Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Tissue Cell ; 88: 102418, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38776731

RESUMEN

Bioprinting technology promotes innovation of fabricating tissue engineered constructs. Dental pulp stem cells (DPSCs) have significant advantages over classical bone mesenchymal stem cells (BMSCs) and are a promising seed cell candidate for bone engineering bioprinting. However, current reports about bioprinted DPSCs for bone regeneration are incomprehensive. The objective of this study was to investigate the osteogenic potential of DPSCs in methacrylate gelatin (GelMA) hydrogels bioprinted scaffolds in vitro and in vivo. Firstly, we successfully bioprinted GelMA with different concentrations embedded with or without DPSCs. Printability, physical features and biological properties of the bioprinted constructs were evaluated. Then, osteogenic differentiation levels of DPSCs in bioprinted constructs with various concentrated GelMA were compared. Finally, effects of bioprinted constructs on cranial bone regeneration were evaluated in vivo. The results of our study demonstrated that 10% GelMA had higher compression modulus, smaller pores, lower swelling and degradation rate than 3% GelMA. Twenty-eight days after printing, DPSCs in three groups of bioprinted structures still maintained high cell activities (>90%). Moreover, DPSCs in 10% GelMA showed an upregulated expression of osteogenic markers and a highly activated ephrinB2/EphB4 signaling, a signaling involved in bone homeostasis. In vivo experiments showed that DPSCs survived at a higher rate in 10% GelMA, and more new bones were observed in DPSC-laden 10% GelMA group, compared with GelMA of other concentrations. In conclusion, bioprinted DPSC-laden 10% GelMA might be more appropriate for bone regeneration application, in contrast to GelMA with other concentrations.


Asunto(s)
Bioimpresión , Regeneración Ósea , Pulpa Dental , Gelatina , Hidrogeles , Osteogénesis , Impresión Tridimensional , Andamios del Tejido , Regeneración Ósea/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Gelatina/química , Gelatina/farmacología , Pulpa Dental/citología , Osteogénesis/efectos de los fármacos , Andamios del Tejido/química , Animales , Células Madre/citología , Células Madre/metabolismo , Diferenciación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Metacrilatos/química , Metacrilatos/farmacología
2.
Front Bioeng Biotechnol ; 11: 1192720, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37425367

RESUMEN

Background: The limited regenerative potential of periodontal tissue remains a challenge in orthodontic treatment, especially with respect to alveolar bone remodeling. The dynamic balance between the bone formation of osteoblasts and the bone resorption of osteoclasts controls bone homeostasis. The osteogenic effect of low-intensity pulsed ultrasound (LIPUS) is widely accepted, so LIPUS is expected to be a promising method for alveolar bone regeneration. Osteogenesis is regulated by the acoustic mechanical effect of LIPUS, while the cellular perception, transduction mode and response regulation mechanism of LIPUS stimuli are still unclear. This study aimed to explore the effects of LIPUS on osteogenesis by osteoblast-osteoclast crosstalk and the underlying regulation mechanism. Methods: The effects of LIPUS on orthodontic tooth movement (OTM) and alveolar bone remodeling were investigated via rat model by histomorphological analysis. Mouse bone marrow mesenchymal stem cells (BMSCs) and bone marrow monocytes (BMMs) were purified and used as BMSC-derived osteoblasts and BMM-derived osteoclasts, respectively. The osteoblast-osteoclast co-culture system was used to evaluate the effect of LIPUS on cell differentiation and intercellular crosstalk by Alkaline phosphatase (ALP), Alizarin Red S (ARS), tartrate-resistant acid phosphatase (TRAP) staining, real-time quantitative PCR, western blotting and immunofluorescence. Results: LIPUS was found to improve OTM and alveolar bone remodeling in vivo, promote differentiation and EphB4 expression in BMSC-derived osteoblasts in vitro, particularly when cells were directly co-cultured with BMM-derived osteoclasts. LIPUS enhanced EphrinB2/EphB4 interaction between osteoblasts and osteoclasts in alveolar bone, activated the EphB4 receptor on osteoblasts membrane, transduced LIPUS-related mechanical signals to the intracellular cytoskeleton, and gave rise to the nuclear translocation of YAP in Hippo signaling pathway, thus regulating cell migration and osteogenic differentiation. Conclusions: This study shows that LIPUS modulates bone homeostasis by osteoblast-osteoclast crosstalk via EphrinB2/EphB4 signaling, which benefits the balance between OTM and alveolar bone remodeling.

