Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Intervalo de año de publicación
1.
Sci Rep ; 14(1): 22052, 2024 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333737

RESUMEN

Malaria remains a global health problem, and the standard membrane feeding assay (SMFA) is a key functional assay for development of new interventions to stop malaria transmission from human to mosquito. For SMFA, media with ~ 10% of human serum has been used for infectious gametocyte cultures, however, there are multiple challenges to obtain a suitable human serum. Here we show a human-serum-free culture medium (HSF), which was a mixture of two stem cell culture media and AlbuMAX, supported infectious gametocyte growth. Moreover, the HSF-induced gametocytes elicited significantly higher numbers of oocysts compared to gametocytes cultured with conventional human serum medium (Conv). While some caution is required when comparing percent transmission reducing activity data generated from HSF-SMFA and Conv-SMFA, the HSF method can facilitate the establishment of gametocyte cultures or SMFA by bypassing the need for human serum. Thus, this study will support future development of P. falciparum transmission-blocking interventions.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/fisiología , Humanos , Medio de Cultivo Libre de Suero/farmacología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Animales , Medios de Cultivo/química , Oocistos/crecimiento & desarrollo , Oocistos/efectos de los fármacos , Suero
2.
Antimicrob Agents Chemother ; 68(9): e0085324, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39058023

RESUMEN

Plasmodium vivax is now the main cause of malaria outside Africa. The gametocytocidal effects of antimalarial drugs are important to reduce malaria transmissibility, particularly in low-transmission settings, but they are not well characterized for P. vivax. The transmission-blocking effects of chloroquine, artesunate, and methylene blue on P. vivax gametocytes were assessed. Blood specimens were collected from patients presenting with vivax malaria, incubated with or without the tested drugs, and then fed to mosquitos from a laboratory-adapted colony of Anopheles dirus (a major malaria vector in Southeast Asia). The effects on oocyst and sporozoite development were analyzed under a multi-level Bayesian model accounting for assay variability and the heterogeneity of mosquito Plasmodium infection. Artesunate and methylene blue, but not chloroquine, exhibited potent transmission-blocking effects. Gametocyte exposures to artesunate and methylene blue reduced the mean oocyst count 469-fold (95% CI: 345 to 650) and 1,438-fold (95% CI: 970 to 2,064), respectively. The corresponding estimates for the sporozoite stage were a 148-fold reduction (95% CI: 61 to 470) and a 536-fold reduction (95% CI: 246 to 1,311) in the mean counts, respectively. In contrast, high chloroquine exposures reduced the mean oocyst count only 1.40-fold (95% CI: 1.20 to 1.64) and the mean sporozoite count 1.34-fold (95% CI: 1.12 to 1.66). This suggests that patients with vivax malaria often remain infectious to anopheline mosquitos after treatment with chloroquine. Use of artemisinin combination therapies or immediate initiation of primaquine radical cure should reduce the transmissibility of P. vivax infections.


Asunto(s)
Anopheles , Antimaláricos , Artesunato , Cloroquina , Malaria Vivax , Azul de Metileno , Plasmodium vivax , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Artesunato/farmacología , Artesunato/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Plasmodium vivax/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Malaria Vivax/transmisión , Animales , Humanos , Anopheles/parasitología , Anopheles/efectos de los fármacos , Esporozoítos/efectos de los fármacos , Artemisininas/farmacología , Artemisininas/uso terapéutico , Oocistos/efectos de los fármacos
3.
Int J Infect Dis ; 143: 107010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38490637

