Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2403463, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962927

RESUMEN

In this study, a novel synthesis of ultrathin, highly uniform colloidal bismuth sulfohalide (BiSX where X = Cl, Br, I) nanowires (NWs) and NW bundles (NBs) for room-temperature and solution-processed flexible photodetectors are presented. High-aspect-ratio bismuth sulfobromide (BiSBr) NWs are synthesized via a heat-up method using bismuth bromide and elemental S as precursors and 1-dodecanethiol as a solvent. Bundling of the BiSBr NWs occurs upon the addition of 1-octadecene as a co-solvent. The morphologies of the BiSBr NBs are easily tailored from sheaf-like structures to spherulite nanostructures by changing the solvent ratio. The optical bandgaps are modulated from 1.91 (BiSCl) and 1.88 eV (BiSBr) to 1.53 eV (BiSI) by changing the halide compositions. The optical bandgap of the ultrathin BiSBr NWs and NBs exhibits blueshift, whose origin is investigated through density functional theory-based first-principles calculations. Visible-light photodetectors are fabricated using BiSBr NWs and NBs via solution-based deposition followed by solid-state ligand exchanges. High photo-responsivities and external quantum efficiencies (EQE) are obtained for BiSBr NW and NB films even under strain, which offer a unique opportunity for the application of the novel BiSX NWs and NBs in flexible and environmentally friendly optoelectronic devices.

2.
Macromol Rapid Commun ; : e2400433, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023423

RESUMEN

The fabrication of the flexible devices with excellent photovoltaic performance and stability is critical for the commercialization of organic solar cells (OSCs). Herein, the conjugated dimer acceptor DY-TVCl and the non-conjugated dimer acceptor DY-3T based on the monomer MY-BO are synthesized to regulate the molecular glass transition temperatures (Tg) for improving the morphology stability of active layer films. And the crack onset strain values for the blend films based on dimer acceptors are superior than that of small molecule, which are beneficial for the preparation of flexible devices. Accordingly, the binary device based on PM6:DY-TVCl achieves a maximum power conversion efficiency (PCE) of 18.01%. Meanwhile, the extrapolated T80 (time to reach 80% of initial PCE) lifetimes of the PM6:DY-TVCl-based device and PM6:DY-3T-based device are 3091 and 2227 h under 1-sun illumination, respectively, which are better than that of the PM6:MY-BO-based device (809 h). Furthermore, the flexible devices based on DY-TVCl and DY-3T exhibit the efficiencies of 15.23% and 14.34%, respectively. This work affords a valid approach to improve the stability and mechanical robustness of OSCs, as well as ensuring the reproducibility of organic semiconductors during mass production.

3.
J Colloid Interface Sci ; 676: 670-679, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39053414

RESUMEN

Multicolour electrochromic materials have been considered as a promising alternative to achieve dynamic full-colour tuning towards next-generation electronic display technology. However, the development of electrochromics with wide colour gamut and subtle multicolour tunability still remains challenging due to inflexible energy level structures in intrinsic active materials. Herein, the electrochromic π-conjugated polymers with rich and subtle colour tunability were designed and developed based on a fine adjustment on the energy level structures. The chromatic transition covers almost full-colour gamut, and each colour scheme has a rich variety of categories stemming from versatile hues, chromas and lightnesses. Moreover, the multicolour π-conjugated polymers also demonstrate superior overall electrochromic performance, including fast switching (∼1.0 s), high colouration efficiency (160.4 cm2 C-1@550 nm) and good reversibility (over 90 % retention after 10,000 cycles). As a proof of concept, ultrathin and flexible prototype devices are developed by utilizing the multicolour π-conjugated polymers as electrochromic active layer, exhibiting a wide colour gamut and highly saturated multicolour tunability. The design principles proposed in this work may also be applicable to diverse optoelectronic applications.

