Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612391

RESUMEN

C19 steroids and C22 steroids are vital intermediates for the synthesis of steroid drugs. Compared with C19 steroids, C22 steroids are more suitable for synthesizing progesterone and adrenocortical hormones, albeit less developed. 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one(9-OHBA), due to its substituents at positions C-9 and C-22, is a beneficial and innovative steroid derivative for synthesizing corticosteroids. We focused on the C22 pathway in Mycobacterium fortuitum ATCC 35855, aiming to develop a productive strain that produces 9-OHBA. We used a mutant strain, MFΔkstD, that knocked out kstds from Mycobacterium fortuitum ATCC 35855 named MFKD in this study as the original strain. Hsd4A and FadA5 are key enzymes in controlling the C19 metabolic pathway of steroids in Mycobacterium fortuitum ATCC 35855. After knocking out hsd4A, MFKDΔhsd4A accumulated 81.47% 9-OHBA compared with 4.13% 9-OHBA in the strain MFKD. The double mutant MFKDΔhsd4AΔfadA5 further improved the selectivity of 9-OHBA to 95.13%, and 9α-hydroxy-4-androstenedione (9-OHAD) decreased to 0.90% from 4.19%. In the end, we obtained 6.81 g/L 9-OHBA from 10 g/L phytosterols with a molar yield of 80.33%, which showed the best performance compared with formerly reported strains.


Asunto(s)
Mycobacterium fortuitum , Fitosteroles , Mycobacterium fortuitum/genética , Androstenodiona , Diente Molar , Progesterona
2.
Sheng Wu Gong Cheng Xue Bao ; 39(11): 4550-4562, 2023 Nov 25.
Artículo en Chino | MEDLINE | ID: mdl-38013183

RESUMEN

Mycobacterium neoaurum has the ability to produce steroidal intermediates known as 22-hydroxy-23, 24-bisnorchol-4-en-3-one (BA) upon the knockout of the genes for either the hydroxyacyl-CoA dehydrogenase (Hsd4A) or acyl-CoA thiolase (FadA5). In a previous study, we discovered a novel metabolite in the fermentation products when the fadA5 gene was deleted. This research aims to elucidate the metabolic pathway of this metabolite through structural identification, homologous sequence analysis of the fadA5 gene, phylogenetic tree analysis of M. neoaurum HGMS2, and gene knockout. Our findings revealed that the metabolite is a C23 metabolic intermediate, named 24-norchol-4-ene-3, 22-dione (designated as 3-OPD). It is formed when a thioesterase (TE) catalyzes the formation of a ß-ketonic acid by removing CoA from the side chain of 3, 22-dioxo-25, 26-bisnorchol-4-ene-24-oyl CoA (22-O-BNC-CoA), followed by spontaneously undergoing decarboxylation. These results have the potential to contribute to the development of novel steroid intermediates.


Asunto(s)
Mycobacterium , Mycobacterium/genética , Mycobacterium/metabolismo , Filogenia , Esteroides/metabolismo , Redes y Vías Metabólicas , Esteroles/metabolismo
3.
Methods Mol Biol ; 2704: 291-312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37642852

RESUMEN

Engineered mutants of Mycolicibacterium spp. are known producers of valuable steroid synthons with C19 or C22 skeleton. Here we describe a method for site-directed mutagenesis of Mycolicibacterium neoaurum strains, bioconversion from phytosterol, and selective purification of C23 steroid 24-norchol-4-ene-3,22-dione (24-NCED) and C22 steroid 20-hydroxymethylpregn-4-ene-3-one (20-HMP). The yields of crystalline products with 95% purity by the method here described are 2.74 ± 0.085 g for 24-NCED and 1.42 ± 0.085 g for 20-HMP from 10 g/L phytosterol. 20-HMP is recognized as the key precursor in chemical syntheses of pharmaceutical corticosteroids and 24-NCED is a promising synthon for the synthesis of valuable steroids and own potent biological activity.