RESUMEN

OBJECTIVE: A 15-month longitudinal study was conducted to determine the duration and infectivity of asymptomatic qPCR-detected Plasmodium falciparum and Plasmodium vivax infections in Ethiopia. METHOD: Total parasite and gametocyte kinetics were determined by molecular methods; infectivity to Anopheles arabiensis mosquitoes by repeated membrane feeding assays. Infectivity results were contrasted with passively recruited symptomatic malaria cases. RESULTS: For P. falciparum and P. vivax infections detected at enrolment, median durations of infection were 37 days (95% confidence interval [CI], 15-93) and 60 days (95% CI, 18-213), respectively. P. falciparum and P. vivax parasite densities declined over the course of infections. From 47 feeding assays on 22 asymptomatic P. falciparum infections, 6.4% (3/47) were infectious and these infected 1.8% (29/1579) of mosquitoes. No transmission was observed in feeding assays on asymptomatic P. vivax mono-infections (0/56); one mixed-species infection was highly infectious. Among the symptomatic cases, 4.3% (2/47) of P. falciparum and 73.3% (53/86) of P. vivax patients were infectious to mosquitoes. CONCLUSION: The majority of asymptomatic infections were of short duration and low parasite density. Only a minority of asymptomatic individuals were infectious to mosquitoes. This contrasts with earlier findings and is plausibly due to the low parasite densities in this population.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria Vivax , Plasmodium falciparum , Plasmodium vivax , Etiopía/epidemiología , Malaria Vivax/transmisión , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Humanos , Estudios Longitudinales , Malaria Falciparum/transmisión , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Animales , Plasmodium vivax/aislamiento & purificación , Plasmodium vivax/fisiología , Plasmodium falciparum/aislamiento & purificación , Anopheles/parasitología , Masculino , Femenino , Adulto , Adolescente , Niño , Adulto Joven , Preescolar , Infecciones Asintomáticas/epidemiología , Mosquitos Vectores/parasitología , Persona de Mediana Edad
4.
J Infect Dis ; 229(6): 1894-1903, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38408353

RESUMEN

BACKGROUND: Plasmodium falciparum and Plasmodium vivax account for >90% global malaria burden. Transmission intervention strategies encompassing transmission-blocking vaccines (TBV) and drugs represent ideal public health tools to eliminate malaria at the population level. The availability of mature P. falciparum gametocytes through in vitro culture has facilitated development of a standard membrane feeding assay to assess efficacy of transmission interventions against P. falciparum. The lack of in vitro culture for P. vivax has significantly hampered similar progress on P. vivax and limited studies have been possible using blood from infected patients in endemic areas. The ethical and logistical limitations of on-time access to blood from patients have impeded the development of P. vivax TBVs. METHODS: Transgenic murine malaria parasites (Plasmodium berghei) expressing TBV candidates offer a promising alternative for evaluation of P. vivax TBVs through in vivo studies in mice, and ex vivo membrane feeding assay (MFA). RESULTS: We describe the development of transmission-competent transgenic TgPbvs25 parasites and optimization of parameters to establish an ex vivo MFA to evaluate P. vivax TBV based on Pvs25 antigen. CONCLUSIONS: The MFA is expected to expedite Pvs25-based TBV development without dependence on blood from P. vivax-infected patients in endemic areas for evaluation.


Asunto(s)
Vacunas contra la Malaria , Malaria Vivax , Plasmodium berghei , Plasmodium vivax , Animales , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/genética , Plasmodium vivax/genética , Plasmodium vivax/inmunología , Malaria Vivax/transmisión , Malaria Vivax/prevención & control , Malaria Vivax/parasitología , Plasmodium berghei/genética , Plasmodium berghei/inmunología , Ratones , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/genética , Humanos , Femenino , Antígenos de Superficie
5.
Front Cell Infect Microbiol ; 13: 1146030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305421

RESUMEN

Some parasitic diseases, such as malaria, require two hosts to complete their lifecycle: a human and an insect vector. Although most malaria research has focused on parasite development in the human host, the life cycle within the vector is critical for the propagation of the disease. The mosquito stage of the Plasmodium lifecycle represents a major demographic bottleneck, crucial for transmission blocking strategies. Furthermore, it is in the vector, where sexual recombination occurs generating "de novo" genetic diversity, which can favor the spread of drug resistance and hinder effective vaccine development. However, understanding of vector-parasite interactions is hampered by the lack of experimental systems that mimic the natural environment while allowing to control and standardize the complexity of the interactions. The breakthrough in stem cell technologies has provided new insights into human-pathogen interactions, but these advances have not been translated into insect models. Here, we review in vivo and in vitro systems that have been used so far to study malaria in the mosquito. We also highlight the relevance of single-cell technologies to progress understanding of these interactions with higher resolution and depth. Finally, we emphasize the necessity to develop robust and accessible ex vivo systems (tissues and organs) to enable investigation of the molecular mechanisms of parasite-vector interactions providing new targets for malaria control.


