predominately reparative phenotype. However, whether BACC can modulate the phenotype of dysregulated macrophages, like those present in burn wounds, is not known. To better understand the macrophage modulatory characteristics of the BACC, primary human macrophages were polarised to the M2b phenotype, an immunosuppressive phenotype relevant to burn wounds, by simultaneously exposing macrophages to polystyrene plate-coated immunoglobulin G and the endotoxin lipopolysaccharide (LPS). The resulting macrophage phenotype upregulated both inflammatory and reparative genes, and increased secretion of the M2b marker CCL1 compared to five different in vitro macrophage phenotypes. M2b macrophages were cultured with the BACC in the presence or absence of LPS to mimic infection, which is a common occurrence in burn wounds. The BACC caused up-regulation of reparative gene sets and down-regulation of pro-inflammatory gene sets, even when LPS was present in the cell culture media. Co-cultures were maintained for 1, 3, or 5 days in the presence of LPS, and by day 1 both non-activated macrophages and M2b macrophages exhibited signs of endotoxin tolerance, as demonstrated by a reduced secretion of tumour necrosis factor α (TNFα) in response to fresh LPS stimulus. The BACC was not able to prevent endotoxin tolerance, but reparative genes were upregulated in macrophages chronically exposed to LPS. These results suggest that the BACC can promote a reparative phenotype in dysregulated macrophages relevant to the pathophysiology of burns.
RESUMEN
The timely establishment of functional neo-vasculature is pivotal for successful tissue development and regeneration, remaining a central challenge in tissue engineering. In this study, we present a novel (micro)vascularization strategy that explores the use of specialized "vascular units" (VUs) as building blocks to initiate blood vessel formation and create perfusable, stroma-embedded 3D microvascular networks from the bottom-up. We demonstrate that VUs composed of endothelial progenitor cells and organ-specific fibroblasts exhibit high angiogenic potential when embedded in fibrin hydrogels. This leads to the formation of VUs-derived capillaries, which fuse with adjacent capillaries to form stable microvascular beds within a supportive, extracellular matrix-rich fibroblastic microenvironment. Using a custom-designed biomimetic fibrin-based vessel-on-chip (VoC), we show that VUs-derived capillaries can inosculate with endothelialized microfluidic channels in the VoC and become perfused. Moreover, VUs can establish capillary bridges between channels, extending the microvascular network throughout the entire device. When VUs and intestinal organoids (IOs) are combined within the VoC, the VUs-derived capillaries and the intestinal fibroblasts progressively reach and envelop the IOs. This promotes the formation of a supportive vascularized stroma around multiple IOs in a single device. These findings underscore the remarkable potential of VUs as building blocks for engineering microvascular networks, with versatile applications spanning from regenerative medicine to advanced in vitro models.
RESUMEN
BACKGROUND: In preclinical studies, the use of double allogeneic grafts has shown promising results in promoting tissue revascularization, reducing infarct size, preventing adverse remodelling and fibrosis, and ultimately enhancing cardiac function. Building upon these findings, the safety of PeriCord, an engineered tissue graft consisting of a decellularised pericardial matrix and umbilical cord Wharton's jelly mesenchymal stromal cells, was evaluated in the PERISCOPE Phase I clinical trial (NCT03798353), marking its first application in human subjects. METHODS: This was a double-blind, single-centre trial that enrolled patients with non-acute myocardial infarction eligible for surgical revascularization. Seven patients were implanted with PeriCord while five served as controls. FINDINGS: Patients who received PeriCord showed no adverse effects during post-operative phase and one-year follow-up. No significant changes in secondary outcomes, such as quality of life or cardiac function, were found in patients who received PeriCord. However, PeriCord did modulate the kinetics of circulating monocytes involved in post-infarction myocardial repair towards non-classical inflammation-resolving macrophages, as well as levels of monocyte chemoattractants and the prognostic marker Meteorin-like in plasma following treatment. INTERPRETATION: In summary, the PeriCord graft has exhibited a safe profile and notable immunomodulatory properties. Nevertheless, further research is required to fully unlock its potential as a platform for managing inflammatory-related pathologies. FUNDING: This work was supported in part by grants from MICINN (SAF2017-84324-C2-1-R); Instituto de Salud Carlos III (ICI19/00039 and Red RICORS-TERAV RD21/0017/0022, and CIBER Cardiovascular CB16/11/00403) as a part of the Plan Nacional de I + D + I, and co-funded by ISCIII-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER) and AGAUR (2021-SGR-01437).