Asunto(s)
Mycobacteriaceae , Fitosteroles , Mutagénesis Sitio-Dirigida , Radiofármacos
4.
Microb Cell Fact ; 20(1): 229, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34949197

RESUMEN

BACKGROUND: Steroid drugs are essential for disease prevention and clinical treatment. However, due to intricated steroid structure, traditional chemical methods are rarely implemented into the whole synthetic process for generating steroid intermediates. Novel steroid drug precursors and their ideal bacterial strains for industrial production have yet to be developed. Among these, 9,21-dihydroxy-20-methyl-pregna-4-en-3-one (9-OH-4-HP) is a novel steroid drug precursor, suitable for the synthesis of corticosteroids. In this study, a combined strategy of blocking Δ1-dehydrogenation and the C19 pathway as well as improving the intracellular environment was investigated to construct an effective 9-OH-4-HP-producing strain. RESULTS: The Δ1-dehydrogenation-deficient strain of wild-type Mycobacterium neoaurum DSM 44074 produces 9-OH-4-HP with a molar yield of 4.8%. Hsd4A, encoding a ß-hydroxyacyl-CoA dehydrogenase, and fadA5, encoding an acyl-CoA thiolase, were separately knocked out to block the C19 pathway in the Δ1-dehydrogenation-deficient strain. The two engineered strains were able to accumulate 0.59 g L-1 and 0.47 g L-1 9-OH-4-HP from 1 g L-1 phytosterols, respectively. Furthermore, hsd4A and fadA5 were knocked out simultaneously in the Δ1-dehydrogenation-deficient strain. The 9-OH-4-HP production from the Hsd4A and FadA5 deficient strain was 11.9% higher than that of the Hsd4A deficient strain and 40.4% higher than that of the strain with FadA5 deficiency strain, respectively. The purity of 9-OH-4-HP obtained from the Hsd4A and FadA5 deficient strain has reached 94.9%. Subsequently, the catalase katE from Mycobacterium neoaurum and an NADH oxidase, nox, from Bacillus subtilis were overexpressed to improve the intracellular environment, leading to a higher 9-OH-4-HP production. Ultimately, 9-OH-4-HP production reached 3.58 g L-1 from 5 g L-1 phytosterols, and the purity of 9-OH-4-HP improved to 97%. The final 9-OH-4-HP production strain showed the best molar yield of 85.5%, compared with the previous reported strain with 30% molar yield of 9-OH-4-HP. CONCLUSION: KstD, Hsd4A, and FadA5 are key enzymes for phytosterol side-chain degradation in the C19 pathway. Double deletion of hsd4A and fadA5 contributes to the blockage of the C19 pathway. Improving the intracellular environment of Mycobacterium neoaurum during phytosterol bioconversion could accelerate the conversion process and enhance the productivity of target sterol derivatives.


Asunto(s)
Redes y Vías Metabólicas , Mycobacteriaceae/genética , Mycobacteriaceae/metabolismo , Fitosteroles/metabolismo , Profármacos/metabolismo , Esteroides/metabolismo , Proteínas Bacterianas/genética , Coenzima A Transferasas/genética , Edición Génica , Técnicas de Inactivación de Genes , Genoma Bacteriano , Hidroliasas/genética , Oxidorreductasas/genética
5.
J Mol Graph Model ; 105: 107900, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33780786

RESUMEN

A group of bioactive compounds known as triterpenoids, which are often found in plant materials, have been tested to possess nutritional and pharmaceutical activity. These plant components are referred to as nutraceuticals, and are used as therapeutic agents. In this study, we explore the interactions of betulinic acid (BA), oleanolic acid (OA), ursolic acid (UA), and maslinic acid (MA) against FadA5. Studies have identified FadA5, a trifunctional enzyme-like thiolase, as a target towards Mycobacterium tuberculosis inhibition. The investigation involves molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) applications. Analyses of the four pentacyclic triterpenoids binding to FadA5 showed appreciable bioactivity against FadA5. The application of two or more theoretical models to unravel ligand-enzyme binding energies can pave the way for accurate binding affinity prediction and validation.


Asunto(s)
Mycobacterium tuberculosis , Ácido Oleanólico , Triterpenos , Antibacterianos , Simulación de Dinámica Molecular , Ácido Oleanólico/farmacología , Triterpenos/farmacología
6.
Bioinformation ; 14(6): 327-336, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30237678

RESUMEN

By-products of fatty acid degradation are extensively utilized by Mycobacterium tuberculosis (Mtb) for lipid synthesis and energy production during the infection phase. Cholesterol from host is scavenged by Mtb to fulfill its metabolic requirements, evade host immunity and invade macrophages. Blocking cholesterol catabolic pathways leads to bacteriostasis. FadA5 (Acetyl-CoA acetyltransferase), a thiolase encoded by fadA5 (Rv3546) gene in Mtb, plays a crucial role in cholesterol aliphatic chain degradation. Hence, FadA5 is a potential target for designing antitubercular inhibitors. In this study, 60,284 anti-tuberculosis (bioactive) compounds from ChEMBL database and analogous library from ZINC database of commercially available compounds have been screened against FadA5 active site to identify compounds having inhibitory potential against both the apo (state I) and the intermediate (state II) states of FadA5. Altogether, this study reports 7 potential inhibitors against two functional states of FadA5, which can be further taken for invitro studies.

