Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 687: 149187, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37944472

RESUMEN

Sodium influx carried out by ion channels is one of the main regulators of water-salt and volume balance in cells of blood origin. Previously, we described amiloride-insensitive ENaC-like channels in human myeloid leukemia K562 cells; the intracellular regulatory mechanisms of the channels are associated with actin cytoskeleton dynamics. Recently, an extracellular mechanism of ENaC-like channels activation in K562 cells by the action of serine protease trypsin has been revealed. The other extracellular pathways that modulate ENaC (epithelial Na+ channel) activity and sodium permeability in transformed blood cells are not yet fully investigated. Here, we study the action of capsazepine (CPZ), as δ-ENaC activator, on single channel activity in K562 cells in whole-cell patch clamp experiments. Addition of CPZ (2 µM) to the extracellular solution caused an activation of sodium channels with typical features; unitary conductance was 15.1 ± 0.8 pS. Amiloride derivative benzamil (50 µM) did not inhibit their activity. Unitary currents and conductance of CPZ-activated channels were higher in Na+-containing extracellular solution than in Li+, that is one of the main fingerprints of δ-ENaC. The results of RT-PCR analysis and immunofluorescence staining also confirmed the expression of δ-hENaC (as well as α-, ß-, γ-ENaC) at the mRNA and protein level. These findings allow us to speculate that CPZ activates amiloride-insensitive ENaC-like channels that contain δ-ENaC in К562 cells. Our data reveal a novel extracellular mechanism for ENaC-like activation in human leukemia cells.


Asunto(s)
Amilorida , Leucemia Mieloide , Humanos , Amilorida/farmacología , Amilorida/metabolismo , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Leucemia Mieloide/metabolismo , Sodio/metabolismo , Oocitos/metabolismo
2.
Ann Transl Med ; 11(1): 4, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36760249

RESUMEN

Background: Bronchopulmonary dysplasia (BPD) is a severe pulmonary complication causing morbidity and mortality in preterm infants. A key histopathological feature of BPD is late lung growth retardation, in which the process of alveolarization is hindered and the mechanism of which is unclear. Emerging evidence indicates that microRNAs (miRNAs) promote the development of BPD via the inhibition of their target genes. MiR-495 has been reported to be involved in various lung diseases. However, the physiological function of miR-495 in BPD has not yet been fully understood. Methods: Differentially expressed miRNAs in peripheral blood of patients with BPD were compared with those of normal controls. A dual-luciferase reporter assay was performed to identify the target genes of miR-495. A BPD neonatal rat model was established by injecting lipopolysaccharide (LPS) in the amniotic sac of pregnant rats. The morphology of the lungs was observed using hematoxylin and eosin (HE) staining. The expression of miR-495, neural precursor cell expressed developmentally down-regulated 4-like (NEDD4L), and epithelial Na+ channel (ENaC) was tested using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot analysis, and immunofluorescent (IF) staining. Results: The expression of miR-495 was significantly increased in the peripheral blood samples of premature infants with BPD and verified using qRT-PCR. NEDD4L was proven to be the target gene of miR-495. Additionally, miR-495 expression was also increased in the lungs of rat pups with BPD at postnatal day (P) 3 compared with the control group. qRT-PCR and Western blot results showed that NEDD4L expression was decreased while ENaC expression was increased at the transcriptional and translational levels. IF staining results showed that NEDD4L level was decreased while ENaC level was increased in the LPS-induced BPD rat model, which was consistent with abnormal changes in alveolar structure. Conclusions: The aberrant overexpression of miR-495 may contribute to the development of BPD by targeting NEDD4L-ENaC pathway, implying an imbalance in lung fluid clearance.

3.
J Pharmacol Sci ; 149(2): 37-45, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35512853

RESUMEN

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death in the world, and has no radical treatment. Inhibition of amiloride-sensitive epithelial sodium ion channel (ENaC) has now been considered as a potential therapeutic target against COPD. One possible modulator of ENaC is AMP-activated protein kinase (AMPK), a key molecule that controls a wide variety of cellular signals; however, little is known about whether metformin, a clinically available AMPK activator, has a protective role against ENaC-associated chronic pulmonary phenotypes, such as emphysema and pulmonary dysfunction. We first used ENaC-overexpressing human bronchial epithelial cells (ß/γENaC-16HBE14o-) and identified that Metformin significantly reduced ENaC activity. Consistently, in vivo treatment of ENaC-overexpressing COPD mouse model (C57BL/6-ßENaC-Tg mice) showed improvement of emphysema and pulmonary dysfunction, without any detrimental effect on non-pulmonary parameters (blood glucose level etc.). Bronchoalveolar lavage fluid (BALF) and lung tissue analyses revealed significant suppression in the infiltration of neutrophils as well as the expression of inflammatory markers (KC), neutrophil gelatinase (MMP9) and macrophage elastase (MMP12) in metformin-treated C57BL/6-ßENaC-Tg mice. Overall, the present study demonstrates that metformin directly inhibits ENaC activity in vitro and provides the first evidence of therapeutical benefit of Metformin for COPD with higher ENaC activity.


