Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39356954

RESUMEN

Flexible electronics can seamlessly adhere to human skin or internal tissues, enabling the collection of physiological data and real-time vital sign monitoring in home settings, which give it the potential to revolutionize chronic disease management and mitigate mortality rates associated with sudden illnesses, thereby transforming current medical practices. However, the development of flexible electronic devices still faces several challenges, including issues pertaining to material selection, limited functionality, and performance instability. Among these challenges, the choice of appropriate materials, as well as their methods for film formation and patterning, lays the groundwork for versatile device development. Establishing stable interfaces, both internally within the device and in human-machine interactions, is essential for ensuring efficient, accurate, and long-term monitoring in health electronics. This review aims to provide an overview of critical fabrication steps and interface optimization strategies in the realm of flexible health electronics. Specifically, we discuss common thin film processing methods, patterning techniques for functional layers, interface challenges, and potential adjustment strategies. The objective is to synthesize recent advancements and serve as a reference for the development of innovative flexible health monitoring devices.

2.
J Colloid Interface Sci ; 678(Pt B): 446-455, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39255601

RESUMEN

STATEMENT OF OBJECTIVES: Soft, waterborne polyurethane dispersions are indispensable components in many state-of-the-art materials, with applications ranging from binders for coatings and adhesives to matrixes for flexible devices. While the static bulk nanostructure of such systems is widely studied, the influence that environmental conditions such as relative humidity and airflow have on their film formation and phase segregation behavior in supported films is unknown. EXPERIMENTS: Here, we elucidate the nanostructure evolution occurring during drying of an industrially relevant, soft polyurethane, utilizing real-time, non-destructive grazing incidence X-ray scattering analysis. Using an environmental-controlled casting cell, we highlight the differences between the drying mechanism under different conditions generated by tuning the airflow and the relative humidity. FINDINGS: Our results show how the environment's relative humidity strongly influences chain aggregation and chain interdiffusion due to extended plasticization of the hard segment at high humidities, while accelerated air flows are responsible for the occurrence of (partial) skinning. Interestingly, despite changes in the chain aggregation behavior and occurrence of skinning and skin breakup during drying resulting in higher roughness at the film surface, minor influence is registered on the bulk tensile properties of the films, revealing the resilient nature towards environmental conditions of these soft weakly phase segregating polyurethane systems.

3.
Chemistry ; : e202401868, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136607

RESUMEN

Metal-organic frameworks (MOFs), owing the merits of ordered and tailored channel structures in the burgeoning crystalline porous materials, have demonstrated significant promise in construction of high-performance separation membranes. However, precisely because this crystal structure with strong molecular interaction in their lattice provides robust structural integrity and resistance to chemical and thermal degradation, crystalline MOFs typically exhibit insolubility, infusibility, stiffness and brittleness, and therefore their membrane-processing properties are far inferior to the flexible amorphous polymers and hinder their subsequent storage, transportation, and utilization. Hence, focusing on film-formation and crystallization is the foundation for exploring the fabrication and application of MOF membranes. In this review, the film-forming properties of crystalline MOFs are fundamentally analyzed from their inherent characteristics and compared with those of amorphous polymers, influencing factors of polycrystalline MOF membrane formation are summarized, the trade-off relationship between crystallization and membrane formation is discussed, and the strategy solving the film formation of crystalline MOFs in recent years are systematically reviewed, in anticipation of realizing the goal of preparing crystalline membranes with optimized processability and excellent performance.

4.
Nanomicro Lett ; 16(1): 190, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698298

RESUMEN

A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells. The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs. In this work, we adopted a solid-liquid two-step film formation technique, which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films. This method possesses the advantages of integrating vapor deposition and solution methods, which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform, large-area perovskite film. Furthermore, modification of the NiOx/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization. As a result, a large-area perovskite film possessing larger grains, fewer pinholes, and reduced defects could be achieved. The inverted PSM with an active area of 61.56 cm2 (10 × 10 cm2 substrate) achieved a champion power conversion efficiency of 20.56% and significantly improved stability. This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.