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Gelatina de Wharton , Humanos , Calidad de Vida , Corazón , Cordón UmbilicalRESUMEN
In the field of tissue engineering and regenerative medicine, various hydrogels derived from the extracellular matrix have been utilized for creating engineered tissues and implantable scaffolds. While these hydrogels hold immense promise in the healthcare landscape, conventional bioinks based on ECM hydrogels face several challenges, particularly in terms of lacking the necessary mechanical properties required for 3D bioprinting process. To address these limitations, researchers are actively exploring novel nanomaterial-reinforced ECM hydrogels for both mechanical and functional aspects. In this review, we focused on discussing recent advancements in the fabrication of engineered tissues and monitoring systems using nanobioinks and nanomaterials via 3D bioprinting technology. We highlighted the synergistic benefits of combining numerous nanomaterials into ECM hydrogels and imposing geometrical effects by 3D bioprinting technology. Furthermore, we also elaborated on critical issues remaining at the moment, such as the inhomogeneous dispersion of nanomaterials and consequent technical and practical issues, in the fabrication of complex 3D structures with nanobioinks and nanomaterials. Finally, we elaborated on plausible outlooks for facilitating the use of nanomaterials in biofabrication and advancing the function of engineered tissues.
RESUMEN
Tissue engineering presents a promising solution for regenerative medicine and the success depends on the supply of oxygen/nutrients to the cells by rapid vascularization. More and more technologies are being developed to facilitate vascularization of engineered tissues. In this review, we indicated that a regulatory system which influences all angiogenesis associated cells to achieve their desired functional state is ideal for the construction of vascularized engineered tissues in vitro. We presented the evidence that electrical stimulation (ES) enhances the synergistic promotion of co-cultured angiogenesis associated cells and its potential regulatory mechanisms, highlighted the potential advantages of a combination of mesenchymal stem cells (MSCs), endothelial cells (ECs) and ES to achieve tissue vascularization, with particular emphasis on the different biological pathways of ES-regulated ECs. Finally, we proposed the future direction of using ES to reconstruct engineered tissue blood vessels, pointed out the potential advantages and disadvantages of ES application on tissue vascularization.
RESUMEN
Acquired disorders and congenital defects of the male and female reproductive systems can have profound impacts on patients, causing sexual and endocrine dysfunction and infertility, as well as psychosocial consequences that affect their self-esteem, identity, sexuality, and relationships. Reproductive tissue engineering (REPROTEN) is a promising approach to restore fertility and improve the quality of life of patients with reproductive disorders by developing, replacing, or regenerating cells, tissues, and organs from the reproductive and urinary systems. In this review, we explore the latest advancements in REPROTEN techniques and their applications for addressing degenerative conditions in male and female reproductive organs. We discuss current research and clinical outcomes and highlight the potential of 3D constructs utilizing biomaterials such as scaffolds, cells, and biologically active molecules. Our review offers a comprehensive guide for researchers and clinicians, providing insights into how to reestablish reproductive tissue structure and function using innovative surgical approaches and biomaterials. We highlight the benefits of REPROTEN for patients, including preservation of fertility and hormonal production, reconstruction of uterine and cervical structures, and restoration of sexual and urinary functions. Despite significant progress, REPROTEN still faces ethical and technical challenges that need to be addressed. Our review underscores the importance of continued research in this field to advance the development of effective and safe REPROTEN approaches for patients with reproductive disorders.
