Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.055
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409192, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39091276

RESUMEN

Semi-biological photosynthesis combines synthetic photosensitizers with microbial catalysts to produce sustainable fuels and chemicals from CO2. However, the inefficient transfer of photoexcited electrons to microbes leads to limited CO2 utilization, restricting the catalytic performance of such biohybrid assemblies. Here, we introduce a biological engineering solution to address the inherently sluggish electron uptake mechanism of a methanogen, Methanosarcina barkeri (M. barkeri), by coculturing it with an electron transport specialist, Geobacter sulfurreducens KN400 (KN400), an adapted strain rich with multiheme c-type cytochromes (c-Cyts) and electrically conductive protein filaments (e-PFs) made of polymerized c-Cyts with enhanced capacity for extracellular electron transfer (EET). Integration of this M. barkeri-KN400 co-culture with a synthetic photosensitizer, carbon nitride, demonstrates that c-Cyts and e-PFs, emanating from live KN400, transport photoexcited electrons efficiently from the carbon nitride to M. barkeri for methanogenesis with remarkable long-term stability and selectivity. The demonstrated cooperative interaction between two microbes via direct interspecies electron transfer (DIET) and the photosensitizer to assemble a semi-biological photocatalyst introduces an ecosystem engineering strategy in photocatalysis to drive sustainable chemical synthesis.

3.
J Comp Neurol ; 532(8): e25662, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39136357

RESUMEN

Despite myriad technological advances in neuroscience, the nervous system harbors morphological phenomena that continue to defy explanation. First described by the classical microscopists, including Santiago Ramon y Cajal, at the end of the 19th century, the neuronal intranuclear rodlet (INR) has mystified neurohistologists and microscopists for centuries. In this review article, we will provide an overview of the discovery of the INR as well as the subsequent attempts to elucidate its nature and functional significance. We outline our own studies of this structure over the past three decades, focusing on its elusive nature, its interactions with other nuclear organelles, and on disease-related quantitative changes in Alzheimer's disease. We then describe our somewhat serendipitous discovery that these structures are filamentous aggregates of the nucleotide-synthesizing metabolic enzyme inosine monophosphate dehydrogenase. The filamentation of metabolic enzymes to form mesoscale cellular structures called "rods and rings" or "cytoophidia" (Greek for "cellular snakes") is a recently described phenomenon that remains to be systematically investigated in the nervous system. Thus, this review provides an intriguing historical juxtaposition in neuroscience, inculcating the neuronal INR, once a mere morphological curiosity, into one of the most rapidly evolving fields in contemporary cell biology.


Asunto(s)
Neuronas , Humanos , Animales , Cuerpos de Inclusión Intranucleares/metabolismo , Enfermedad de Alzheimer/historia , Enfermedad de Alzheimer/patología , Historia del Siglo XX
4.
Curr Biol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39153481

RESUMEN

Epithelial homeostasis can be critically influenced by how cells respond to mechanical forces, both local changes in force balance between cells and altered tissue-level forces.1 Coupling of specialized cell-cell adhesions to their cytoskeletons provides epithelia with diverse strategies to respond to mechanical stresses.2,3,4 Desmosomes confer tissue resilience when their associated intermediate filaments (IFs)2,3 stiffen in response to strain,5,6,7,8,9,10,11 while mechanotransduction associated with the E-cadherin apparatus12,13 at adherens junctions (AJs) actively modulates actomyosin by RhoA signaling. Although desmosomes and AJs make complementary contributions to mechanical homeostasis in epithelia,6,8 there is increasing evidence to suggest that these cytoskeletal-adhesion systems can interact functionally and biochemically.8,14,15,16,17,18,19,20 We now report that the desmosome-IF system integrated by desmoplakin (DP) facilitates active tension sensing at AJs for epithelial homeostasis. DP function is necessary for mechanosensitive RhoA signaling at AJs to be activated when tension was applied to epithelial monolayers. This effect required DP to anchor IFs to desmosomes and recruit the dystonin (DST) cytolinker to apical junctions. DP RNAi reduced the mechanical load that was applied to the cadherin complex by increased monolayer tension. Consistent with reduced mechanical signal strength, DP RNAi compromised assembly of the Myosin VI-E-cadherin mechanosensor that activates RhoA. The integrated DP-IF system therefore supports AJ mechanotransduction by enhancing the mechanical load of tissue tension that is transmitted to E-cadherin. This crosstalk was necessary for efficient elimination of apoptotic epithelial cells by apical extrusion, demonstrating its contribution to epithelial homeostasis.