4.
ACS Appl Mater Interfaces ; 16(28): 36567-36576, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950327

RESUMEN

Colloidal metal oxide nanoparticles are key materials for achieving cost-effective and large-scale production of flexible devices, as they enable the formation of functional oxide thin films at low temperatures (<400 °C) through printing techniques such as inkjet printing, gravure coating, and microcontact printing. The conventional solvothermal synthesis of colloidal metal oxide nanoparticles through the thermal decomposition of precursors results in particles with bulky, long-chain ligands on their surfaces, which hinder the formation of dense oxide films when depositing the colloidal metal oxide nanoparticles. Herein, we have developed a simple and versatile method for synthesizing colloidal metal oxide nanoparticles using base-induced hydrolysis and the condensation of metal acetates as precursors. Various binary and ternary colloidal metal oxide nanoparticles (CuO, Mn3O4, Co3O4, CeO2, In2O3, Co1.8Mn1.2O4) were synthesized using short-chain acetate ligands on their surfaces. The thin acetate ligand-containing colloidal Co1.8Mn1.2O4 nanoparticle film exhibited lower resistivity than the same with long-chain oleate ligands. The films coated onto a polyimide substrate formed a flexible negative temperature coefficient thermistor that exhibited the temperature dependence of resistance comparable to bulk materials with a bending durability of up to 5 mm radius. These findings highlight the effectiveness of utilizing colloidal metal oxide nanoparticles with short-chain ligands in flexible devices.

5.
ACS Nano ; 18(27): 17407-17438, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38923501

RESUMEN

Continuous blood pressure (BP) tracking provides valuable insights into the health condition and functionality of the heart, arteries, and overall circulatory system of humans. The rapid development in flexible and wearable electronics has significantly accelerated the advancement of wearable BP monitoring technologies. However, several persistent challenges, including limited sensing capabilities and stability of flexible sensors, poor interfacial stability between sensors and skin, and low accuracy in BP estimation, have hindered the progress in wearable BP monitoring. To address these challenges, comprehensive innovations in materials design, device development, system optimization, and modeling have been pursued to improve the overall performance of wearable BP monitoring systems. In this review, we highlight the latest advancements in flexible and wearable systems toward continuous noninvasive BP tracking with a primary focus on materials development, device design, system integration, and theoretical algorithms. Existing challenges, potential solutions, and further research directions are also discussed to provide theoretical and technical guidance for the development of future wearable systems in continuous ambulatory BP measurement with enhanced sensing capability, robustness, and long-term accuracy.


Asunto(s)
Algoritmos , Dispositivos Electrónicos Vestibles , Humanos , Monitoreo Ambulatorio de la Presión Arterial/instrumentación , Presión Sanguínea , Diseño de Equipo
6.
Adv Sci (Weinh) ; : e2402158, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923280

RESUMEN

Sol-gel processed zinc oxide (ZnO) is one of the most widely used electron transport layers (ETLs) in inverted organic solar cells (OSCs). The high annealing temperature (≈200 °C) required for sintering to ensure a high electron mobility however results in severe damage to flexible substrates. Thus, flexible organic solar cells based on sol-gel processed ZnO exhibit significantly lower efficiency than rigid devices. In this paper, an indium-doping approach is developed to improve the optoelectronic properties of ZnO layers and reduce the required annealing temperature. Inverted OSCs based on In-doped ZnO (IZO) exhibit a higher efficiency than those based on ZnO for a range of different active layer systems. For the PM6:L8-BO system, the efficiency increases from 17.0% for the pristine ZnO-based device to 17.8% for the IZO-based device. The IZO-based device with an active layer of PM6:L8-BO:BTP-eC9 exhibits an even higher efficiency of up to 18.1%. In addition, a 1.2-micrometer-thick inverted ultrathin flexible organic solar cell is fabricated based on the IZO ETL that achieves an efficiency of 17.0% with a power-per-weight ratio of 40.4 W g-1, which is one of the highest efficiency for ultrathin (less than 10 micrometers) flexible organic solar cells.

7.
Small ; : e2401346, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700047

RESUMEN

Transparent flexible energy storage devices are limited by the trade-off among flexibility, transparency, and charge storage capability of their electrode materials. Conductive polymers are intrinsically flexible, but limited by small capacitance. Pseudocapacitive MXene provides high capacitance, yet their opaque and brittle nature hinders their flexibility and transparency. Herein, the development of synergistically interacting conductive polymer Ti3C2Tx MXene/PEDOT:PSS composites is reported for transparent flexible all-solid-state supercapacitors, with an outstanding areal capacitance of 3.1 mF cm-2, a high optical transparency of 61.6%, and excellent flexibility and durability. The high capacitance and high transparency of the devices stem from the uniform and thorough blending of PEDOT:PSS and Ti3C2Tx, which is associated with the formation of O─H…O H-bonds in the composites. The conductive MXene/polymer composite electrodes demonstrate a rational means to achieve high-capacity, transparent and flexible supercapacitors in an easy and scalable manner.