Asunto(s)
Medicina Reproductiva , Ingeniería de Tejidos , Humanos , Masculino , Femenino , Ingeniería de Tejidos/métodos , Calidad de Vida , Materiales Biocompatibles , FertilidadRESUMEN
Tissue-engineered in vitro models are an essential tool in biomedical research. Tissue geometry is a key determinant of function, but controlling the geometry of microscale tissues remains challenging. Additive manufacturing approaches have emerged as a promising means for rapid and iterative changes in the geometry of microdevices. However, it has been shown that poly(dimethylsiloxane) (PDMS) cross-linking is often inhibited at the interface of materials printed with stereolithography. While approaches to replica mold stereolithographic three-dimensional (3D) prints have been described, these methods are inconsistent and often lead to print destruction when unsuccessful. Additionally, 3D-printed materials often leach toxic chemicals into directly molded PDMS. Here, we developed a double molding approach that allows precise replication of high-resolution stereolithographic prints into poly(dimethylsiloxane) (PDMS) elastomer, facilitating rapid design iterations and highly parallelized sample production. Inspired by lost wax casting, we used hydrogels as intermediary molds to transfer high-resolution features from high-resolution 3D prints into PDMS, while previously published work focused on enabling direct molding of PDMS onto 3D prints through the use of coatings and post-cross-linking treatments of the 3D print itself. Hydrogel mechanical properties, including cross-link density, predict replication fidelity. We demonstrate the ability of this approach to replicate a variety of shapes that would be impossible to create using photolithography techniques traditionally used to create engineered tissue designs. This method also enabled the replication of 3D-printed features into PDMS that would not be possible with direct molding as the stiffness of these materials leads to material fracture when unmolding, while the increased toughness in the hydrogels can elastically deform around complex features and maintain replication fidelity. Finally, we highlight the ability of this method to minimize the potential for toxic materials to transfer from the original 3D print into the PDMS replica, enhancing its use for biological applications. This minimization of the transfer of toxic materials has not been reported in other previously reported methods describing replication of 3D prints into PDMS, and we demonstrate its use through the creation of stem cell-derived microheart muscles. This method can also be used in future studies to understand the effects of geometry on engineered tissues and their constitutive cells.
Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Hidrogeles/química , Dimetilpolisiloxanos/química , Estereolitografía , Impresión TridimensionalRESUMEN
Monitoring of extracellular matrix (ECM) microstructure is essential in studying structure-associated cellular processes, improving cellular function, and for ensuring sufficient mechanical integrity in engineered tissues. This paper describes a novel method to study the microscale alignment of the matrix in engineered tissue scaffolds (ETS) that are usually composed of a variety of biomacromolecules derived by cells. First, a trained loading function was derived from Raman spectra of highly aligned native tissue via principal component analysis (PCA), where prominent changes associated with specific Raman bands (e.g., 1444, 1465, 1605, 1627-1660, and 1665-1689 cm-1) were detected with respect to the polarization angle. These changes were mainly caused by the aligned matrix of many compounds within the tissue relative to the laser polarization, including proteins, lipids, and carbohydrates. Hence this trained function was applied to quantify the alignment within ETS of various matrix components derived by cells. Furthermore, a simple metric called Amplitude Alignment Metric (AAM) was derived to correlate the orientation dependence of polarized Raman spectra of ETS to the degree of matrix alignment. It was found that the AAM was significantly higher in anisotropic ETS than isotropic ones. The PRS method revealed a lower p-value for distinguishing the alignment between these two types of ETS as compared to the microscopic method for detecting fluorescent-labeled protein matrices at a similar microscopic scale. These results indicate that the anisotropy of a complex matrix in engineered tissue can be assessed at the microscopic scale using a PRS-based simple metric, which is superior to the traditional microscopic method. This PRS-based method can serve as a complementary tool for the design and assessment of engineered tissues that mimic the native matrix organizational microstructures.
Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Espectrometría Raman/instrumentación , Espectrometría Raman/métodos , Ingeniería de Tejidos/métodos , MicroscopíaRESUMEN
Articular cartilage (AC) tissue repair and regeneration remains an ongoing challenge. One component of the challenge is the limited ability to scale an engineered cartilage graft to clinically relevant sizes while maintaining uniform properties. In this paper, we report on the evaluation of our polyelectrolyte complex microcapsule (PECM) platform technology as a technique for generating cartilage-like spherical modules. Bone marrow-derived mesenchymal stem cells (bMSCs) or primary articular chondrocytes were encapsulated within PECMs composed of methacrylated hyaluronan, collagen I, and chitosan. The formation of cartilage-like tissue in the PECMs over a 90-day culture was characterized. The results showed that chondrocytes exhibited superior growth and matrix deposition compared to either chondrogenically-induced bMSCs or a mixed PECM culture containing both chondrocytes and bMSCs. The chondrocyte-generated matrix filled the PECM and produced substantial increases in capsule compressive strength. The PECM system thus appears to support intracapsular cartilage tissue formation and the capsule approach promotes efficient culture and handling of these micro tissues. Since previous studies have proven the feasibility of fusing such capsules into large tissue constructs, the results suggest that encapsulating primary chondrocytes in PECM modules may be a viable route toward achieving a functional articular cartilage graft.
RESUMEN
Viral infections cause damage to various organ systems by inducing organ-specific symptoms or systemic multi-organ damage. Depending on the infection route and virus type, infectious diseases are classified as respiratory, nervous, immune, digestive, or skin infections. Since these infectious diseases can widely spread in the community and their catastrophic effects are severe, identification of their causative agent and mechanisms underlying their pathogenesis is an urgent necessity. Although infection-associated mechanisms have been studied in two-dimensional (2D) cell culture models and animal models, they have shown limitations in organ-specific or human-associated pathogenesis, and the development of a human-organ-mimetic system is required. Recently, three-dimensional (3D) engineered tissue models, which can present human organ-like physiology in terms of the 3D structure, utilization of human-originated cells, recapitulation of physiological stimuli, and tight cell-cell interactions, were developed. Furthermore, recent studies have shown that these models can recapitulate infection-associated pathologies. In this review, we summarized the recent advances in 3D engineered tissue models that mimic organ-specific viral infections. First, we briefly described the limitations of the current 2D and animal models in recapitulating human-specific viral infection pathology. Next, we provided an overview of recently reported viral infection models, focusing particularly on organ-specific infection pathologies. Finally, a future perspective that must be pursued to reconstitute more human-specific infectious diseases is presented.
RESUMEN
Exercise affects the expression of microRNAs (miR/s) and muscle-derived extracellular vesicles (EVs). To evaluate sarcoplasmic and secreted miR expression in human skeletal muscle in response to exercise-mimetic contractile activity, we utilized a three-dimensional tissue-engineered model of human skeletal muscle ("myobundles"). Myobundles were subjected to three culture conditions: no electrical stimulation (CTL), chronic low frequency stimulation (CLFS), or intermittent high frequency stimulation (IHFS) for 7 days. RNA was isolated from myobundles and from extracellular vesicles (EVs) secreted by myobundles into culture media; miR abundance was analyzed by miRNA-sequencing. We used edgeR and a within-sample design to evaluate differential miR expression and Pearson correlation to evaluate correlations between myobundle and EV populations within treatments with statistical significance set at p < 0.05. Numerous miRs were differentially expressed between myobundles and EVs; 116 miRs were differentially expressed within CTL, 3 within CLFS, and 2 within IHFS. Additionally, 25 miRs were significantly correlated (18 in CTL, 5 in CLFS, 2 in IHFS) between myobundles and EVs. Electrical stimulation resulted in differential expression of 8 miRs in myobundles and only 1 miR in EVs. Several KEGG pathways, known to play a role in regulation of skeletal muscle, were enriched, with differentially overrepresented miRs between myobundle and EV populations identified using miEAA. Together, these results demonstrate that in vitro exercise-mimetic contractile activity of human engineered muscle affects both their expression of miRs and number of secreted EVs. These results also identify novel miRs of interest for future studies of the role of exercise in organ-organ interactions in vivo.