5.
Open Res Eur ; 4: 140, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139813

RESUMEN

Observations at (sub-)millimeter wavelengths offer a complementary perspective on our Sun and other stars, offering significant insights into both the thermal and magnetic composition of their chromospheres. Despite the fundamental progress in (sub-)millimeter observations of the Sun, some important aspects require diagnostic capabilities that are not offered by existing observatories. In particular, simultaneously observations of the radiation continuum across an extended frequency range would facilitate the mapping of different layers and thus ultimately the 3D structure of the solar atmosphere. Mapping large regions on the Sun or even the whole solar disk at a very high temporal cadence would be crucial for systematically detecting and following the temporal evolution of flares, while synoptic observations, i.e., daily maps, over periods of years would provide an unprecedented view of the solar activity cycle in this wavelength regime. As our Sun is a fundamental reference for studying the atmospheres of active main sequence stars, observing the Sun and other stars with the same instrument would unlock the enormous diagnostic potential for understanding stellar activity and its impact on exoplanets. The Atacama Large Aperture Submillimeter Telescope (AtLAST), a single-dish telescope with 50m aperture proposed to be built in the Atacama desert in Chile, would be able to provide these observational capabilities. Equipped with a large number of detector elements for probing the radiation continuum across a wide frequency range, AtLAST would address a wide range of scientific topics including the thermal structure and heating of the solar chromosphere, flares and prominences, and the solar activity cycle. In this white paper, the key science cases and their technical requirements for AtLAST are discussed.


Observations of our Sun and other stars at wavelengths of around one millimeter, i.e. in the range between infrared and radio waves, present a valuable complementary perspective. Despite significant technological advancements, certain critical aspects necessitate diagnostic capabilities not offered by current observatories. The proposed Atacama Large Aperture Submillimeter Telescope (AtLAST), featuring a 50-meter aperture and slated for construction at a high altitude in Chile's Atacama desert, promises to address these observational needs. Equipped with novel detectors that would cover a wide frequency range, AtLAST could unlock a plethora of scientific studies contributing to a better understanding of our host star. Simultaneous observations over a broad frequency range at rapid succession would enable the imaging of different layers of the Sun, thus elucidating the three-dimensional thermal and magnetic structure of the solar atmosphere and providing important clues for many long-standing central questions such as how the outermost layers of the Sun are heated to very high temperatures, the nature of large-scale structures like prominences, and how flares and coronal mass ejections, i.e. enormous eruptions, are produced. The latter is of particular interest to modern society due to the potentially devastating impact on the technological infrastructure we depend on today. Another unique possibility would be to study the Sun's long-term evolution in this wavelength range, which would yield important insights into its activity cycle. Moreover, the Sun serves as a fundamental reference for other stars as, due to its proximity, it is the only star that can be investigated in such detail. The results for the Sun would therefore have direct implications for understanding other stars and their impact on exoplanets. This article outlines the key scientific objectives and technical requirements for solar observations with AtLAST.

6.
ACS Appl Mater Interfaces ; 16(32): 42380-42391, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39090057

RESUMEN

During the operation of synaptic devices based on traditional conductive filament (CF) models, the formation and dissolution of CFs are usually uncertain. Moreover, when the device is operated for a long time, the CFs may dissolve due to both the Joule heat generated by the device itself and the thermal coupling between the devices. These problems seriously reduce the reliability and stability of the synaptic device. Here, an artificial synapse device based on polyimide-molybdenum disulfide quantum dot (MoS2 QD) nanocomposites is presented. Research has shown that MoS2 QDs doped into the active layer can effectively induce the reduction of Ag ions into Ag atoms, leading to the formation of Ag clusters and thereby achieving control over the growth of the CFs. Therefore, the device is capable of stably realizing various basic synaptic functions. Moreover, the long-term potentiation/long-term depression (LTP/LTD) of this device shows good linearity. In addition, due to the change in the shape of the CFs, the highly integrated devices with a three-dimensional (3D) stacked structure can operate normally even in a high-temperature environment of 110 °C. Finally, the synaptic characteristics of the devices on learning and inference tests show that their recognition rates are approximately 90.75% (room temperature) and 90.63% (110 °C).