8.
Angew Chem Int Ed Engl ; 63(29): e202405357, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682802

RESUMEN

The rapid growth of flexible quasi-solid-state thermocells (TECs) provides a fresh way forward for wearable electronics. However, their insufficient mechanical strength and power output still hinder their further applications. This work demonstrates a one-stone-two-birds strategy to synergistically enhance the mechanical and thermoelectrochemical properties of the [Fe(CN)6]3-/4--based TECs. By introducing Hofmeister effect and multiple non-covalent interactions via betaine zwitterions, the mechanical strength of the conventional brittle gelatin hydrogel electrolytes is substantially improved from 50 to 440 kPa, with a high stretchability approaching 250 %. Meanwhile, the betaine zwitterions strongly affect the solvation structure of [Fe(CN)6]3- ions, thus enlarging the entropy difference and raising the thermoelectrochemical Seebeck coefficient from 1.47 to 2.2 mV K-1. The resultant quasi-solid-state TECs exhibit a normalized output power density of 0.48 mW m-2 K-2, showing a notable improvement in overall performance compared to their counterparts without zwitterion regulation. The intrinsic thermo-reversible property also allows the TECs to repeatedly self-recover through sol-gel transformations, ensuring reliable energy output and even recycling of TECs in case of extreme mechanical damages. An energy-autonomous smart glove consisting of eighteen individual TECs is further designed, which can simultaneously monitor the temperature of different positions on any touched object, demonstrating high potential in wearable applications.

9.
ACS Appl Mater Interfaces ; 16(17): 22282-22293, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38644562

RESUMEN

Nonvolatile organic memristors have emerged as promising candidates for next-generation electronics, emphasizing the need for vertical device fabrication to attain a high density. Herein, we present a comprehensive investigation of high-performance organic memristors, fabricated in crossbar architecture with PTB7/Al-AlOx-nanocluster/PTB7 embedded between Al electrodes. PTB7 films were fabricated using the Unidirectional Floating Film Transfer Method, enabling independent uniform film fabrication in the Layer-by-Layer (LbL) configuration without disturbing underlying films. We examined the charge transport mechanism of our memristors using the Hubbard model highlighting the role of Al-AlOx-nanoclusters in switching-on the devices, due to the accumulation of bipolarons in the semiconducting layer. By varying the number of LbL films in the device architecture, the resistance of resistive states was systematically altered, enabling the fabrication of novel multilevel memristors. These multilevel devices exhibited excellent performance metrics, including enhanced memory density, high on-off ratio (>108), remarkable memory retention (>105 s), high endurance (87 on-off cycles), and rapid switching (∼100 ns). Furthermore, flexible memristors were fabricated, demonstrating consistent performance even under bending conditions, with a radius of 2.78 mm for >104 bending cycles. This study not only demonstrates the fundamental understanding of charge transport in organic memristors but also introduces novel device architectures with significant implications for high-density flexible applications.

10.
Small ; : e2312230, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516959

RESUMEN

All inorganic CsPbI2Br perovskite (AIP) has attracted great attention due to its excellent resistance against thermal stress as well as the remarkable capability to deliver high-voltage output. However, CsPbI2Br perovskite solar cells (PeSCs) still encounter critical challenges in attaining both high efficiency and mechanical stability for commercial applications. In this work, formamidine disulfide dihydrochloride (FADD) modified ZnO electron transport layer (ETL) has been developed for fabricating inverted devices on either rigid or flexible substrate. It is found that the FADD modification leads to efficient defects passivation, thereby significantly reducing charge recombination at the AIP/ETL interface. As a result, rigid PeSCs (r-PeSCs) deliver an enhanced efficiency of 16.05% and improved long-term thermal stability. Moreover, the introduced FADD can regulate the Young's modulus (or Derjaguin-Muller-Toporov (DMT) modilus) of ZnO ETL and dissipate stress concentration at the AIP/ETL interface, effectively restraining the crack generation and improving the mechanical stability of PeSCs. The flexible PeSCs (f-PeSCs) exhibit one of the best performances so far reported with excellent stability against 6000 bending cycles at a curvature radius of 5 mm. This work thus provides an effective strategy to simultaneously improve the photovoltaic performance and mechanical stability.