7.
Microb Cell Fact ; 16(1): 89, 2017 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-28532497

RESUMEN

BACKGROUND: The strategy of modifying the sterol catabolism pathway in mycobacteria has been adopted to produce steroidal pharmaceutical intermediates, such as 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), which is used to synthesize various steroids in the industry. However, the productivity is not desirable due to some inherent problems, including the unsatisfactory uptake rate and the low metabolic efficiency of sterols. The compact cell envelope of mycobacteria is a main barrier for the uptake of sterols. In this study, a combined strategy of improving the cell envelope permeability as well as the intracellular sterol metabolism efficiency was investigated to increase the productivity of 4-HBC. RESULTS: MmpL3, encoding a transmembrane transporter of trehalose monomycolate, is an important gene influencing the assembly of mycobacterial cell envelope. The disruption of mmpL3 in Mycobacterium neoaurum ATCC 25795 significantly enhanced the cell permeability by 23.4% and the consumption capacity of sterols by 15.6%. Therefore, the inactivation of mmpL3 was performed in a 4-HBC-producing strain derived from the wild type M. neoaurum and the 4-HBC production in the engineered strain was increased by 24.7%. Subsequently, to enhance the metabolic efficiency of sterols, four key genes, choM1, choM2, cyp125, and fadA5, involved in the sterol conversion pathway were individually overexpressed in the engineered mmpL3-deficient strain. The production of 4-HBC displayed the increases of 18.5, 8.9, 14.5, and 12.1%, respectively. Then, the more efficient genes (choM1, cyp125, and fadA5) were co-overexpressed in the engineered mmpL3-deficient strain, and the productivity of 4-HBC was ultimately increased by 20.3% (0.0633 g/L/h, 7.59 g/L 4-HBC from 20 g/L phytosterol) compared with its original productivity (0.0526 g/L/h, 6.31 g/L 4-HBC from 20 g/L phytosterol) in an industrial resting cell bio-transformation system. CONCLUSIONS: Increasing cell permeability combined with the co-overexpression of the key genes (cyp125, choM1, and fadA5) involved in the conversion pathway of sterol to 4-HBC was effective to enhance the productivity of 4-HBC. The strategy might also be useful for the conversion of sterol to other steroidal intermediates by mycobacteria.


Asunto(s)
Colestenonas/metabolismo , Genes Bacterianos , Mycobacterium/genética , Mycobacterium/metabolismo , Esteroles/química , Esteroles/metabolismo , Permeabilidad de la Membrana Celular , Redes y Vías Metabólicas
8.
J Biomol Struct Dyn ; 35(12): 2654-2664, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28278765

RESUMEN

Buddleja saligna (family Buddlejaceae) is a medicinal plant endemic to South Africa. Two isomeric pentacyclic triterpenes, oleanolic acid and ursolic acid, were isolated from the leaves of B. saligna using silica gel column chromatography. Compounds oleanolic acid and ursolic acid were subjected to derivatization with acetic anhydride in the presence of pyridine to obtain oleanolic acid-3-acetate and ursolic acid-3-acetate, respectively. The structures of these compounds were fully characterized by detailed nuclear magnetic resonance (NMR) investigations, which included 1H and 13C NMR. Molecular docking studies predicted the free binding energy of the four triterpenes inside the steroid binding pocket of Mycobacterium tuberculosis fadA5 thiolase compared to a reported inhibitor. Thus, their ability to inhibit the growth of M. tuberculosis was predicted and was confirmed to possess significant antimycobacterial activity when tested against Mycobacterium smegmatis, M. tuberculosis H37Rv (ATCC 25177), clinical isolates of multi-drug-resistant M. tuberculosis (MDR-TB) and extensively drug-resistant M. tuberculosis (XDR-TB) using the Micro Alamar Blue Assay. Ursolic acid was isolated from this plant for the first time.