7.
Redox Biol ; 75: 103282, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39079387

RESUMEN

The intermediate filament protein vimentin performs an essential role in cytoskeletal interplay and dynamics, mechanosensing and cellular stress responses. In pathology, vimentin is a key player in tumorigenesis, fibrosis and infection. Vimentin filaments undergo distinct and versatile reorganizations, and behave as redox sensors. The vimentin monomer possesses a central α-helical rod domain flanked by N- and C-terminal low complexity domains. Interactions between this type of domains play an important function in the formation of phase-separated biomolecular condensates, which in turn are critical for the organization of cellular components. Here we show that several oxidants, including hydrogen peroxide and diamide, elicit the remodeling of vimentin filaments into small particles. Oxidative stress elicited by diamide induces a fast dissociation of filaments into circular, motile dots, which requires the presence of the single vimentin cysteine residue, C328. This effect is reversible, and filament reassembly can occur within minutes of oxidant removal. Diamide-elicited vimentin droplets recover fluorescence after photobleaching. Moreover, fusion of cells expressing differentially tagged vimentin allows the detection of dots positive for both tags, indicating that vimentin dots merge upon cell fusion. The aliphatic alcohol 1,6-hexanediol, known to alter interactions between low complexity domains, readily dissolves diamide-elicited vimentin dots at low concentrations, in a C328 dependent manner, and hampers reassembly. Taken together, these results indicate that vimentin oxidation promotes a fast and reversible filament remodeling into biomolecular condensate-like structures, and provide primary evidence of its regulated phase separation. Moreover, we hypothesize that filament to droplet transition could play a protective role against irreversible damage of the vimentin network by oxidative stress.

8.
Front Cell Dev Biol ; 12: 1430386, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055653

RESUMEN

The molecular mechanisms driving the onset and metastasis of prostate cancer remain poorly understood. Actin, under the control of actin-binding proteins (ABPs), plays a crucial role in shaping the cellular cytoskeleton, which in turn supports the morphological alterations in normal cells, as well as the invasive spread of tumor cells. Previous research indicates that ABPs of various types serve distinct functions, and any disruptions in their activities could predispose individuals to prostate cancer. These ABPs are intricately implicated in the initiation and advancement of prostate cancer through a complex array of intracellular processes, such as severing, linking, nucleating, inducing branching, assembling, facilitating actin filament elongation, terminating elongation, and promoting actin molecule aggregation. As such, this review synthesizes existing literature on several ABPs linked to prostate cancer, including cofilin, filamin A, and fascin, with the aim of shedding light on the molecular mechanisms through which ABPs influence prostate cancer development and identifying potential therapeutic targets. Ultimately, this comprehensive examination seeks to contribute to the understanding and management of prostate diseases.

9.
Mol Cell ; 84(13): 2490-2510.e9, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996459

RESUMEN

The formation of dynamic protein filaments contributes to various biological functions by clustering individual molecules together and enhancing their binding to ligands. We report such a propensity for the BTB domains of certain proteins from the ZBTB family, a large eukaryotic transcription factor family implicated in differentiation and cancer. Working with Xenopus laevis and human proteins, we solved the crystal structures of filaments formed by dimers of the BTB domains of ZBTB8A and ZBTB18 and demonstrated concentration-dependent higher-order assemblies of these dimers in solution. In cells, the BTB-domain filamentation supports clustering of full-length human ZBTB8A and ZBTB18 into dynamic nuclear foci and contributes to the ZBTB18-mediated repression of a reporter gene. The BTB domains of up to 21 human ZBTB family members and two related proteins, NACC1 and NACC2, are predicted to behave in a similar manner. Our results suggest that filamentation is a more common feature of transcription factors than is currently appreciated.