Asunto(s)
Culicidae , Malaria , Humanos , Animales , Mosquitos Vectores , Ambiente , Tecnología
6.
Malar J ; 22(1): 136, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098534

RESUMEN

BACKGROUND: Measuring risk of malaria transmission is complex, especially in case of Plasmodium vivax. This may be overcome using membrane feeding assays in the field where P. vivax is endemic. However, mosquito-feeding assays are affected by a number of human, parasite and mosquito factors. Here, this study identified the contributions of Duffy blood group status of P. vivax-infected patients as a risk of parasite transmission to mosquitoes. METHODS: A membrane feeding assay was conducted on a total of 44 conveniently recruited P. vivax infected patients in Adama city and its surroundings in East Shewa Zone, Oromia region, Ethiopia from October, 2019 to January, 2021. The assay was performed in Adama City administration. Mosquito infection rates were determined by midgut dissections at seven to 8 days post-infection. Duffy genotyping was defined for each of the 44 P. vivax infected patients. RESULTS: The infection rate of Anopheles mosquitoes was 32.6% (296/907) with 77.3% proportion of infectious participants (34/44). Infectiousness of participants to Anopheles mosquitoes appeared to be higher among individuals with homozygous Duffy positive blood group (TCT/TCT) than heterozygous (TCT/CCT), but the difference was not statistically significant. The mean oocyst density was significantly higher among mosquitoes fed on blood of participants with FY*B/FY*BES than other genotypes (P = 0.001). CONCLUSION: Duffy antigen polymorphisms appears to contribute to transmissibility difference of P. vivax gametocytes to Anopheles mosquitoes, but further studies are required.


Asunto(s)
Anopheles , Antígenos de Grupos Sanguíneos , Malaria Vivax , Animales , Humanos , Plasmodium vivax/genética , Anopheles/parasitología , Malaria Vivax/epidemiología , Genotipo
7.
Am J Bot ; 110(6): e16165, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37071779

RESUMEN

PREMISE: Many flowering plants depend on insects for pollination and thus attract pollinators by offering rewards, mostly nectar and pollen. Bee pollinators rely on pollen as their main nutrient source. Pollen provides all essential micro- and macronutrients including substances that cannot be synthesized by bees themselves, such as sterols, which bees need for processes such as hormone production. Variations in sterol concentrations may consequently affect bee health and reproductive fitness. We therefore hypothesized that (1) these variations in pollen sterols affect longevity and reproduction in bumble bees and (2) can thus be perceived via the bees' antennae before consumption. METHODS: We studied the effect of sterols on longevity and reproduction of Bombus terrestris workers in feeding experiments and investigated sterol perception using chemotactile proboscis extension response (PER) conditioning. RESULTS: Workers could perceive several sterols (cholesterol, cholestenone, desmosterol, stigmasterol, ß-sitosterol) via their antennae but not differentiate between them. However, when sterols were presented in pollen, and not as a single compound, the bees were unable to differentiate between pollen differing in sterol content. Additionally, different sterol concentrations in pollen neither affected pollen consumption nor brood development or worker longevity. CONCLUSIONS: Since we used both natural concentrations and concentrations higher than those found in pollen, our results indicate that bumble bees may not need to pay specific attention to pollen sterol content beyond a specific threshold. Naturally encountered concentrations might fully support their sterol requirements and higher concentrations do not seem to have negative effects.