Asunto(s)
Enfisema , Metformina , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Pulmón/metabolismo , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfisema Pulmonar/tratamiento farmacológico , Enfisema Pulmonar/genética
4.
Proc Natl Acad Sci U S A ; 117(1): 717-726, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871197

RESUMEN

Mechanosensitive ion channels are crucial for normal cell function and facilitate physiological function, such as blood pressure regulation. So far little is known about the molecular mechanisms of how channels sense mechanical force. Canonical vertebrate epithelial Na+ channel (ENaC) formed by α-, ß-, and γ-subunits is a shear force (SF) sensor and a member of the ENaC/degenerin protein family. ENaC activity in epithelial cells contributes to electrolyte/fluid-homeostasis and blood pressure regulation. Furthermore, ENaC in endothelial cells mediates vascular responsiveness to regulate blood pressure. Here, we provide evidence that ENaC's ability to mediate SF responsiveness relies on the "force-from-filament" principle involving extracellular tethers and the extracellular matrix (ECM). Two glycosylated asparagines, respectively their N-glycans localized in the palm and knuckle domains of αENaC, were identified as potential tethers. Decreased SF-induced ENaC currents were observed following removal of the ECM/glycocalyx, replacement of these glycosylated asparagines, or removal of N-glycans. Endothelial-specific overexpression of αENaC in mice induced hypertension. In contrast, expression of αENaC lacking these glycosylated asparagines blunted this effect. In summary, glycosylated asparagines in the palm and knuckle domains of αENaC are important for SF sensing. In accordance with the force-from-filament principle, they may provide a connection to the ECM that facilitates vascular responsiveness contributing to blood pressure regulation.


Asunto(s)
Asparagina/metabolismo , Canales Epiteliales de Sodio/metabolismo , Matriz Extracelular/metabolismo , Dominios Proteicos/genética , Animales , Asparagina/química , Modelos Animales de Enfermedad , Células Endoteliales , Endotelio Vascular/citología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Canales Epiteliales de Sodio/química , Canales Epiteliales de Sodio/genética , Femenino , Glicosilación , Células HEK293 , Humanos , Hipertensión/etiología , Hipertensión/patología , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Oocitos , Técnicas de Placa-Clamp , Mutación Puntual , Polisacáridos/química , Estrés Mecánico , Xenopus laevis
5.
J Pharmacol Sci ; 140(2): 113-119, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31248767

RESUMEN

Pulmonary emphysema, inflammation and senescence-like phenotype are pathophysiological characteristics of chronic obstructive pulmonary disease (COPD). Recently, a murine model of COPD has been established by inducing airway-specific overexpression of epithelial Na+ channel ß subunit (ßENaC-Tg mice). However, little is known about the histological and biochemical differences between ßENaC-Tg mice and an existing acute emphysematous mouse model (elastase-induced model). Here, we first utilized whole lung image-based quantification method for histological analysis to determine auto-measure parameters, including alveolar area, alveolar perimeter, (major axis + minor axis)/2 and Feret diameter. Even though the extent of emphysema was similar in both models, the coefficient of variation (CV) of all histological parameters was smaller in ßENaC-Tg mice, indicating that ßENaC-Tg mice show homogeneous emphysema as compared with elastase-induced acute model. Expression analysis of lung tissue RNAs further revealed that elastase-induced model exhibits transient changes of inflammation markers (Kc, Il-6, Lcn2) and senescence-related markers (Sirt1, p21) at emphysema-initiation stage (1 day), which does not last until emphysema-manifestation stage (3 weeks); while the up-regulation is stable at emphysema-manifestation stage in ßENaC-Tg mice (14-week old). Thus, these studies demonstrate that ßENaC-Tg mice exhibit diffuse-type emphysema with stable expression of inflammatory and senescence-like markers.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica/genética , Enfisema Pulmonar/genética , Transcriptoma/genética , Envejecimiento/genética , Animales , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/genética , Femenino , Mediadores de Inflamación/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipocalina 2/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/patología , Sirtuina 1/genética , Sirtuina 1/metabolismo
6.
Biochim Biophys Acta Biomembr ; 1859(5): 1040-1048, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28257815