5.
Adv Mater ; 36(29): e2313251, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38702890

RESUMEN

Film formation kinetics significantly impact molecular processability and power conversion efficiency (PCE) of organic solar cells. Here, two ternary random copolymerization polymers are reported, D18─N-p and D18─N-m, to modulate the aggregation ability of D18 by introducing trifluoromethyl-substituted pyridine unit at para- and meta-positions, respectively. The introduction of pyridine unit significantly reduces material aggregation ability and adjusts the interactions with acceptor L8-BO, thereby leading to largely changed film formation kinetics with earlier phase separation and longer film formation times, which enlarge fiber sizes in blend films and improve carrier generation and transport. As a result, D18─N-p with moderate aggregation ability delivers a high PCE of 18.82% with L8-BO, which is further improved to 19.45% via interface engineering. Despite the slightly inferior small area device performances, D18─N-m shows improved solubility, which inspires to adjust the ratio of meta-trifluoromethyl pyridine carefully and obtain a polymer donor D18─N-m-10 with good solubility in nonhalogenated solvent o-xylene. High PCEs of 13.07% and 12.43% in 1 cm2 device and 43 cm2 module fabricated with slot-die coating method are achieved based on D18─N-m-10:L8-BO blends. This work emphasizes film formation kinetics optimization in device fabrication via aggregation ability modulation of polymer donors for efficient devices.

6.
ACS Nano ; 18(14): 10054-10062, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38527458

RESUMEN

Perovskite nanocrystals (PNCs) bear a huge potential for widespread applications, such as color conversion, X-ray scintillators, and active laser media. However, the poor intrinsic stability and high susceptibility to environmental stimuli including moisture and oxygen have become bottlenecks of PNC materials for commercialization. Appropriate barrier material design can efficiently improve the stability of the PNCs. Particularly, the strategy for packaging PNCs in organosilicon matrixes can integrate the advantages of inorganic-oxide-based and polymer-based encapsulation routes. However, the inert long-carbon-chain ligands (e.g., oleic acid, oleylamine) used in the current ligand systems for silicon-based encapsulation are detrimental to the cross-linking of the organosilicon matrix, resulting in performance deficiencies in the nanocrystal films, such as low transparency and large surface roughness. Herein, we propose a dual-organosilicon ligand system consisting of (3-aminopropyl)triethoxysilane (APTES) and (3-aminopropyl)triethoxysilane with pentanedioic anhydride (APTES-PA), to replace the inert long-carbon-chain ligands for improving the performance of organosilicon-coated PNC films. As a result, strongly fluorescent PNC films prepared by a facile solution-casting method demonstrate high transparency and reduced surface roughness while maintaining high stability in various harsh environments. The optimized PNC films were eventually applied in an X-ray imaging system as scintillators, showing a high spatial resolution above 20 lp/mm. By designing this promising dual organosilicon ligand system for PNC films, our work highlights the crucial influence of the molecular structure of the capping ligands on the optical performance of the PNC film.

7.
Small ; 20(10): e2305977, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37919095

RESUMEN

Additive engineering is widely utilized to optimize film morphology in active layers of organic solar cells (OSCs). However, the role of additive in film formation and adjustment of film morphology remains unclear at the molecular level. Here, taking high-efficiency Y6-based OSC films as an example, this work thus employs all-atom molecular-dynamics simulations to investigate how introduction of additives with different π-conjugation degree thermodynamically and dynamically impacts nanoscale molecular packings. These results demonstrate that the van der Waals (vdW) interactions of the Y6 end groups with the studied additives are strongest. The larger the π-conjugation degree of the additive molecules, the stronger the vdW interactions between additive and Y6 molecules. Due to such vdW interactions, the π-conjugated additive molecules insert into the neighboring Y6 molecules, thus opening more space for relaxation of Y6 molecules to trigger more ordered packing. Increasing the interactions between the Y6 end groups and the additive molecules not only accelerates formation of the Y6 ordered packing, but also induces shorter Y6-intermolecular distances. This work reveals the fundamental molecular-level mechanism behind film formation and adjustment of film morphology via additive engineering, providing an insight into molecular design of additives toward optimizing morphologies of organic semiconductor films.

