Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38999704

RESUMEN

Chrysanthemums are among the world's most popular cut flowers, with their color being a key ornamental feature. The formation of these colors can be influenced by high temperatures. However, the regulatory mechanisms that control the fading of chrysanthemum flower color under high-temperature stress remain unclear. This study investigates the impact of high temperatures on the color and biochemical responses of purple chrysanthemums. Four purple chrysanthemum varieties were exposed to both normal and elevated temperature conditions. High-temperature stress elicited distinct responses among the purple chrysanthemum varieties. 'Zi Feng Che' and 'Chrystal Regal' maintained color stability, whereas 'Zi Hong Tuo Gui' and 'Zi lian' exhibited significant color fading, particularly during early bloom stages. This fading was associated with decreased enzymatic activities, specifically of chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS), indicating a critical period of color development under heat stress. Additionally, the color fading of 'Zi Lian' was closely related to the increased activity of the peroxidase (POD) and polyphenol oxidase (PPO). Conversely, a reduction in ß-glucosidase (ßG) activity may contribute significantly to the color steadfastness of 'Zi Feng Che'. The genes Cse_sc027584.1_g010.1 (PPO) and Cse_sc031727.1_g010.1 (POD) might contribute to the degradation of anthocyanins in the petals of 'Zi Hong Tuo Gui' and 'Zi Lian' under high-temperature conditions, while simultaneously maintaining the stability of anthocyanins in 'Zi Feng Che' and 'Chrystal Regal' at the early bloom floral stage. The findings of this research provide new insights into the physiological and biochemical mechanisms by which chrysanthemum flower color responds to high-temperature stress.

2.
BMC Plant Biol ; 24(1): 614, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937670

RESUMEN

BACKGROUND: Betalains are reddish and yellow pigments that accumulate in a few plant species of the order Caryophyllales. These pigments have antioxidant and medicinal properties and can be used as functional foods. They also enhance resistance to stress or disease in crops. Several plant species belonging to other orders have been genetically engineered to express betalain pigments. Betalains can also be used for flower color modification in ornamental plants, as they confer vivid colors, like red and yellow. To date, betalain engineering to modify the color of Torenia fournieri-or wishbone flower-a popular ornamental plant, has not been attempted. RESULTS: We report the production of purple-reddish-flowered torenia plants from the purple torenia cultivar "Crown Violet."  Three betalain-biosynthetic genes encoding CYP76AD1, dihydroxyphenylalanine (DOPA) 4,5-dioxygenase (DOD), and cyclo-DOPA 5-O-glucosyltransferase (5GT) were constitutively ectopically expressed under the cauliflower mosaic virus (CaMV) 35S promoter, and their expression was confirmed by quantitative real-time PCR (qRT-PCR) analysis. The color traits, measured by spectrophotometric colorimeter and spectral absorbance of fresh petal extracts, revealed a successful flower color modification from purple to reddish. Red pigmentation was also observed in whole plants. LC-DAD-MS and HPLC analyses confirmed that the additional accumulated pigments were betacyanins-mainly betanin (betanidin 5-O-glucoside) and, to a lesser extent, isobetanin (isobetanidin 5-O-glucoside). The five endogenous anthocyanins in torenia flower petals were also detected. CONCLUSIONS: This study demonstrates the possibility of foreign betacyanin accumulation in addition to native pigments in torenia, a popular garden bedding plant. To our knowledge, this is the first report presenting engineered expression of betalain pigments in the family Linderniaceae. Genetic engineering of betalains would be valuable in increasing the flower color variation in future breeding programs for torenia.


Asunto(s)
Betacianinas , Flores , Ingeniería Genética , Betacianinas/metabolismo , Flores/genética , Flores/metabolismo , Pigmentación/genética , Caryophyllales/genética , Caryophyllales/metabolismo , Plantas Modificadas Genéticamente/genética , Betalaínas/metabolismo
3.
Front Plant Sci ; 15: 1419508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933465

RESUMEN

Brassica napus is one of the most important oil crops in the world. Breeding oilseed rape with colorful flowers can greatly enhance the ornamental value of B. napus and thus improve the economic benefits of planting. As water-soluble flavonoid secondary metabolites, anthocyanins are very important for the synthesis and accumulation of pigments in the petals of plants, giving them a wide range of bright colors. Despite the documentation of over 60 distinct flower shades in B. napus, the intricacies underlying flower color variation remain elusive. Particularly, the mechanisms driving color development across varying flower color backgrounds necessitate further comprehensive investigation. This research undertook a comprehensive exploration through the integration of transcriptome and metabolome analyses to pinpoint pivotal genes and metabolites underpinning an array of flower colors, including beige, beige-red, yellow, orange-red, deep orange-red, white, light-purple, and purple. First, we used a two-way BLAST search to find 275 genes in the reference genome of B. napus Darmor v10 that were involved in making anthocyanins. The subsequent scrutiny of RNA-seq outcomes underscored notable upregulation in the structural genes F3H and UGT, alongside the MYB75, GL3, and TTG1 transcriptional regulators within petals, showing anthocyanin accumulation. By synergizing this data with a weighted gene co-expression network analysis, we identified CHS, F3H, MYB75, MYB12, and MYB111 as the key players driving anthocyanin synthesis in beige-red, orange-red, deep orange-red, light-purple, and purple petals. By integrating transcriptome and weighted gene co-expression network analysis findings with anthocyanin metabolism data, it is hypothesized that the upregulation of MYB75, which, in turn, enhances F3H expression, plays a pivotal role in the development of pigmented oilseed rape flowers. These findings help to understand the transcriptional regulation of anthocyanin biosynthesis in B. napus and provide valuable genetic resources for breeding B. napus varieties with novel flower colors.