Asunto(s)
Fitosteroles , Abejas , Animales , Reproducción , Esteroles , Polen , Percepción
8.
Antimicrob Agents Chemother ; 66(12): e0100122, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36321830

RESUMEN

The discovery and development of transmission-blocking therapies challenge malaria elimination and necessitate standard and reproducible bioassays to measure the blocking properties of antimalarial drugs and candidate compounds. Most of the current bioassays evaluating the transmission-blocking activity of compounds rely on laboratory-adapted Plasmodium strains. Transmission-blocking data from clinical gametocyte isolates could help select novel transmission-blocking candidates for further development. Using freshly collected Plasmodium falciparum gametocytes from asymptomatic individuals, we first optimized ex vivo culture conditions to improve gametocyte viability and infectiousness by testing several culture parameters. We next pre-exposed ex vivo field-isolated gametocytes to chloroquine, dihydroartemisinin, primaquine, KDU691, GNF179, and oryzalin for 48 h prior to direct membrane feeding. We measured the activity of the drug on the ability of gametocytes to resume the sexual life cycle in Anopheles after drug exposure. Using 57 blood samples collected from Malian volunteers aged 6 to 15 years, we demonstrate that the infectivity of freshly collected field gametocytes can be preserved and improved ex vivo in a culture medium supplemented with 10% horse serum at 4% hematocrit for 48 h. Moreover, our optimized drug assay displays the weak transmission-blocking activity of chloroquine and dihydroartemisinin, while primaquine and oryzalin exhibited a transmission-blocking activity of ~50% at 1 µM. KDU691 and GNF179 both interrupted Plasmodium transmission at 1 µM and 5 nM, respectively. This new approach, if implemented, has the potential to accelerate the screening of compounds with transmission-blocking activity.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum , Primaquina , Malaria Falciparum/prevención & control , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico
9.
Parasit Vectors ; 15(1): 384, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271436

RESUMEN

BACKGROUND: Insecticide-based vector control interventions in combination with case management with artemisinin-based combination therapy has reduced malaria incidence and prevalence worldwide. Current control methods focus on the primary malaria vectors, Anopheles gambiae sensu lato (s.l.) and the An. funestus group; however, the impact of secondary and suspected vectors has been either sidelined or received limited attention. Defining the susceptibility of secondary, suspected vector species to different parasites in time and space is essential for efficient malaria control and elimination programs. The aim of this study was to assess the susceptibility of An. gambiae s.l., An. coustani complex and An. pharoensis to Plasmodium vivax and P. falciparum infection in Ethiopia. METHODS: Larvae of Anopheles spp. were collected from different aquatic habitats and reared to adults under laboratory conditions, with the temperature and humidity maintained at 27 ± 1 °C and 75 ± 5%, respectively. Adult female mosquitoes were identified to species as An. gambiae s.l., An. coustani complex and An. pharoensis. Females of these three Anopheles spp. were allowed to feed in parallel feeding assays on infected blood containing the same gametocytes isolated from P. falciparum and P. vivax gametocyte-positive patients by indirect membrane feeding assays. All blood-fed mosquitoes were held under laboratory conditions. After 7 days, all surviving mosquitoes were dissected to detect mid-gut oocyst and enumerated under a microscope. RESULTS: Of 5915 female Anopheles mosquitoes exposed to gametocyte-infected blood, 2106 (35.6%)s fed successfully in the 32 independent infection experiments. There was a significant variation in feeding rates among An. gambiae s.l., An. pharoensis and An. coustani complex (G-test = 48.43, P = 3.049e-11). All three exposed mosquito species were receptive to P. vivax and P. falciparum infection development. The percentage of infected mosquitoes following feeding on an infected blood meal was significantly different among species (G-test = 6.49, P = 0.03886). The median infection intensity (II) for An. coustani complex, An. gambiae s.l. and An. pharoensis was 1.16, 2.00 and 1.25, respectively. Although the proportion of infected mosquitoes significantly differed in terms of II, infection rate (IR) and mean oocyst density among the species, mean oocyst density and IR were highly correlated with gametocyte density in all tests (P < 0.001). CONCLUSION: Primary, secondary and suspected vectors were experimentally susceptible to both P. vivax and P. falciparum infection. An effective malaria elimination program might include surveillance and control tools which target secondary and suspected vectors that might play an outdoor transmission role, possibly resulting in reduced focal malaria transmission. Comparison of the three species' mean infection rates with standard deviation.