8.
Polymers (Basel) ; 15(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139887

RESUMEN

Natural rubber (NR) latex derived from Hevea brasiliensis is a complex colloid comprising mainly rubber hydrocarbons (latex particles) and a multitude of minor non-rubber constituents such as non-rubber particles, proteins, lipids, carbohydrates, and soluble organic and inorganic substances. NR latex is susceptible to enzymatic attack after it leaves the trees. It is usually preserved with ammonia and, to a lesser extent, with other preservatives to enhance its colloidal stability during storage. Despite numerous studies in the literature on the influence of rubber proteins on NR latex stability, issues regarding the effect of protein hydrolysis in the presence of ammonia on latex stability during storage are still far from resolved. The present work aims to elucidate the interplay between protein hydrolysis and ammoniation in NR latex stability. Both high- and low-ammonia (with a secondary preservative) NR latexes were used to monitor the changes in their protein compositions during storage. High-ammonia (FNR-A) latex preserved with 0.6% (v/v) ammonia, a low 0.1% ammonia/TMTD/ZnO (FNR-TZ) latex, and a deproteinized NR (PDNR) latex were labeled with fluorescence agents and observed using confocal laser scanning microscopy to determine their protein composition. Protein hydrolysis was confirmed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results revealed that protein hydrolysis increased with the storage duration. The change in protein composition accompanying hydrolysis also allows the spatial distribution of allergenic proteins to be estimated in the latex. Concurrently, the latex stability increased with the storage duration, as measured by the latex's mechanical stability time (MST) and the zeta potential of the latex particles. As monitored by AFM, the surface roughness of the NR latex film increased markedly during extended storage compared with that of the DPNR latex, which remained smooth. These results underscore the pivotal role of ammonia in bolstering NR latex stability brought on by protein hydrolysis, which greatly impacts latex film's formation behavior. NR latex stability underpins the quality of latex-dipped goods during manufacturing, particularly those for medical gloves.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37906716

RESUMEN

Transferring record power conversion efficiency (PCE) >25% of spin coated perovskite solar cells (PSCs) from the laboratory scale to large-area photovoltaic modules requires significant advances in scalable fabrication techniques. In this work, we demonstrate the fundamental interrelation between drying dynamics of slot-die coated precursor solution thin films and the quality of resulting slot-die coated gas-quenched polycrystalline perovskite thin films. Well-defined drying conditions are established using a temperature-stabilized, movable table and a flow-controlled, oblique impinging slot nozzle purged with nitrogen. The accurately deposited solution thin film on the substrate is recorded by a tilted CCD camera, allowing for in situ monitoring of the perovskite thin film formation. With the tracking of crystallization dynamics during the drying process, we identify the critical process parameters needed for the design of optimal drying and gas quenching systems. In addition, defining different drying regimes, we derive practical slot jet adjustments preventing gas backflow and demonstrate large-area, homogeneous, and pinhole-free slot-die coated perovskite thin films that result in solar cells with PCEs of up to 18.6%. Our study reveals key interrelations of process parameters, e.g., the gas flow and drying velocity, and the exact crystallization position with the morphology formation of fabricated thin films, resulting in a homogeneous performance of corresponding 50 × 50 mm2 solar minimodules (17.2%) with only minimal upscaling loss. In addition, we validate a previously developed model on the drying dynamics of perovskite thin films on small-area slot-die coated areas of ≥100 cm2. The study provides methodical guidelines for the design of future slot-die coating setups and establishes a step forward to a successful transfer of solution processes towards industrial-scale deposition systems beyond brute force optimization.