RESUMEN
Cardiovascular disease is the leading cause of death worldwide and is associated with approximately 17.9 million deaths each year. Musculoskeletal conditions affect more than 1.71 billion people globally and are the leading cause of disability. These two areas represent a massive global health burden that is perpetuated by a lack of functionally restorative treatment options. The fields of regenerative medicine and tissue engineering offer great promise for the development of therapies to repair damaged or diseased tissues. Decellularized tissues and extracellular matrices are cornerstones of regenerative biomaterials and have been used clinically for decades and many have received FDA approval. In this review, we first discuss and compare methods used to produce decellularized tissues and ECMs from cardiac and skeletal muscle. We take a focused look at how different biophysical properties such as spatial topography, extracellular matrix composition, and mechanical characteristics influence cell behavior and function in the context of regenerative medicine. Lastly, we describe emerging research and forecast the future high impact applications of decellularized cardiac and skeletal muscle that will drive novel and effective regenerative therapies.
RESUMEN
Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or integration of both vascularization and innervation. Tissue engineering strategies have been widely used to encourage vascularization and, more recently, to improve innervation through host tissue recruitment or prevascularization/innervation of engineered tissues. However, current scaffold designs and cell or growth factor delivery approaches often fail to synergistically coordinate both vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue engineering approaches are typically investigated separately for vascularization and innervation. Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised approach for development of engineered materials is required. This review aims to provide an overview of neurovascularization in craniofacial tissues and strategies to target either process thus far. Finally, key design principles are described for engineering approaches that will support both vascularization and innervation for successful craniofacial tissue regeneration.
Asunto(s)
Calidad de Vida , Ingeniería de Tejidos , Huesos , Humanos , Neovascularización Patológica , Cicatrización de HeridasRESUMEN
Constrained by the existing scaffold inability to mimic limbal niche, limbal bio-engineered tissue constructed in vitro is challenging to be widely used in clinical practice. Here, a 3D nanofiber-aerogel scaffold is fabricated by employing thermal cross-linking electrospinned film polycaprolactone (PCL) and gelatin (GEL) as the precursor. Benefiting from the cross-linked (160 °C, vacuum) structure, the homogenized and lyophilized 3D nanofiber-aerogel scaffold with preferable mechanical strength is capable of refraining the volume collapse in humid vitro. Intriguingly, compared with traditional electrospinning scaffolds, the authors' 3D nanofiber-aerogel scaffolds possess enhanced water absorption (1100-1300%), controllable aperture (50-100 µm), and excellent biocompatibility (optical density value, 0.953 ± 0.021). The well-matched aperture and nanostructure of the scaffolds with cells enable the construction of limbal bio-engineered tissue. It is foreseen that the proposed general method can be extended to various aerogels, providing new opportunities for the development of novel limbal bio-engineered tissue.
Asunto(s)
Nanofibras , Gelatina , Nanofibras/química , Poliésteres/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/químicaRESUMEN
The simulation of growth processes within soft biological tissues is of utmost importance for many applications in the medical sector. Within this contribution, we propose a new macroscopic approach for modelling stress-driven volumetric growth occurring in soft tissues. Instead of using the standard approach of a-priori defining the structure of the growth tensor, we postulate the existence of a general growth potential. Such a potential describes all eligible homeostatic stress states that can ultimately be reached as a result of the growth process. Making use of well-established methods from visco-plasticity, the evolution of the growth-related right Cauchy-Green tensor is subsequently defined as a time-dependent associative evolution law with respect to the introduced potential. This approach naturally leads to a formulation that is able to cover both, isotropic and anisotropic growth-related changes in geometry. It furthermore allows the model to flexibly adapt to changing boundary and loading conditions. Besides the theoretical development, we also describe the algorithmic implementation and furthermore compare the newly derived model with a standard formulation of isotropic growth.