Asunto(s)
Anopheles , Artemisininas , Insecticidas , Malaria Falciparum , Malaria Vivax , Malaria , Animales , Humanos , Femenino , Plasmodium vivax , Plasmodium falciparum , Mosquitos Vectores/parasitología , Etiopía/epidemiología , Malaria Falciparum/parasitología , Anopheles/parasitología , Malaria Vivax/parasitología , Oocistos
10.
Microbiol Spectr ; 10(5): e0062822, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36066239

RESUMEN

The membrane feeding assay is widely used to evaluate the efficacy of transmission-blocking interventions (TBIs) and identify the reservoir of malaria. This study aimed to determine the infectivity of blood meals from symptomatic Plasmodium-infected patients to an Anopheles arabiensis colony in Ethiopia. A membrane feeding assay was conducted on a total of 63 Plasmodium falciparum- and/or Plasmodium vivax-infected clinical patients in East Shoa Zone, Ethiopia. Detection of P. falciparum and P. vivax in blood samples was done using microscopy. Mosquito infection rates were determined by dissection of mosquitoes' midguts, while mosquito infectiousness was observed by dissection of their salivary glands. The proportion of infectious symptomatic patients was 68.3% (43/63). Using the chi-square or Fisher's exact test, the oocyst infection levels were higher among patients infected with P. vivax, females, and rural residents. Nearly 57% (56.7%, 17/30) of assays produced sporozoites in the salivary glands of mosquitoes. Both oocyst and sporozoite infection rates had positive correlations with parasitemia and gametocytemia. High infectiousness of symptomatic patients was observed, with a greater proportion of infectious mosquitoes per assay. Demonstrating oocyst infection in the mosquitoes might confirm estimates of the infectiousness of mosquitoes, although some of the oocyst-infected mosquitoes failed to produce sporozoites. IMPORTANCE Malaria remains one of the most devastating infectious diseases globally, and transmission-blocking activities are needed. Plasmodium transmission from human to mosquitoes is poorly studied, particularly in endemic countries, and the membrane feeding assay allows it to be determined. In this study, we demonstrated human infectious reservoirs of malaria. Moreover, the effect of Plasmodium-infected patients on the infectiousness of mosquitoes was also observed. These findings are therefore important for designing future evaluation of transmission-blocking interventions that will support the malaria elimination program.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria Vivax , Malaria , Animales , Femenino , Humanos , Etiopía/epidemiología , Plasmodium vivax , Malaria Vivax/epidemiología , Plasmodium falciparum , Malaria Falciparum/epidemiología , Oocistos
11.
J Insect Physiol ; 139: 104382, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35318041

RESUMEN

Upon mating, females alter a multitude of physiological and morphological traits to accommodate the demands of reproduction. Changes not only include reproductive tissues but also non-reproductive tissues. For example, in Drosophila melanogaster the gut increases in circumference after mating, likely to facilitate a higher absorption and provision of macronutrients to maturing eggs. A male ejaculatory protein, the sex peptide, is instrumental to mediating several post-mating changes and receipt increases nutrient uptake as well as shifts taste preferences in mated females. We here tested whether sex peptide receipt also alters the protein: carbohydrate ratio at which females maximize their fitness. To test this, we mated females to males lacking sex peptide or control males and fed them with known volumes and concentrations of sugar and yeast. This enabled us to determine how the sugar to yeast ratio affects lifetime egg output as well as lifespan of females mated to the two male types. Sex peptide did not shift the optimal ratio. Instead, sex peptide receipt aided females in increasing their egg output at low macronutrient concentrations, but this advantage disappeared at higher macronutrient intake rates. Assuming that nutrient limitation might be common, then receipt of SP is beneficial under poor conditions.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Femenino , Masculino , Nutrientes , Óvulo/metabolismo , Péptidos/metabolismo , Reproducción/fisiología , Saccharomyces cerevisiae , Conducta Sexual Animal/fisiología , Azúcares/metabolismo
12.
Methods Mol Biol ; 2442: 475-515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320542

RESUMEN

Galectin-11 (LGALS-11) and galectin-14 (LGALS-14) are ruminant specific galectins, first reported in sheep. Although their roles in parasite immunity are still being elucidated, it appears that they influence protection against parasites. In gastrointestinal infections with the nematode Haemonchus contortus, both galectin-11 and galectin-14 appear to be protective. However, in a chronic infection of liver fluke, Fasciola hepatica, these galectins may aid parasite survival. To unravel the structural, functional, and ligand profile of galectin-11 and galectin-14, recombinant production of these proteins is vital. Here we present the recombinant production of soluble galectin-11 and galectin-14 from domestic sheep for in vitro and structural biology studies. These methods include parasite cultivation and infection, galectin staining of host and parasite tissue, surface staining of parasites with recombinant galectins, pull-down assays to identify endogenous galectin binding proteins, and in vitro assays to monitor the effect of galectins on parasite development.