10.
Adv Mater ; 35(51): e2307398, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801215

RESUMEN

Molecular interactions and film-formation processes greatly impact the blend film morphology and device performances of all-polymer solar cells (all-PSCs). Molecular structure, such as the central cores of polymer acceptors, would significantly influence this process. Herein, the central core substitutions of polymer acceptors are adjusted and three quinoxaline (Qx)-fused-core-based materials, PQx1, PQx2, and PQx3 are synthesized. The molecular aggregation ability and intermolecular interaction are systematically regulated, which subsequently influence the film-formation process and determine the resulting blend film morphology. As a result, PQx3, with favorable aggregation ability and moderate interaction with polymer donor PM6, achieves efficient all-PSCs with a high power conversion efficiency (PCE) of 17.60%, which could be further improved to 18.06% after carefully optimizing device annealing and interface layer. This impressive PCE is one of the highest values for binary all-PSCs based on the classical polymer donor PM6. PYF-T-o is also involved in promoting light utilization, and the resulting ternary device shows an impressive PCE of 18.82%. In addition, PM6:PQx3-based devices exhibit high film-thickness tolerance, superior stability, and considerable potential for large-scale devices (16.23% in 1 cm2 device). These results highlight the importance of structure optimization of polymer acceptors and film-formation process control for obtaining efficient and stable all-PSCs.

11.
Polymers (Basel) ; 15(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37765619

RESUMEN

Waterborne polyurethane-acrylate (WPUA) grafted with polyurethane was prepared to improve the film-forming ability of hard-type acrylic latex. To balance the film-formation ability and hardness, the WPUA latex was designed with a hard core (polyacrylate) and soft shell (polyurethane). The grafting ratio was controlled through varying the content of 2-hydroxyethyl methacrylate (HEMA) used to cap the ends of the polyurethane prepolymer. The morphologies of the latex particles, film surface, and fracture surface of the film were characterized through transmission electron microscopy, atomic force microscopy, and scanning electron microscopy, respectively. An increase in the grafting ratio resulted in the enhanced miscibility of polyurethane and polyacrylate but reduced adhesion between particles and increased minimum film formation temperature. In addition, grafting was essential to obtain transparent WPUA films. Excessive grafting induced defects such as micropores within the film, leading to the decreased hardness and adhesive strength of the film. The optimal HEMA content for the preparation of a WPUA coating with excellent film-forming ability and high hardness in ambient conditions was noted to be 50%. The final WPUA film was prepared without coalescence agents that generate volatile organic compounds.

12.
ChemSusChem ; 16(20): e202300585, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37549200

RESUMEN

To switch to alternatives for fossil-fuel-based polymer materials, renewable raw materials from green resources should be utilized. Chitosan is such a material that is a strong, but workable derivative from chitin, obtained from crustaceans. However, various applications ask for specific plastic properties, such as certain flexibility, hardness and transparency. With different additives, also obtainable from green resources, chitosan-based composites in the form of self-supporting films, ranging from very hard and brittle to soft and flexible were successfully produced. The additives turned out to belong to one of three categories, namely linear, non-linear, or crosslinking additives. The non-linear additives could only be taken up to a certain relative amount, whereas the uptake of linear additives was not limited within the range of our experiments. Additives with multiple functional groups tend to crosslink chitosan even at room temperature in an acidic medium. Finally, it was shown that dissolving the chitosan in acetic acid and subsequently drying the matrix as a film results in reacetylation compared to the starting chitosan source, resulting in a harder material. With these findings, it is possible to tune the properties of chitosan-based polymer materials, making a big step towards application of this renewable polymer within consumer goods.

13.
Angew Chem Int Ed Engl ; 62(37): e202309095, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37488075

RESUMEN

Polycrystalline metal-organic framework (MOF) layers hold great promise as molecular sieve membranes for efficient gas separation. Nevertheless, the high crystallinity tends to cause inter-crystalline defects/cracks in the nearby crystals, which makes crystalline porous materials face a great challenge in the fabrication of defect-free membranes. Herein, for the first time, we demonstrate the balance between crystallinity and film formation of MOF membrane through a facile in situ modulation strategy. Monocarboxylic acid was introduced as a modulator to regulate the crystallinity via competitive complexation and thus concomitantly control the film-forming state during membrane growth. Through adjusting the ratio of modulator acid/linker acid, an appropriate balance between this structural "trade-off" was achieved. The resulting MOF membrane with moderate crystallinity and coherent morphology exhibits molecular sieving for H2 /CO2 separation with selectivity up to 82.5.