Asunto(s)
Modelos Biológicos , Anisotropía , Simulación por Computador , Elasticidad , Análisis de Elementos Finitos , Matemática , Estrés MecánicoRESUMEN
Microtia is a small, malformed external ear, which occurs at an incidence of 1-10 per 10 000 births. Autologous reconstruction using costal cartilage is the most widely accepted surgical microtia repair technique. Yet, the method involves donor-site pain and discomfort and relies on the artistic skill of the surgeon to create an aesthetic ear. This study employed novel tissue engineering techniques to overcome these limitations by developing a clinical-grade, 3D-printed biodegradable auricle scaffold that formed stable, custom-made neocartilage implants. The unique scaffold design combined strategically reinforced areas to maintain the complex topography of the outer ear and micropores to allow cell adhesion for the effective production of stable cartilage. The auricle construct was computed tomography (CT) scan-based composed of a 3D-printed clinical-grade polycaprolactone scaffold loaded with patient-derived chondrocytes produced from either auricular cartilage or costal cartilage biopsies combined with adipose-derived mesenchymal stem cells. Cartilage formation was measured within the constructin vitro, and cartilage maturation and stabilization were observed 12 weeks after its subcutaneous implantation into a murine model. The proposed technology is simple and effective and is expected to improve aesthetic outcomes and reduce patient discomfort.
Asunto(s)
Microtia Congénita , Células Madre Mesenquimatosas , Animales , Condrocitos , Microtia Congénita/cirugía , Cartílago Auricular , Humanos , Ratones , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del TejidoRESUMEN
Tissue architecture is a prerequisite for its biological functions. Recapitulating the three-dimensional (3D) tissue structure represents one of the biggest challenges in tissue engineering. Two-dimensional (2D) tissue fabrication methods are currently in the main stage for tissue engineering and disease modeling. However, due to their planar nature, the created models only represent very limited out-of-plane tissue structure. Here compressive buckling principle is harnessed to create 3D biomimetic cell-laden microstructures from microfabricated planar patterns. This method allows out-of-plane delivery of cells and extracellular matrix patterns with high spatial precision. As a proof of principle, a variety of polymeric 3D miniature structures including a box, an octopus, a pyramid, and continuous waves are fabricated. A mineralized bone tissue model with spatially distributed cell-laden lacunae structures is fabricated to demonstrate the fabrication power of the method. It is expected that this novel approach will help to significantly expand the utility of the established 2D fabrication techniques for 3D tissue fabrication. Given the widespread of 2D fabrication methods in biomedical research and the high demand for biomimetic 3D structures, this method is expected to bridge the gap between 2D and 3D tissue fabrication and open up new possibilities in tissue engineering and regenerative medicine.
Asunto(s)
Materiales Biomiméticos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido , Matriz Extracelular , Humanos , Medicina RegenerativaRESUMEN
The lymphatic system is involved in various biological processes, including fluid transport from the interstitium into the venous circulation, lipid absorption, and immune cell trafficking. Despite its critical role in homeostasis, lymphangiogenesis (lymphatic vessel formation) is less widely studied than its counterpart, angiogenesis (blood vessel formation). Although the incorporation of lymphatic vasculature in engineered tissues or organoids would enable more precise mimicry of native tissue, few studies have focused on creating engineered tissues containing lymphatic vessels. Here, we populated thick collagen sheets with human lymphatic endothelial cells, combined with supporting cells and blood endothelial cells, and examined lymphangiogenesis within the resulting constructs. Our model required just a few days to develop a functional lymphatic vessel network, in contrast to other reported models requiring several weeks. Coculture of lymphatic endothelial cells with the appropriate supporting cells and intact PDGFR-ß signaling proved essential for the lymphangiogenesis process. Additionally, subjecting the constructs to cyclic stretch enabled the creation of complex muscle tissue aligned with the lymphatic and blood vessel networks, more precisely biomimicking native tissue. Interestingly, the response of developing lymphatic vessels to tensile forces was different from that of blood vessels; while blood vessels oriented perpendicularly to the stretch direction, lymphatic vessels mostly oriented in parallel to the stretch direction. Implantation of the engineered lymphatic constructs into a mouse abdominal wall muscle resulted in anastomosis between host and implant lymphatic vasculatures, demonstrating the engineered construct's potential functionality in vivo. Overall, this model provides a potential platform for investigating lymphangiogenesis and lymphatic disease mechanisms.