Asunto(s)
Fasciola hepatica , Fascioliasis , Galectinas , Hemoncosis , Haemonchus , Enfermedades de las Ovejas , Animales , Fasciola hepatica/inmunología , Fascioliasis/inmunología , Fascioliasis/veterinaria , Galectinas/genética , Galectinas/fisiología , Hemoncosis/inmunología , Hemoncosis/veterinaria , Haemonchus/inmunología , Ovinos , Enfermedades de las Ovejas/inmunología , Enfermedades de las Ovejas/parasitología , Coloración y Etiquetado
13.
Parasit Vectors ; 15(1): 56, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164867

RESUMEN

BACKGROUND: Plasmodium ovale is a neglected malarial parasite that can form latent hypnozoites in the human liver. Over the last decade, molecular surveillance studies of non-falciparum malaria in Africa have highlighted that P. ovale is circulating below the radar, including areas where Plasmodium falciparum is in decline. To eliminate malaria where P. ovale is endemic, a better understanding of its epidemiology, asymptomatic carriage, and transmission biology is needed. METHODS: We performed a pilot study on P. ovale transmission as part of an ongoing study of human-to-mosquito transmission of P. falciparum from asymptomatic carriers. To characterize the malaria asymptomatic reservoir, cross-sectional qPCR surveys were conducted in Bagamoyo, Tanzania, over three transmission seasons. Positive individuals were enrolled in transmission studies of P. falciparum using direct skin feeding assays (DFAs) with Anopheles gambiae s.s. (IFAKARA strain) mosquitoes. For a subset of participants who screened positive for P. ovale on the day of DFA, we incubated blood-fed mosquitoes for 14 days to assess sporozoite development. RESULTS: Molecular surveillance of asymptomatic individuals revealed a P. ovale prevalence of 11% (300/2718), compared to 29% (780/2718) for P. falciparum. Prevalence for P. ovale was highest at the beginning of the long rainy season (15.5%, 128/826) in contrast to P. falciparum, which peaked later in both the long and short rainy seasons. Considering that these early-season P. ovale infections were low-density mono-infections (127/128), we speculate many were due to hypnozoite-induced relapse. Six of eight P. ovale-infected asymptomatic individuals who underwent DFAs successfully transmitted P. ovale parasites to A. gambiae. CONCLUSIONS: Plasmodium ovale is circulating at 4-15% prevalence among asymptomatic individuals in coastal Tanzania, largely invisible to field diagnostics. A different seasonal peak from co-endemic P. falciparum, the capacity to relapse, and efficient transmission to Anopheles vectors likely contribute to its persistence amid control efforts focused on P. falciparum.


Asunto(s)
Anopheles , Malaria Falciparum , Plasmodium ovale , Animales , Estudios Transversales , Humanos , Malaria Falciparum/epidemiología , Mosquitos Vectores , Proyectos Piloto , Plasmodium falciparum , Plasmodium ovale/genética , Prevalencia , Tanzanía/epidemiología
14.
Methods Mol Biol ; 2410: 581-587, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34914069

RESUMEN

Plasmodium falciparum is the parasite responsible for the disease malaria. In vitro cultivation of mature gametocytes of P. falciparum plays a central role in evaluating and developing the transmission-blocking drugs and sexual stage vaccines. These types of preventive molecules are crucial for controlling malaria in the future. Among different Plasmodium species that are involved in human malaria, only P. falciparum is cultivable. Therefore, an efficient method is required for in vitro culture of P. falciparum producing mature and infective gametocytes. This chapter describes a reliable and efficient protocol for the production of adult and infective gametocytes that is suitable for small- and large-scale culture.