11.
Small ; 20(29): e2309863, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38368256

RESUMEN

Research on flexible thermoelectric (TE) materials has typically focused on conducting polymers and conducting polymer-based composites. However, achieving TE properties comparable in magnitude to those exhibited by their inorganic counterparts remains a formidable challenge. This study focuses on the synthesis of silver selenide (Ag2Se) nanomaterials using solvothermal methods and demonstrates a significant enhancement in their TE properties through the synergistic dual doping of sulfur and copper. Flexible TE thin films demonstrating excellent flexibility are successfully fabricated using vacuum filtration and hot-pressing techniques. The resulting thin films also exhibited outstanding TE performance, with a high Seebeck coefficient (S = -138.5 µV K-1) and electrical conductivity (σ = 1.19 × 105 S m-1). The record power factor of 2296.8 µW m-1 K-2 at room temperature is primarily attributed to enhanced carrier transport and interfacial energy filtration effects in the composite material. Capitalizing on these excellent TE properties, the maximum power output of flexible TE devices reached 1.13 µW with a temperature difference of 28.6 K. This study demonstrates the potential of Ag2Se-based TE materials for flexible and efficient energy-harvesting applications.

12.
Nano Lett ; 24(6): 2003-2010, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38306120

RESUMEN

Heat-assisted magnetic anisotropy engineering has been successfully used in selective magnetic writing and microwave amplification due to a large interfacial thermal resistance between the MgO barrier and the adjacent ferromagnetic layers. However, in spin-orbit torque devices, the writing current does not flow through the tunnel barrier, resulting in a negligible heating effect due to efficient heat dissipation. Here, we report a dramatically reduced switching current density of ∼2.59 MA/cm2 in flexible spin-orbit torque heterostructures, indicating a 98% decrease in writing energy consumption compared with that on a silicon substrate. The reduced driving current density is enabled by the dramatically decreased magnetic anisotropy due to Joule dissipation and the lower thermal conductivity of the flexible substrate. The large magnetic anisotropy could be fully recovered after the impulse, indicating retained high stability. These results pave the way for flexible spintronics with the otherwise incompatible advantages of low power consumption and high stability.

13.
ACS Appl Mater Interfaces ; 16(10): 12697-12705, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38415652

RESUMEN

Flexible zinc-ion batteries (ZIBs) have been considered to have huge potential in portable and wearable electronics due to their high safety, cost efficiency, and considerable energy density. Therein, the design and construction of flexible electrodes significantly determine the performance and lifespan of flexible battery devices. In this work, an ultrathin flexible three-dimensional ordered macroporous (3DOM) Sn@Zn anode (60 µm in thickness) is presented to relieve dendrite growth and expand the lifespan of flexible ZIBs. The 3DOM structure can ensure uniform electric field distribution, guide oriented zinc plating/stripping, and extend the lifespan of anodes. The rich zincophilic Sn sites on the electrode surface significantly facilitate Zn nucleation. Accordingly, a lowered nucleation overpotential of 8.9 mV and an ultralong cycling performance of 2400 h at 0.1 mA cm-2 and 0.1 mAh cm-2 are achieved in symmetric cells, and the 3DOM Sn@Zn anode can also operate in deep cycling for over 200 h at 10 mA cm-2 and 5 mAh cm-2. A flexible 3DOM MnO2/Ni cathode with a high structural stability and a high mass-specific capacity is fabricated to match with the anode to form a flexible ZIB with a total thickness of 200 µm. The flexible device delivers a high volumetric energy density of 11.76 mWh cm-3 at 100 mA gMnO2-1 and a high average open-circuit voltage of 1.5 V and exhibits high-performance power supply under deformation in practical application scenarios. This work may shed some light on the design and fabrication of flexible energy-storage devices.