14.
Microbiol Spectr ; 11(4): e0282322, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37347174

RESUMEN

Lentinula edodes is one of the most widely cultivated edible mushrooms in the world. When cultivated in sawdust, the surface mycelium of L. edodes needs a long postripening stage wherein it forms a brown film (BF) by secreting and accumulating pigments. BF formation is critical for the high quality and yield of fruiting bodies. Protein lysine acetylation (KAC) is an important post-translational modification that regulates growth and development. Previous studies have shown that deacetylase levels are significantly increased during BF formation in the postripening stage of L. edodes. The aim of this study was to assess the role of protein acetylation during BF formation. To this end, we compared the acetylome of L. edodes mycelia before and after BF formation using anti-acetyl antibody-based label-free quantitative proteomics. We identified 5,613 acetylation sites in 1,991 proteins, and quantitative information was available for 4,848 of these sites in 1,815 proteins. Comparative acetylome analysis showed that the modification of 699 sites increased and that of 562 sites decreased during BF formation. Bioinformatics analysis of the differentially acetylated proteins showed significant enrichment in the tricarboxylic acid (TCA) cycle and proteasome pathways. Furthermore, functional assays showed that BF formation is associated with significant changes in the activities of proteasome, citrate synthase, and isocitrate dehydrogenase. Consistent with this hypothesis, the lysine deacetylase inhibitor trichostatin (TSA) delayed autophagy and BF formation in L. edodes. Taken together, KAC and autophagy play important roles in the mycelial BF formation and postripening stage of L. edodes. IMPORTANCE Mycelial BF formation and postripening of L. edodes affects the quality and quantity of its edible fruiting bodies. In this study, we explored the role of protein KAC in this biological process, with the aim of optimizing the cultivation and yield of L. edodes.


Asunto(s)
Hongos Shiitake , Hongos Shiitake/metabolismo , Lisina/metabolismo , Acetilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Micelio , Autofagia
15.
Adv Sci (Weinh) ; 10(8): e2205512, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36670061

RESUMEN

Smart, responsive materials are required in various advanced applications ranging from anti-counterfeiting to autonomous sensing. Colloidal crystals are a versatile material class for optically based sensing applications owing to their photonic stopband. A careful combination of materials synthesis and colloidal mesostructure rendered such systems helpful in responding to stimuli such as gases, humidity, or temperature. Here, an approach is demonstrated to simultaneously and independently measure the time and temperature solely based on the inherent material properties of complex colloidal crystal mixtures. An array of colloidal crystals, each featuring unique film formation kinetics, is fabricated. Combined with machine learning-enabled image analysis, the colloidal crystal arrays can autonomously record isothermal heating events - readout proceeds by acquiring photographs of the applied sensor using a standard smartphone camera. The concept shows how the progressing use of machine learning in materials science has the potential to allow non-classical forms of data acquisition and evaluation. This can provide novel insights into multiparameter systems and simplify applications of novel materials.

16.
Environ Sci Technol ; 56(23): 16801-16810, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36346833

RESUMEN

The interactions of heavy metals with minerals influence the mobility and bioavailability of toxic elements in natural aqueous environments. The sorption of heavy metals on covalently bonded minerals is generally well described by surface complexation models (SCMs). However, understanding sorption on sparingly soluble minerals is challenging because of the dynamically evolving chemistry of sorbent surfaces. The interpretation can be even more complicated when multiple metal ions compete for sorption. In the present study, we observed synergistically enhanced uptake of lead and selenate on the barite (001) surface through two sorption mechanisms: lattice incorporation that dominates at lower coverages and two-dimensional monolayer growth that dominates at higher coverages. We also observed a systematic increase in the sorption affinity with increasing co-sorbed ion coverages, different from the assumption of invariant binding constants for individual adsorption processes in classical SCMs. Computational simulations showed thermodynamically favorable co-incorporation of lead and selenate by simultaneously substituting for barium and sulfate in neighboring sites, resulting in the formation of molecular clusters that locally match the net dimension of the substrate lattice. These results emphasize the importance of ion-ion interactions at mineral-water interfaces that control the fate and transport of contaminants in the environment.