3.
J Periodontal Res ; 52(3): 562-573, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27763659

RESUMEN

BACKGROUND AND OBJECTIVE: The goal of periodontal therapy is to regenerate/reconstruct the damaged supporting tissues of diseased teeth and to facilitate recovery of their physiological functions. Combination of stem cell transplantation and gene therapy offers a viable method for accelerating periodontal repair and regeneration. In this study, the role of the ephrinB2/EphB4 signaling pathway in regulating osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and crosstalk between PDLSCs and pre-osteoblasts within co-culture was investigated through ephrinB2 transgenic expression in PDLSCs. MATERIAL AND METHODS: PDLSCs isolated from premolar teeth of teenage patients undergoing orthodontic treatment were transfected with transgenic (hEfnB2-GFP-Bsd) vector or empty vector (GFP-Bsd). Vector-PDLSCs, EfnB2-PDLSCs, MC3T3-E1 and co-cultures of vector-PDLSCs with MC3T3-E1, and EfnB2-PDLSCs with MC3T3-E1 were subjected to osteogenic induction. The osteogenic differentiation of EfnB2-PDLSCs, vector-PDLSCs and co-cultures were assessed by reverse transcription-polymerase chain reaction, alkaline phosphatase (ALP) assay and Alizarin-red S staining. Protein expression levels of ephrinB2, EphB4, phosphorylated ephrinB2 and EphB4 were analyzed by western blot, immunoprecipitation and co-immunoprecipitation assays. RESULTS: ALP assay and Alizarin-red S staining demonstrated higher ALP activity and increased mineralization with EfnB2-PDLSCs vs. vector-PDLSCs and with co-culture of EfnB2-PDLSCs and MC3T3-E1 vs. vector-PDLSCs and MC3T3-E1. Reverse transcription-polymerase chain reaction revealed that the expression of human odonto/osteogenic markers were significantly enhanced in EfnB2-PDLSCs compared to vector-PDLSCs, and that the expression of mouse odonto/osteogenic markers were significantly higher in co-culture of EfnB2-PDLSCs with MC3T3-E1 vs. vector-PDLSCs with MC3T3-E1. The EphB4 receptor was activated through phosphorylation during osteogenic differentiation. CONCLUSION: Our data indicate that transgenic expression of ephrinB2 in PDLSCs could promote osteogenic differentiation via stimulation of the phosphorylation of ephrinB2 and EphB4, which regulates cell communication between PDLSCs and between PDLSCs and pre-osteoblasts within co-culture.


Asunto(s)
Efrina-B2/fisiología , Osteoblastos/fisiología , Osteogénesis/fisiología , Ligamento Periodontal/citología , Receptor EphB4/fisiología , Células Madre/fisiología , Western Blotting , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Técnicas de Cocultivo/métodos , Técnicas de Transferencia de Gen , Humanos , Inmunoprecipitación , Ligamento Periodontal/metabolismo , Ligamento Periodontal/fisiología , Transducción de Señal/fisiología
4.
Stem Cell Res ; 17(2): 248-255, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27591481

RESUMEN

Understanding the mechanisms by which mesenchymal stromal cells (MSCs) interact with the physical properties (e.g. topography, charge, ζ-potential, and contact angle) of polymeric surfaces is essential to design new biomaterials capable of regulating stem cell behavior. The present study investigated the ability of two polymers (pHM1 and pHM3) with different positive surface charge densities to modulate the differentiation of MSCs into osteoblast-like phenotype via cell-cell ephrinB2/EphB4 signaling. Although pHM1 promoted the phosphorylation of EphB4, leading to cell differentiation, pHM3, characterized by a high positive surface charge density, had no significant effect on EphB4 activation or MSCs differentiation. When the MSCs were cultured on pHM1 in the presence of a forward signaling blocking peptide, the osteoblast differentiation was compromised. Our results demonstrated that the ephrinB2/EphB4 interaction was required for MSCs differentiation into an osteoblast-like phenotype and that the presence of a high positive surface charge density altered this interaction.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Efrina-B2/metabolismo , Osteogénesis/efectos de los fármacos , Polímeros/farmacología , Receptor EphB4/metabolismo , Transducción de Señal/efectos de los fármacos , Cationes/química , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Efrina-B2/genética , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor EphB4/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...