Asunto(s)
Anopheles , Malaria Falciparum , Plasmodium falciparum , Animales , Bioensayo , Humanos , Malaria
15.
Methods Mol Biol ; 2410: 597-606, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34914071

RESUMEN

Traditional and modern approaches have been applied to combat the malaria disease. Malaria eradication is a priority in several developing countries. Transmission-blocking vaccines are one of the suggested solutions for malaria eradication. Therefore, there is a demand for introducing the new targets and evaluation methods. Standard membrane feeding assay is the base of the evaluation process of transmission-blocking candidate molecules. Hence, this process is explained in this chapter in detail.


Asunto(s)
Vacunas contra la Malaria , Malaria , Bioensayo , Humanos , Malaria/prevención & control , Malaria Falciparum , Membranas , Plasmodium falciparum/inmunología
16.
Insect Sci ; 29(4): 993-1005, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34780113

RESUMEN

Gustatory receptors (GRs) are critical for multiple life activities of insects. Owing to the rapid development of genome and transcriptome sequencing, numerous insect GRs have been identified. However, the expression patterns and functions of these receptors are poorly understood. In this study, we analyzed the expression pattern of GRs in Helicoverpa armigera and found that the fructose receptor HarmGR9 was highly expressed in the foregut and abdomen. The function of HarmGR9 was identified using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system. Knockout of the HarmGR9 gene shortened the developmental period of the larval stages and increased food consumption in both larvae and adults. This study revealed the tissue distribution of sugar-sense-related receptors in H. armigera and thereby expanded the understanding of insect feeding regulation.


Asunto(s)
Proteínas de Insectos , Mariposas Nocturnas , Animales , Ingestión de Alimentos , Fructosa/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos/metabolismo , Larva/genética , Larva/metabolismo
17.
Parasit Vectors ; 14(1): 407, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399829

RESUMEN

BACKGROUND: Plasmodium vivax transmission-blocking vaccines (TBVs) are receiving increasing attention. Based on excellent transmission-blocking activities of the PbPH (PBANKA_0417200) and PbSOP26 (PBANKA_1457700) antigens in Plasmodium berghei, their orthologs in P. vivax, PVX_098655 (PvPH) and PVX_101120 (PvSOP26), were selected for the evaluation of their potential as TBVs. METHODS: Fragments of PvPH (amino acids 22-304) and PvSOP26 (amino acids 30-272) were expressed in the yeast expression system. The recombinant proteins were used to immunize mice to obtain antisera. The transmission-reducing activities of these antisera were evaluated using the direct membrane feeding assay (DMFA) using Anopheles dirus mosquitoes and P. vivax clinical isolates. RESULTS: The recombinant proteins PvPH and PvSOP26 induced robust antibody responses in mice. The DMFA showed that the anti-PvSOP26 sera significantly reduced oocyst densities by 92.0 and 84.1% in two parasite isolates, respectively, whereas the anti-PvPH sera did not show evident transmission-reducing activity. The variation in the DMFA results was unlikely due to the genetic polymorphisms of the two genes since their respective sequences were identical in the clinical P. vivax isolates. CONCLUSION: PvSOP26 could be a promising TBV candidate for P. vivax, which warrants further evaluation.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Malaria Vivax/prevención & control , Plasmodium vivax/inmunología , Animales , Femenino , Humanos , Inmunogenicidad Vacunal , Vacunas contra la Malaria/genética , Malaria Vivax/parasitología , Malaria Vivax/transmisión , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Vacunación/métodos , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Levaduras/genética
18.
Parasit Vectors ; 14(1): 356, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34233734