Asunto(s)
Antituberculosos/farmacología , Buddleja/química , Simulación de Dinámica Molecular , Mycobacterium/efectos de los fármacos , Triterpenos Pentacíclicos/farmacología , Extractos Vegetales/farmacología , Antituberculosos/aislamiento & purificación , Simulación del Acoplamiento Molecular , Mycobacterium/clasificación , Mycobacterium/crecimiento & desarrollo , Ácido Oleanólico/química , Triterpenos Pentacíclicos/química , Hojas de la Planta/química , Plantas Medicinales/química , Triterpenos/química , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Ácido Ursólico
9.
Tuberculosis (Edinb) ; 94(4): 405-12, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24825023

RESUMEN

Thiolases are enzymes involved in lipid metabolism. Thiolases remove the acetyl-CoA moiety from 3-ketoacyl-CoAs in the degradative reaction. They can also catalyze the reverse Claisen condensation reaction, which is the first step of biosynthetic processes such as the biosynthesis of sterols and ketone bodies. In human, six distinct thiolases have been identified. Each of these thiolases is different from the other with respect to sequence, oligomeric state, substrate specificity and subcellular localization. Four sequence fingerprints, identifying catalytic loops of thiolases, have been described. In this study genome searches of two mycobacterial species (Mycobacterium tuberculosis and Mycobacterium smegmatis), were carried out, using the six human thiolase sequences as queries. Eight and thirteen different thiolase sequences were identified in M. tuberculosis and M. smegmatis, respectively. In addition, thiolase-like proteins (one encoded in the Mtb and two in the Msm genome) were found. The purpose of this study is to classify these mostly uncharacterized thiolases and thiolase-like proteins. Several other sequences obtained by searches of genome databases of bacteria, mammals and the parasitic protist family of the Trypanosomatidae were included in the analysis. Thiolase-like proteins were also found in the trypanosomatid genomes, but not in those of mammals. In order to study the phylogenetic relationships at a high confidence level, additional thiolase sequences were included such that a total of 130 thiolases and thiolase-like protein sequences were used for the multiple sequence alignment. The resulting phylogenetic tree identifies 12 classes of sequences, each possessing a characteristic set of sequence fingerprints for the catalytic loops. From this analysis it is now possible to assign the mycobacterial thiolases to corresponding homologues in other kingdoms of life. The results of this bioinformatics analysis also show interesting differences between the distributions of M. tuberculosis and M. smegmatis thiolases over the 12 different classes.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/clasificación , Proteínas Bacterianas/clasificación , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Proteínas Bacterianas/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Genoma Bacteriano , Humanos , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Filogenia , Alineación de Secuencia/métodos
10.
J Steroid Biochem Mol Biol ; 138: 41-53, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23474435

RESUMEN

A comparative genome analysis of Mycobacterium spp. VKM Ac-1815D, 1816D and 1817D strains used for efficient production of key steroid intermediates (androst-4-ene-3,17-dione, AD, androsta-1,4-diene-3,17-dione, ADD, 9α-hydroxy androst-4-ene-3,17-dione, 9-OH-AD) from phytosterol has been carried out by deep sequencing. The assembled contig sequences were analyzed for the presence putative genes of steroid catabolism pathways. Since 3-ketosteroid-9α-hydroxylases (KSH) and 3-ketosteroid-Δ(1)-dehydrogenase (Δ(1) KSTD) play key role in steroid core oxidation, special attention was paid to the genes encoding these enzymes. At least three genes of Δ(1) KSTD (kstD), five genes of KSH subunit A (kshA), and one gene of KSH subunit B of 3-ketosteroid-9α-hydroxylases (kshB) have been found in Mycobacterium sp. VKM Ac-1817D. Strains of Mycobacterium spp. VKM Ac-1815D and 1816D were found to possess at least one kstD, one kshB and two kshA genes. The assembled genome sequence of Mycobacterium sp. VKM Ac-1817D differs from those of 1815D and 1816D strains, whereas these last two are nearly identical, differing by 13 single nucleotide substitutions (SNPs). One of these SNPs is located in the coding region of a kstD gene and corresponds to an amino acid substitution Lys (135) in 1816D for Ser (135) in 1815D. The findings may be useful for targeted genetic engineering of the biocatalysts for biotechnological application.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium/enzimología , Mycobacterium/metabolismo , Androstadienos/metabolismo , Androstenodiona/análogos & derivados , Androstenodiona/metabolismo , Proteínas Bacterianas/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Mycobacterium/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fitosteroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...