Asunto(s)
Sulfato de Bario , Metales Pesados , Ácido Selénico , Agua/química , Adsorción , Minerales/química , Sulfatos
17.
Small Methods ; 6(11): e2200633, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36228109

RESUMEN

The emerging broad range of applications of the glow discharge optical emission spectroscopy (GD-OES) technique in the field of perovskite solar cells (PSCs) research is reviewed. It can provide a large palette of information by easily and quickly tracking the depth distribution of light to heavy elements. After a discussion of the advantages and the limitations of the technique and a comparison with other analytical techniques, how GD-OES is employed to give structural information on perovskite solar cells is shown. GD-OES has allowed the full perovskite film formation process investigation, from the initial precursor layers containing soaking and complexed solvent to the final crystallized 3D perovskite layers. The A-site elemental cations distribution is followed-up during the film formation. In addition, this technique gives a deep insight into the action mechanism of additives and their effects on the film formation. It provides fruitful information on optimized light absorbing layers and on the selective contact layers which ensure the charge transport in PSCs. It allows to directly visualize halide ions migration and their blocking by ad-hoc chemical engineering and to study the films and PSCs ageing. GD-OES opens new perspectives to explain the final performances of the devices.

18.
Nano Lett ; 22(18): 7545-7553, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36083803

RESUMEN

Two dimensional Dion-Jacobson (2D DJ) perovskite has emerged as a potential photovoltaic material because of its unique optoelectronic characteristics. However, due to its low structural flexibility and high formation energy, extra assistance is needed during crystallization. Herein, we study the solvent effect on film formation and trap states of 2D DJ perovskite. It is found that the nucleation process of 2D DJ perovskite can be retarded by extra coordination, which is proved by in situ optical spectra. As a benefit, out-of-plane oriented crystallization and ordered phase distribution are realized. Finally, in 1,5-pentanediammonium (PeDA) based 2D DJ perovskite solar cells (PSCs), one of the highest reported open-circuit voltage (VOC) values of 1.25 V with state-of-the-art efficiency of 18.41% is obtained due to greatly shallowed trap states and suppressed nonradiative recombination. The device also exhibits excellent heat tolerance, which maintains 80% of its initial efficiency after being kept under 85 °C after 3000 h.

19.
Adv Mater ; 34(30): e2202042, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35642723

RESUMEN

3D mixed-halide perovskite-based red emitters combine excellent charge-transport characteristics with simple solution processing and good film formation; however, light-emitting diodes (LEDs) based on these emitters cannot yet outperform their nanocrystal counterparts. Here the use of diammonium halides in regulating the formation of mixed bromide-iodide perovskite films is explored. It is found that the diammonium cations preferentially bond to Pb-Br, rather than Pb-I, octahedra, promoting the formation of quasi-2D phases. It is proposed that the perovskite formation is initially dominated by the crystallization of the thermodynamically more favorable 3D phase, but, as the solution gets depleted from the regular A cations, thin shells of amorphous quasi-2D perovskites form. This leads to crystalline perovskite grains with efficiently passivated surfaces and reduced lattice strain. As a result, the diammonium-treated perovskite LEDs demonstrate a record luminance (10745 cd m-2 ) and half-lifetime among 3D perovskite-based red LEDs.

20.
Polymers (Basel) ; 14(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35745974

RESUMEN

In this research, ethyl cellulose films were prepared by a simple, easy, controlled one-pot method using either ethanol or ethyl lactate as solvents, the films being formed at 6 °C. Titanium dioxide nanoparticles were incorporated to improve the oxygen transmission and water vapour transmission rates of the obtained films. This method used no plasticizers, and flexible materials with good mechanical properties were obtained. The resulting solvent-free and transparent ethyl cellulose films exhibited good mechanical properties and unique free-shapable properties. The obtained materials had similar properties to those reported in the literature, where plasticizers were incorporated into ethyl cellulose films with an elastic modulus of 528 MPa. Contact angles showed the hydrophobic nature of all the prepared materials, with contact angles between 80 and 108°. Micrographs showed the smooth surfaces of the prepared samples and porous intersections with honeycomb-like structures. The oxygen and water vapor transmission rates were the lowest for the ethyl cellulose films prepared in ethyl lactate, these being 615 cm3·m-2·day-1 and 7.8 gm-2·day-1, respectively, showing that the films have promise for food packaging applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...