14.
ACS Appl Mater Interfaces ; 16(8): 10714-10721, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38377540

RESUMEN

Antireflection coatings (ARCs) enhance optical clarity and improve light transmission by reducing glare and reflections. The application of conventional ARCs in flexible devices, however, is impeded by their lack of durability, particularly under bending deformation. We develop ARCs that withstand delamination and fracture, remaining intact even after 1000 bending cycles with a 5 cm bending radius. We fabricate integrated ARCs (iARCs) on a poly(methyl methacrylate) (PMMA) substrate by inducing free polymers to infiltrate the interstices of a disordered assembly of hollow silica nanochains and nanospheres. The polydispersity of PMMA creates a refractive index gradient, yielding a broadband antireflection capability. The nanochain-based iARCs are superior to the nanosphere-based coatings in both antireflection properties and mechanical durability, owing to the lower packing density and mechanical interlocking of the nanochains, respectively. Additionally, these nanochain iARCs display antifogging properties stemming from their superhydrophilicity. While our demonstrations are based on PMMA as a model substrate, this methodology is potentially extendable to other polymers, enhancing the iARC's applicability across various practical applications, including flexible and wearable devices.

15.
ACS Appl Mater Interfaces ; 16(3): 3621-3630, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38197805

RESUMEN

The metallic conductive filament (CF) model, which serves as an important conduction mechanism for realizing synaptic functions in electronic devices, has gained recognition and is the subject of extensive research. However, the formation of CFs within the active layer is plagued by issues such as uncontrolled and random growth, which severely impacts the stability of the devices. Therefore, controlling the growth of CFs and improving the performance of the devices have become the focus of that research. Herein, a synaptic device based on polyvinylpyrrolidone (PVP)/graphene oxide quantum dot (GO QD) nanocomposites is proposed. Doping GO QDs in the PVP provides a large number of active centers for the reduction of silver ions, which allows, to a certain extent, the growth of CFs to be controlled. Because of this, the proposed device can simulate a variety of synaptic functions, including the transition from long-term potentiation to long-term depression, paired-pulse facilitation, post-tetanic potentiation, transition from short-term memory to long-term memory, and the behavior of the "learning experience". Furthermore, after being bent repeatedly, the devices were still able to simulate multiple synaptic functions accurately. Finally, the devices achieved a high recognition accuracy rate of 89.39% in the learning and inference tests, producing clear digit classification results.

16.
Adv Mater ; 36(8): e2306679, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061027

RESUMEN

Air liquid interfaced (ALI) epithelial barriers are essential for homeostatic functions such as nutrient transport and immunological protection. Dysfunction of such barriers are implicated in a variety of autoimmune and inflammatory disorders and, as such, sensors capable of monitoring barrier health are integral for disease modelling, diagnostics and drug screening applications. To date, gold-standard electrical methods for detecting barrier resistance require rigid electrodes bathed in an electrolyte, which limits compatibility with biological architectures and is non-physiological for ALI. This work presents a flexible all-planar electronic device capable of monitoring barrier formation and perturbations in human respiratory and intestinal cells at ALI. By interrogating patient samples with electrochemical impedance spectroscopy and simple equivalent circuit models, disease-specific and patient-specific signatures are uncovered. Device readouts are validated against commercially available chopstick electrodes and show greater conformability, sensitivity and biocompatibility. The effect of electrode size on sensing efficiency is investigated and a cut-off sensing area is established, which is one order of magnitude smaller than previously reported. This work provides the first steps in creating a physiologically relevant sensor capable of mapping local and real-time changes of epithelial barrier function at ALI, which will have broad applications in toxicology and drug screening applications.