RESUMEN

BACKGROUND: Direct membrane feeding assays (DMFA) are an important tool to study parasite transmission to mosquitoes. Mosquito feeding rates in these artificial systems require optimization, as there are a number of factors that potentially influence the feeding rates and there are no standardized methods that apply to all anopheline species. METHODS: A range of parameters prior to and during direct membrane feeding (DMF) were evaluated for their impact on Anopheles farauti sensu stricto feeding rates, including the starving conditions and duration of starving prior to feeding, membrane type, DMF exposure time, mosquito age, feeding in the light versus the dark, blood volume, mosquito density and temperature of water bath. RESULTS: The average successful DMFA feeding rate for An. farauti s.s. colony mosquitoes increased from 50 to 85% when assay parameters were varied. Overnight starvation and Baudruche membrane yielded the highest feeding rates but rates were also affected by blood volume in the feeder and the mosquito density in the feeding cups. Availability of water during the pre-feed starvation period did not significantly impact feeding rates, nor did the exposure duration to blood in membrane feeders, the age of mosquitoes (3, 5 and 7 days post-emergence), feeding in the light versus the dark, or the temperature (34 °C, 38 °C, 42 °C and 46 °C) of the water bath. CONCLUSION: Optimal feeding conditions in An. farauti s.s. DMFA were to offer 50 female mosquitoes in a cup (with a total surface area of ~ 340 cm2 with 1 mosquito/6.8 cm2) that were starved overnight 350-500 µL of blood (collected in heparin-coated Vacutainer tubes) per feeder in feeders with a surface area ~ 5 cm2 (with a maximum capacity of 1.5 mL of blood) via a Baudruche membrane, for at least 10-20 min.


Asunto(s)
Anopheles/fisiología , Bioensayo/métodos , Conducta Alimentaria , Mosquitos Vectores/fisiología , Animales , Femenino
19.
Front Cell Infect Microbiol ; 11: 676276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34141630

RESUMEN

The control and elimination of malaria caused by Plasmodium vivax both represent a great challenge due to the biological aspects of the species. Gametocytes are the forms responsible for the transmission of the parasite to the vector and the search for new strategies for blocking transmission are essential in a scenario of control and elimination The challenges in this search in regard to P. vivax mainly stem from the lack of a long-term culture and the limitation of studies of gametocytes. This study evaluated the viability and infectivity of P. vivax gametocytes in short-term culture. The samples enriched in gametocytes using Percoll (i), using magnetic-activated cell sorting (MACS®) (ii), and using non-enriched samples (iii) were evaluated. After the procedures, gametocytes were cultured in IMDM medium for up to 48 h. Cultured P. vivax gametocytes were viable and infectious for up to 48 h, however differences in viability and infectivity were observed in the samples after 12 h of culture in relation to 0 h. Percoll-enriched samples were shown to be viable in culture for longer intervals than those purified using MACS®. Gametocyte viability after enrichment procedures and short-term culture may provide new avenues in the development of methods for evaluating P. vivax TB.


Asunto(s)
Malaria Vivax , Malaria , Humanos , Plasmodium falciparum , Plasmodium vivax
20.
Insects ; 12(2)2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33670065

RESUMEN

Botanical-derived pesticides have arisen as an attractive alternative to synthetic insecticides to effectively manage infestations of bed bugs (Cimex lectularius L.). While information on contact, residual, and fumigant toxicity of plant-essential oils against bed bugs have been recently published, there is a gap of information regarding the repellent activity of these products and their constituents. Identification of essential oil constituents (EOCs) with repellent activity will help develop potentially efficacious essential oil-based formulations for use in bed bug management programs. In this study, we first screened fresh and 24 h-aged residues of geraniol, eugenol, carvacrol, thymol, citronellic acid, linalool, menthone, trans-cinnamaldehyde, α-pinene, ß-pinene, and limonene for avoidance behavior from individual bed bugs with a video-tracking system. Six EOCs, geraniol, eugenol, citronellic acid, thymol, carvacrol, and linalool were further evaluated overnight in choice tests to determine whether 24-h aged residues were still avoided by groups of bed bugs. While bed bugs avoided resting on filter papers treated with 24-h aged residues of geraniol, eugenol, citronellic acid, and carvacrol, bed bugs aggregated in areas treated with linalool-aged residues. Barriers of EOCs did not prevent bed bugs from reaching a warmed blood source and acquiring blood meals. Our results show that novel formulations of natural product insecticides that include geraniol, eugenol, carvacrol, or citronellic acid have potential to repel bed bugs. The presence of host-associated cues might interfere with these responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...