RESUMEN

BACKGROUND: Gadolinium-based-contrast-agents (GBCAs) are used for magnetic-resonance-imaging and associated with renal and cardiovascular adverse reactions caused by released Gd3+ ions. Gd3+ is also a modulator of mechano-gated ion channels, including the epithelial Na+ channel (ENaC) that is expressed in kidney epithelium and the vasculature. ENaC is important for salt-/water homeostasis and blood pressure regulation and a likely target of released Gd3+ from GBCAs causing the above-mentioned adverse reactions. Therefore this study examined the effect of Gd3+ and GBCAs on ENaC's activity. METHODS: Human αßγENaC was expressed in Xenopus laevis oocytes and exposed to Gd3+, linear (Gd-DTPA, Magnevist) or cyclic (Dotarem) GBCAs. Transmembrane ion-currents (IM) were recorded by the two-electrode-voltage-clamp technique and Gd3+-release by Gd-DTPA was confirmed by inductively coupled plasma-mass spectrometry. RESULTS: Gd3+ exerts biphasic effects on ENaC's activity: ≤0.3mmol/l decreased IM which was preventable by DEPC (modifies histidines). Strikingly Gd3+≥0.4mmol/l increased IM and this effect was prevented by cysteine-modifying MTSEA. Linear Gd-DTPA and Magnevist mimicked the effect of ≤0.3mmol/l Gd3+, whereas the chelator DTPA showed no effect. Gd3+ and Gd-DTPA increased the IC50 for amiloride, but did not affect ENaC's self-inhibition. Interestingly, cyclic Gd-DOTA (Dotarem) increased IM to a similar extent as its chelator DOTA, suggesting that the chelator rather than released Gd3+ is responsible for this effect. CONCLUSION: These results confirm Gd3+-release from linear Gd-DTPA and indicate that the released Gd3+ amount is sufficient to interfere with ENaC's activity to provide putative explanations for GBCA-related adverse effects.


Asunto(s)
Medios de Contraste/efectos adversos , Canales Epiteliales de Sodio/efectos de los fármacos , Gadolinio DTPA/efectos adversos , Animales , Sitios de Unión , Relación Dosis-Respuesta a Droga , Gadolinio/efectos adversos , Gadolinio DTPA/farmacocinética , Humanos , Xenopus laevis
7.
Nephrol Dial Transplant ; 31(2): 200-5, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26163195

RESUMEN

The epithelial Na(+) channel (ENaC) is decisive for sodium reabsorption by the aldosterone-sensitive distal nephron (ASDN) of the kidney. ENaC is regulated by the serum- and glucocorticoid-inducible kinase 1 (SGK1), a kinase genomically upregulated by several hormones including glucocorticoids and mineralocorticoids. SGK1 is activated by the serine/threonine kinase mammalian target of rapamycin (mTOR) isoform mTORC2. SGK1 knockout (sgk1(-/-) mice) impairs renal Na(+) retention during salt depletion. The mTOR catalytic site inhibitor, PP242, but not mTORC1 inhibitor rapamycin, inhibits ENaC, decreases Na(+) flux in isolated perfused tubules and induces natriuresis in wild-type mice. PP242 does not lead to further impairment of Na(+) reabsorption in sgk1(-/-) mice. The mTORC2/SGK1 sensitive renal Na(+) retention leads to extracellular volume expansion with increase of blood pressure. A SGK1 gene variant (prevalence ∼ 3-5% in Caucasians, ∼ 10% in Africans) predisposes to hypertension, stroke, obesity and type 2 diabetes. Future studies will be required to define the role of mTORC2 in the regulation of further SGK1 sensitive transport proteins, such as further ion channels, carriers and the Na(+)/K(+)-ATPase. Moreover, studies are required disclosing the impact of mTORC2 on SGK1 sensitive disorders, such as hypertension, obesity, diabetes, thrombosis, stroke, inflammation, autoimmune disease, fibrosis and tumour growth.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Regulación de la Expresión Génica , Proteínas Inmediatas-Precoces/genética , Riñón/metabolismo , Complejos Multiproteicos/genética , Nefronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Serina-Treonina Quinasas TOR/genética , Regulación hacia Arriba/genética , Animales , Humanos , Proteínas Inmediatas-Precoces/biosíntesis , Riñón/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/biosíntesis , Proteínas Nucleares , Proteínas Serina-Treonina Quinasas/biosíntesis , Serina-Treonina Quinasas TOR/biosíntesis
8.
Biochem Biophys Res Commun ; 464(1): 38-44, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26032502

RESUMEN

ASIC and ENaC are co-expressed in various cell types, and there is evidence for a close association between them. Here, we used atomic force microscopy (AFM) to determine whether ASIC1a and ENaC subunits are able to form cross-clade hybrid ion channels. ASIC1a and ENaC could be co-isolated from detergent extracts of tsA 201 cells co-expressing the two subunits. Isolated proteins were incubated with antibodies against ENaC and Fab fragments against ASIC1a. AFM imaging revealed proteins that were decorated by both an antibody and a Fab fragment with an angle of ∼120° between them, indicating the formation of ASIC1a/ENaC heterotrimers.


