Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Extracell Biol ; 2(5): e88, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-38938276

RESUMEN

Small extracellular vesicles (sEV) purified from blood have great potential clinically as biomarkers for systemic disease; however interpretation is complicated by release of sEV ex vivo after blood taking. To quantify the problem and devise ways to minimise it, we characterised sEV in paired serum, plasma and platelet poor plasma (PPP) samples from healthy donors. Immunoblotting showed twofold greater abundance of CD9 in sEV fractions from fresh serum than from fresh plasma or PPP. MACSPlex confirmed this, and showed that proteins expressed on platelet sEV, either exclusively (CD41b, CD42a and CD62P) or more widely (HLA-ABC, CD24, CD29 and CD31) were also twofold more abundant; by contrast non-platelet proteins (including CD81) were no different. Storage of plasma (but not serum) increased abundance of platelet and selected leukocyte sEV proteins to at least that of serum, and this could be recapitulated by activating cells in fresh plasma by Ca2+, an effect abrogated in PPP. This suggests that a substantial proportion of sEV in serum and stored plasma were generated ex vivo, which is not the case for fresh plasma or PPP. Thus we provide strategies to minimise ex vivo sEV generation and criteria for identifying those that were present in vivo.

2.
Cell Transplant ; 27(11): 1692-1704, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30261751

RESUMEN

Adoptive transfer of alloantigen-specific immunomodulatory cells generated ex vivo with anti-CD80/CD86 mAbs (2D10.4/IT2.2) holds promise for operational tolerance after transplantation. However, good manufacturing practice is required to allow widespread clinical application. Belatacept, a clinically approved cytotoxic T-lymphocyte antigen 4-immunoglobulin that also binds CD80/CD86, could be an alternative agent for 2D10.4/IT2.2. With the goal of generating an optimal cell treatment with clinically approved reagents, we evaluated the donor-specific immunomodulatory effects of belatacept- and 2D10.4/IT2.2-generated immunomodulatory cells. Immunomodulatory cells were generated by coculturing responder human peripheral blood mononuclear cells (PBMCs) (50 × 106 cells) with irradiated donor PBMCs (20 × 106 cells) from eight human leukocyte antigen-mismatched responder-donor pairs in the presence of either 2D10.4/IT2.2 (3 µg/106 cells) or belatacept (40 µg/106 cells). After 14 days of coculture, the frequencies of CD4+ T cells, CD8+ T cells, and natural killer cells as well as interferon gamma (IFN-γ) production in the 2D10.4/IT2.2- and belatacept-treated groups were lower than those in the control group. The percentage of CD19+ B cells was higher in the 2D10.4/IT2.2- and belatacept-treated groups than in the control group. The frequency of CD4+CD25+CD127lowFOXP3+ T cells increased from 4.1±1.0% (preculture) to 7.1±2.6% and 7.3±2.6% (day 14) in the 2D10.4/IT2.2- and belatacept-treated groups, respectively (p<0.05). Concurrently, delta-2 FOXP3 mRNA expression increased significantly. Compared with cells derived from the no-antibody treated control group, cells generated from both the 2D10.4/IT2.2- and belatacept-treated groups produced lower IFN-γ and higher interleukin-10 levels in response to donor-antigens, as detected by enzyme-linked immunospot. Most importantly, 2D10.4/IT2.2- and belatacept-generated cells effectively impeded the proliferative responses of freshly isolated responder PBMCs against donor-antigens. Our results indicate that belatacept-generated donor-specific immunomodulatory cells possess comparable phenotypes and immunomodulatory efficacies to those generated with 2D10.4/IT2.2. We suggest that belatacept could be used for ex vivo generation of clinical grade alloantigen-specific immunomodulatory cells for tolerance induction after transplantation.

3.
Methods Mol Biol ; 1585: 59-71, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28477187

RESUMEN

In vitro polarization of naïve CD4+ T cells toward distinct T helper lineages is crucial for establishing the factors and features that determine the differentiation, stability, and effector function for each T helper subsets. In this regard, the recently defined Th9 subset has been reported with two essential cytokines requirement for their generation. Generating Th9 cells in vitro from naïve CD4+ T cells requires the combination of TGF-ß and IL-4. However, the amount of IL-9 producing under these minimal conditions is often small. The intent of this chapter is to provide examples to increase the generation of IL-9 producing T cells in vitro by modulating TCR strength and co-stimulation through the TNF family member TL1A. We hope that these methods to efficiently differentiate naïve CD4+ T cells toward IL-9 producing cells will facilitate understanding the differentiation and function of Th9 cells and their pathogenesis in various inflammatory and autoimmune diseases.


Asunto(s)
Interleucina-9/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Humanos , Interleucina-4/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
Methods Mol Biol ; 1371: 101-13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26530797

RESUMEN

CD4(+) T helper (Th) lymphocytes are essential elements of the complex cellular networks regulating the initiation, development, and termination of adaptive immune responses. Different independent and specialized subsets of Th cells can be distinguished based on their dedicated transcription factor and cytokine expression profiles. Th17 lymphocytes have been described about a decade ago as CD4(+) Th cells producing high quantity of IL-17A as a signature cytokine. Since their initial discovery, Th17 have drawn intense scrutiny for their dominant role in the pathogenesis of multiple autoimmune, infectious diseases and allergy. The influence of Th17 lymphocytes in cancer remains however ambiguous. The plethoric functions of Th17 may rely on the remarkable plasticity of these cells, endowed with the ability to trans-differentiate into other Th subpopulations depending on the environmental cytokine context. The possibility to generate Th17 ex vivo has facilitated the elucidation of the signals and transcription factors required for their differentiation and functions and has allowed for the evaluation of their functions following adoptive transfer in vivo. Several protocols have been developed to produce Th17 in vitro. The intent of this chapter is to provide examples of procedures for generating and expanding Th17 ex vivo.


Asunto(s)
Técnicas de Cultivo de Célula , Subgrupos de Linfocitos T/citología , Células Th17/citología , Animales , Separación Celular/métodos , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo/métodos , Humanos , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Subgrupos de Linfocitos T/metabolismo , Células Th17/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...