Asunto(s)
Dominio BTB-POZ , Factores de Transcripción , Proteínas de Xenopus , Animales , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Cristalografía por Rayos X , Células HEK293 , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/química , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Xenopus laevis , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/química
10.
Dev Cell ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39002537

RESUMEN

Keratin intermediate filaments confer structural stability to epithelial tissues, but the reason this simple mechanical function requires a protein family with 54 isoforms is not understood. During skin wound healing, a shift in keratin isoform expression alters the composition of keratin filaments. If and how this change modulates cellular functions that support epidermal remodeling remains unclear. We report an unexpected effect of keratin isoform variation on kinase signal transduction. Increased expression of wound-associated keratin 6A, but not of steady-state keratin 5, potentiated keratinocyte migration and wound closure without compromising mechanical stability by activating myosin motors to increase contractile force generation. These results substantially expand the functional repertoire of intermediate filaments from their canonical role as mechanical scaffolds to include roles as isoform-tuned signaling scaffolds that organize signal transduction cascades in space and time to influence epithelial cell state.

11.
EMBO Rep ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075237

RESUMEN

Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of a childhood neurodegenerative disorder caused by AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that mouse models of AMPD2 deficiency exhibit predominant degeneration of the hippocampal dentate gyrus, despite a general reduction of brain GTP levels. Neurodegeneration-resistant regions accumulate micron-sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis, while these filaments are barely detectable in the hippocampal dentate gyrus. Furthermore, we show that IMPDH2 filament disassembly reduces GTP levels and impairs growth of neural progenitor cells derived from individuals with human AMPD2 deficiency. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation, opening the possibility of exploring the induction of IMPDH2 assembly as a therapy for neurodegeneration.

12.
ACS Appl Mater Interfaces ; 16(30): 39827-39834, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39034650

RESUMEN

The migration of mobile ionic halide vacancies is usually considered detrimental to the performance and stability of perovskite optoelectronic devices. Taking advantage of this intrinsic feature, we fabricated a CsPbI3 perovskite quantum dot (PQD)-based write-once-read-many-times (WORM) memory device with a simple sandwich structure that demonstrates intrinsic ternary states with a high ON/OFF ratio of 103:102:1 and a long retention time of 104 s. Through electrochemical impedance spectroscopy, we proved that the resistive switching is achieved by the migration of mobile iodine vacancies (VIs) under an electric field to form conductive filaments (CFs). Using in situ conductive atomic force microscopy, we further revealed that the multilevel property arises from the different activation energies for VIs to migrate at grain boundaries and grain interiors, resulting in two distinct pathways for CFs to grow. Our work highlights the potential of CsPbI3 PQD-based WORM devices, showcasing intrinsic multilevel properties achieved in a simple device structure by rationally controlling the drift of ionic defects.

13.
Bioessays ; 46(8): e2400063, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38975656

RESUMEN

A host of metabolic enzymes reversibly self-assemble to form membrane-less, intracellular filaments under normal physiological conditions and in response to stress. Often, these enzymes reside at metabolic control points, suggesting that filament formation affords an additional regulatory mechanism. Examples include cytidine-5'-triphosphate (CTP) synthase (CTPS), which catalyzes the rate-limiting step for the de novo biosynthesis of CTP; inosine-5'-monophosphate dehydrogenase (IMPDH), which controls biosynthetic access to guanosine-5'-triphosphate (GTP); and ∆1-pyrroline-5-carboxylate (P5C) synthase (P5CS) that catalyzes the formation of P5C, which links the Krebs cycle, urea cycle, and proline metabolism. Intriguingly, CTPS can exist in co-assemblies with IMPDH or P5CS. Since GTP is an allosteric activator of CTPS, the association of CTPS and IMPDH filaments accords with the need to coordinate pyrimidine and purine biosynthesis. Herein, a hypothesis is presented furnishing a biochemical connection underlying co-assembly of CTPS and P5CS filaments - potent inhibition of CTPS by glutamate γ-semialdehyde, the open-chain form of P5C.


Asunto(s)
Ligasas de Carbono-Nitrógeno , IMP Deshidrogenasa , Animales , Humanos , Ligasas de Carbono-Nitrógeno/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Citidina Trifosfato/metabolismo , Guanosina Trifosfato/metabolismo , IMP Deshidrogenasa/metabolismo
14.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999987