Asunto(s)
Canales Iónicos Sensibles al Ácido/química , Canales Epiteliales de Sodio/química , Epítopos/química , Proteínas Recombinantes de Fusión/química , Canales Iónicos Sensibles al Ácido/genética , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Anticuerpos/química , Células CHO , Línea Celular Transformada , Cricetulus , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Epítopos/metabolismo , Expresión Génica , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Técnicas de Placa-Clamp , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
9.
Physiol Rep ; 2(3): e00269, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24760523

RESUMEN

Abstract Alveolar fluid clearance is driven by vectorial Na(+) transport and promotes postnatal lung adaptation. The effect of insulin on alveolar epithelial Na(+) transport was studied in isolated alveolar cells from 18-19-day gestational age rat fetuses. Equivalent short-circuit currents (ISC) were measured in Ussing chambers and different kinase inhibitors were used to determine the pathway of insulin stimulation. In Western Blot measurements the activation of mediators stimulated by insulin was analyzed. The ISC showed a fast dose-dependent increase by insulin, which could be attributed to an increased ENaC (epithelial Na(+) channel) activity in experiments with permeabilized apical or basolateral membrane. 5-(N-Ethyl-N-isopropyl)amiloride inhibition of ISC was not affected, however, benzamil-sensitive ISC was increased in insulin-stimulated monolayers. The application of LY-294002 and Akti1/2 both completely blocked the stimulating effect of insulin on ISC. PP242 partly blocked the effect of insulin, whereas Rapamycin evoked no inhibition. Western Blot measurements revealed an increased phosphorylation of AKT after insulin stimulation. SGK1 activity was also increased by insulin as shown by Western Blot of pNDRG1. However, in Ussing chamber measurements, GSK650394, an inhibitor of SGK1 did not prevent the increase in ISC induced by insulin. The application of IGF-1 mimicked the effect of insulin and increased the ENaC activity. In addition, an increased autophosphorylation of the IGF-1R/IR was observed after insulin stimulation. We conclude that insulin rapidly increases epithelial Na(+) transport by enhancing the activity of endogenous ENaC through activation of PI3K/AKT in alveolar cells.

10.
Am J Kidney Dis ; 62(6): 1188-92, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23891358

RESUMEN

Hyponatremia associated with diuretic use can be clinically difficult to differentiate from the syndrome of inappropriate antidiuretic hormone secretion (SIADH). We report a case of a 28-year-old man with HIV (human immunodeficiency virus) and Pneumocystis pneumonia who developed hyponatremia while receiving trimethoprim-sulfamethoxazole (TMP/SMX). Serum sodium level on admission was 135 mEq/L (with a history of hyponatremia) and decreased to 117 mEq/L by day 7 of TMP/SMX treatment. In the setting of suspected euvolemia and Pneumocystis pneumonia, he was treated initially for SIADH with fluid restriction and tolvaptan without improvement in serum sodium level. A diagnosis of hyponatremia secondary to the diuretic effect of TMP subsequently was confirmed, with clinical hypovolemia and high renin, aldosterone, and urinary sodium levels. Subsequent therapy with sodium chloride stabilized serum sodium levels in the 126- to 129-mEq/L range. After discontinuation of TMP/SMX treatment, serum sodium, renin, and aldosterone levels normalized. TMP/SMX-related hyponatremia likely is underdiagnosed and often mistaken for SIADH. It should be considered for patients on high-dose TMP/SMX treatment and can be differentiated from SIADH by clinical hypovolemia (confirmed by high renin and aldosterone levels). TMP-associated hyponatremia can be treated with sodium supplementation to offset ongoing urinary losses if the TMP/SMX therapy cannot be discontinued. In this Acid-Base and Electrolyte Teaching Case, a less common cause of hyponatremia is presented, and a stepwise approach to the diagnosis is illustrated.


Asunto(s)
Infecciones Oportunistas Relacionadas con el SIDA/tratamiento farmacológico , Antiinfecciosos/efectos adversos , Hiponatremia/inducido químicamente , Neumonía por Pneumocystis/tratamiento farmacológico , Trimetoprim/efectos adversos , Adulto , Antiinfecciosos/uso terapéutico , Diagnóstico Diferencial , Humanos , Hiponatremia/diagnóstico , Hiponatremia/tratamiento farmacológico , Síndrome de Secreción Inadecuada de ADH/diagnóstico , Masculino , Cloruro de Sodio Dietético/administración & dosificación , Trimetoprim/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...