Asunto(s)
Electrónica , Humanos , Electrodos
17.
Chem Rec ; 24(1): e202300226, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37728184

RESUMEN

In the recent times research towards solid state supercapacitors (SSS) have increased drastically due to the promising performance in futuristic technologies particularly in portable and flexible electronics like smart watches, smart fabrics, foldable smartphones and tablets. Also, when compared to supercapacitors using liquid electrolyte, solid electrolyte has several advantages like high energy density, safety, high cycle life, flexible form factor, and less environmental impact. The crucial factor determining the sustainability of a technology is the eco-friendliness since the natural resources are being exploited in a wide scale. Numerous studies have focused on biodegradable materials for supercapacitor electrodes, electrolytes, and other inactive components. Making use of these biodegradable materials to design a SSS enables the technology to sustain for a very long time since biodegradable materials are not only environment friendly but also, they show relatively high performance. This review focuses on recent progress of different biodegradable electrodes, and electrolytes along with their properties, electrochemical performance and biodegradable capabilities for SSS have been analyzed and provides a concise summary enabling readers to understand the importance of biodegradable materials and to narrow down the research in a more rational way.

18.
Adv Mater ; 36(7): e2306681, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37805706

RESUMEN

Achieving precise control over the nanoscale morphology of bulk heterojunction films presents a significant challenge for the conventional post-treatments employed in organic solar cells (OSCs). In this study, a near-infrared photon-assisted annealing (NPA) strategy is developed for fabricating high-performance OSCs under mild processing conditions. It is revealed a top NIR light illumination, together with the bottom heating, enables the selective tuning of the molecular arrangement and assembly of narrow bandgap acceptors in polymer networks to achieve optimal morphologies, as well as the acceptor-rich top surface of active layers. The derived OSCs exhibit a remarkable power conversion efficiency (PCE) of 19.25%, representing one of the highest PCEs for the reported binary OSCs so far. Moreover, via the NPA strategy, it has succeeded in accessing top-illuminated flexible OSCs using thermolabile polyethylene terephthalate from mineral water bottles, displaying excellent mechanical stabilities. Overall, this work will hold the potential to develop organic solar cells under mild processing with various substrates.

19.
Adv Mater ; 36(2): e2308042, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37845009

RESUMEN

Air self-charging power systems possess the capability of energy harvesting, conversion, and storage simultaneously. However, in general, their self-charging rate is slow and the batteries cannot be oxidized to the fully charged state due to the weak oxidizability of O2 . Herein, an ultrafast air self-charging aqueous zinc battery is designed by constructing a polyaniline@Pt/C (PANI@Pt/C) composite cathode. The introduction of Pt/C catalyst endows the redox reaction between PANI and O2 with fast reaction kinetics and extended redox potential difference. Therefore, the self-charging rate of the Zn/PANI@Pt/C batteries is effectively accelerated and they can be self-charged to fully charged state. Furthermore, the PANI can be recharged by O2 simultaneously during discharging process to compensate the consumed electrical energy, achieving prolonged energy supply. In addition, the PANI@Pt/C cathodes can be directly used as the cathodes of flexible self-charging zinc batteries due to their excellent mechanical properties. As a proof of concept, flexible soft-packaged Zn/PANI@Pt/C batteries are fabricated and displayed stable electrochemical performance and self-rechargeability even at different bending states. A route is provided here to design ultrafast chemical self-charging energy storage devices and the horizons of flexible energy storage devices are broadened.

20.
Adv Mater ; 36(9): e2306880, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38015990

RESUMEN

Sound plays a crucial role in the perception of the world. It allows to communicate, learn, and detect potential dangers, diagnose diseases, and much more. However, traditional acoustic sensors are limited in their form factors, being rigid and cumbersome, which restricts their potential applications. Recently, acoustic sensors have made significant advancements, transitioning from rudimentary forms to wearable devices and smart everyday clothing that can conform to soft, curved, and deformable surfaces or surroundings. In this review, the latest scientific and technological breakthroughs with insightful analysis in materials, physics, design principles, fabrication strategies, functions, and applications of flexible and wearable acoustic sensing technology are comprehensively explored. The new generation of acoustic sensors that can recognize voice, interact with machines, control robots, enable marine positioning and localization, monitor structural health, diagnose human vital signs in deep tissues, and perform organ imaging is highlighted. These innovations offer unique solutions to significant challenges in fields such as healthcare, biomedicine, wearables, robotics, and metaverse. Finally, the existing challenges and future opportunities in the field are addressed, providing strategies to advance acoustic sensing technologies for intriguing real-world applications and inspire new research directions.


Asunto(s)
Robótica , Dispositivos Electrónicos Vestibles , Humanos , Acústica , Física , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...