RESUMEN

The actin cytoskeleton is one of the most important players in cell motility, adhesion, division, and functioning. The regulation of specific microfilament formation largely determines cellular functions. The main actin-binding protein in animal cells is tropomyosin (Tpm). The unique structural and functional diversity of microfilaments is achieved through the diversity of Tpm isoforms. In our work, we studied the properties of the cytoplasmic isoforms Tpm1.8 and Tpm1.9. The results showed that these isoforms are highly thermostable and differ in the stability of their central and C-terminal fragments. The properties of these isoforms were largely determined by the 6th exons. Thus, the strength of the end-to-end interactions, as well as the affinity of the Tpm molecule for F-actin, differed between the Tpm1.8 and Tpm1.9 isoforms. They were determined by whether an alternative internal exon, 6a or 6b, was included in the Tpm isoform structure. The strong interactions of the Tpm1.8 and Tpm1.9 isoforms with F-actin led to the formation of rigid actin filaments, the stiffness of which was measured using an optical trap. It is quite possible that the structural and functional features of the Tpm isoforms largely determine the appearance of these isoforms in the rigid actin structures of the cell cortex.


Asunto(s)
Citoesqueleto de Actina , Actinas , Isoformas de Proteínas , Tropomiosina , Tropomiosina/metabolismo , Tropomiosina/química , Tropomiosina/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Citoesqueleto de Actina/metabolismo , Animales , Actinas/metabolismo , Actinas/química , Citoplasma/metabolismo , Humanos , Exones , Unión Proteica , Estabilidad Proteica
15.
Int J Biol Macromol ; 275(Pt 2): 133690, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971280

RESUMEN

In pursuing sustainable thermal insulation solutions, this study explores the integration of human hair and feather keratin with alginate. The aim is to assess its potential in thermal insulation materials, focusing on the resultant composites' thermal and mechanical characteristics. The investigation uncovers that the type and proportion of keratin significantly influence the composites' porosity and thermal conductivity. Specifically, higher feather keratin content is associated with lesser sulfur and reduced crosslinking due to shorter amino acids, leading to increased porosity and pore sizes. This, in turn, results in a decrease in ß-structured hydrogen bond networks, raising non-ordered protein structures and diminishing thermal conductivity from 0.044 W/(m·K) for pure alginate matrices to between 0.033 and 0.038 W/(m·K) for keratin-alginate composites, contingent upon the specific ratio of feather to hair keratin used. Mechanical evaluations further indicate that composites with a higher ratio of hair keratin exhibit an enhanced compressive modulus, ranging from 60 to 77 kPa, demonstrating the potential for tailored mechanical properties to suit various applications. The research underscores the critical role of sulfur content and the crosslinking index within keratin's structures, significantly impacting the thermal and mechanical properties of the matrices. The findings position keratin-based composites as environmentally friendly alternatives to traditional insulation materials.


Asunto(s)
Plumas , Cabello , Queratinas , Conductividad Térmica , Queratinas/química , Plumas/química , Cabello/química , Humanos , Alginatos/química , Porosidad
16.
J Biol Chem ; 300(8): 107576, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009341

RESUMEN

Enzymes that form filamentous assemblies with modulated enzymatic activities have gained increasing attention in recent years. SgrAI is a sequence specific type II restriction endonuclease that forms polymeric filaments with accelerated DNA cleavage activity and expanded DNA sequence specificity. Prior studies have suggested a mechanistic model linking the structural changes accompanying SgrAI filamentation to its accelerated DNA cleavage activity. In this model, the conformational changes that are specific to filamentous SgrAI maximize contacts between different copies of the enzyme within the filament and create a second divalent cation binding site in each subunit, which in turn facilitates the DNA cleavage reaction. However, our understanding of the atomic mechanism of catalysis is incomplete. Herein, we present two new structures of filamentous SgrAI solved using cryo-EM. The first structure, resolved to 3.3 Å, is of filamentous SgrAI containing an active site mutation that is designed to stall the DNA cleavage reaction, which reveals the enzymatic configuration prior to DNA cleavage. The second structure, resolved to 3.1 Å, is of WT filamentous SgrAI containing cleaved substrate DNA, which reveals the enzymatic configuration at the end of the enzymatic cleavage reaction. Both structures contain the phosphate moiety at the cleavage site and the biologically relevant divalent cation cofactor Mg2+ and define how the Mg2+ cation reconfigures during enzymatic catalysis. The data support a model for the activation mechanism that involves binding of a second Mg2+ in the SgrAI active site as a direct result of filamentation induced conformational changes.

17.
Materials (Basel) ; 17(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38894012

RESUMEN

Memristors, since their inception, have demonstrated remarkable characteristics, notably the exceptional reconfigurability of their memory. This study delves into electroforming-free YMnO3 (YMO)-based resistive switches, emphasizing the reconfigurable memory effect in multiferroic YMO thin films with metallically conducting electrodes and their pivotal role in achieving adaptable frequency responses in impedance circuits consisting of reconfigurable YMO-based resistive switches and no reconfigurable passive elements, e.g., inductors and capacitors. The multiferroic YMO possesses a network of charged domain walls which can be reconfigured by a time-dependent voltage applied between the metallically conducting electrodes. Through experimental demonstrations, this study scrutinizes the impedance response not only for individual switch devices but also for impedance circuitry based on YMO resistive switches in both low- and high-resistance states, interfacing with capacitors and inductors in parallel and series configurations. Scrutinized Nyquist plots visually capture the intricate dynamics of impedance circuitry, revealing the potential of electroforming-free YMO resistive switches in finely tuning frequency responses within impedance circuits. This adaptability, rooted in the unique properties of YMO, signifies a paradigm shift heralding the advent of advanced and flexible electronic technologies.

18.
Cells ; 13(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891038

RESUMEN

Eukaryotic cells tether the nucleoskeleton to the cytoskeleton via a conserved molecular bridge, called the LINC complex. The core of the LINC complex comprises SUN-domain and KASH-domain proteins that directly associate within the nuclear envelope lumen. Intra- and inter-chain disulphide bonds, along with KASH-domain protein interactions, both contribute to the tertiary and quaternary structure of vertebrate SUN-domain proteins. The significance of these bonds and the role of PDIs (protein disulphide isomerases) in LINC complex biology remains unclear. Reducing and non-reducing SDS-PAGE analyses revealed a prevalence of SUN2 homodimers in non-tumorigenic breast epithelia MCF10A cells, but not in the invasive triple-negative breast cancer MDA-MB-231 cell line. Furthermore, super-resolution microscopy revealed SUN2 staining alterations in MCF10A, but not in MDA-MB-231 nuclei, upon reducing agent exposure. While PDIA1 levels were similar in both cell lines, pharmacological inhibition of PDI activity in MDA-MB-231 cells led to SUN-domain protein down-regulation, as well as Nesprin-2 displacement from the nucleus. This inhibition also caused changes in perinuclear cytoskeletal architecture and lamin downregulation, and increased the invasiveness of PDI-inhibited MDA-MB-231 cells in space-restrictive in vitro environments, compared to untreated cells. These results emphasise the key roles of PDIs in regulating LINC complex biology, cellular architecture, biomechanics, and invasion.


Asunto(s)
Invasividad Neoplásica , Proteína Disulfuro Isomerasas , Humanos , Línea Celular Tumoral , Proteína Disulfuro Isomerasas/metabolismo , Femenino , Regulación hacia Abajo/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Membrana Nuclear/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Péptidos y Proteínas de Señalización Intracelular
19.
Pharmaceutics ; 16(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38931904

RESUMEN

The aim of this study was to fabricate mini-tablets of polyhedrons containing theophylline using a fused deposition modeling (FDM) 3D printer, and to evaluate the correlation between release kinetics models and their geometric shapes. The filaments containing theophylline, hydroxypropyl cellulose (HPC), and EUDRAGIT RS PO (EU) could be obtained with a consistent thickness through pre-drying before hot melt extrusion (HME). Mini-tablets of polyhedrons ranging from tetrahedron to icosahedron were 3D-printed using the same formulation of the filament, ensuring equal volumes. The release kinetics models derived from dissolution tests of the polyhedrons, along with calculations for various physical parameters (edge, SA: surface area, SA/W: surface area/weight, SA/V: surface area/volume), revealed that the correlation between the Higuchi model and the SA/V was the highest (R2 = 0.995). It was confirmed that using 3D- printing for the development of personalized or pediatric drug products allows for the adjustment of drug dosage by modifying the size or shape of the drug while maintaining or controlling the same release profile.

20.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906101

RESUMEN

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Asunto(s)
Gametogénesis , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Coenzima A Ligasas/metabolismo , Microscopía por Crioelectrón , Citoplasma/metabolismo , Tomografía con Microscopio Electrónico , Meiosis , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esporas Fúngicas/metabolismo , Modelos Moleculares , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...