4.
Front Plant Sci ; 15: 1365686, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751846

RESUMEN

Flower color is a classic example of an ecologically important trait under selection in plants. Understanding the genetic mechanisms underlying shifts in flower color can provide key insights into ecological speciation. In this study, we investigated the genetic basis of flower color divergence in Barthea barthei, a shrub tree species exhibiting natural variation in flower color. We assembled a high-quality genome assembly for B. barthei with a contig N50 of 2.39 Mb and a scaffold N50 of 16.21 Mb. The assembly was annotated with 46,430 protein-coding genes and 1,560 non-coding RNAs. Genome synteny analysis revealed two recent tetraploidization events in B. barthei, estimated to have occurred at approximately 17 and 63 million years ago. These tetraploidization events resulted in massive duplicated gene content, with over 70% of genes retained in collinear blocks. Gene family members of the core regulators of the MBW complex were significantly expanded in B. barthei compared to Arabidopsis, suggesting that these duplications may have provided raw genetic material for the evolution of novel regulatory interactions and the diversification of anthocyanin pigmentation. Transcriptome profiling of B. barthei flowers revealed differential expression of 9 transcription factors related to anthocyanin biosynthesis between the two ecotypes. Six of these differentially expressed transcription factors were identified as high-confidence candidates for adaptive evolution based on positive selection signals. This study provides insights into the genetic basis of flower color divergence and the evolutionary mechanisms underlying ecological adaptation in plants.

5.
New Phytol ; 243(3): 1082-1100, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38584577

RESUMEN

Betalains are coloring pigments produced in some families of the order Caryophyllales, where they replace anthocyanins as coloring pigments. While the betalain pathway itself is well studied, the tissue-specific regulation of the pathway remains mostly unknown. We enhance the high-quality Amaranthus hypochondriacus reference genome and produce a substantially more complete genome annotation, incorporating isoform details. We annotate betalain and anthocyanin pathway genes along with their regulators in amaranth and map the genetic control and tissue-specific regulation of the betalain pathway. Our improved genome annotation allowed us to identify causal mutations that lead to a knock-out of red betacyanins in natural accessions of amaranth. We reveal the tissue-specific regulation of flower color via a previously uncharacterized MYB transcription factor, AhMYB2. Downregulation of AhMYB2 in the flower leads to reduced expression of key betalain enzyme genes and loss of red flower color. Our improved amaranth reference genome represents the most complete genome of amaranth to date and is a valuable resource for betalain and amaranth research. High similarity of the flower betalain regulator AhMYB2 to anthocyanin regulators and a partially conserved interaction motif support the co-option of anthocyanin regulators for the betalain pathway as a possible reason for the mutual exclusiveness of the two pigments.


Asunto(s)
Amaranthus , Betalaínas , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Anotación de Secuencia Molecular , Proteínas de Plantas , Amaranthus/genética , Amaranthus/metabolismo , Betalaínas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidad de Órganos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Antocianinas/metabolismo , Flores/genética , Pigmentación/genética , Mapeo Cromosómico , Genes de Plantas , Mutación/genética
6.
Biosci Biotechnol Biochem ; 88(7): 705-718, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38632052

RESUMEN

Flavonoids are polyphenolic plant constituents. Anthocyanins are flavonoid pigments found in higher plants that show a wide variety of colors ranging from red through purple to blue. The blue color of the flowers is mostly attributed to anthocyanins. However, only a few types of anthocyanidin, chromophore of anthocyanin, exist in nature, and the extracted pigments are unstable with the color fading away. Therefore, the wide range and stable nature of colors in flowers have remained a mystery for more than a century. The mechanism underlying anthocyanin-induced flower coloration was studied using an interdisciplinary method involving chemistry and biology. Furthermore, the chemical studies on flavonoid pigments in various edible plants, synthetic and biosynthetic studies on anthocyanins were conducted. The results of these studies have been outlined in this review.


Asunto(s)
Antocianinas , Flavonoides , Flores , Flavonoides/química , Flavonoides/metabolismo , Antocianinas/química , Flores/química , Pigmentos Biológicos/química , Pigmentación , Plantas/química , Plantas/metabolismo , Color
7.
Planta ; 259(5): 114, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587670

RESUMEN

MAIN CONCLUSION: Two glycosyltransferase genes belonging to UGT88 family were identified to have 6'-deoxychalcone 4'-glucosyltransferase activity in dahlia. 6'-Deoxychalcones (isoliquiritigenin and butein) are important pigments for yellow and orange to red flower color. 6'-Deoxychalcones are glucosylated at the 4'-position in vivo, but the genes encoding 6'-deoxychalcone 4'-glucosyltransferase have not yet been identified. In our previous study, it was indicated that snapdragon (Antirrhinum majus) chalcone 4'-O-glucosyltransferase (Am4'CGT) has isoliquiritigenin 4'-glucosylation activity. Therefore, to identify genes encoding 6'-deoxychalcone 4'-glucosyltransferase in dahlia (Dahlia variabilis), genes expressed in ray florets that shared high homology with Am4'CGT were explored. As a result, c34671_g1_i1 and c35662_g1_i1 were selected as candidate genes for 6'-deoxychalcone 4'-glucosyltransferases in dahlia. We conducted transient co-overexpression of three genes (c34671_g1_i1 or c35662_g1_i1, dahlia aldo-keto reductase1 (DvAKR1) or soybean (Glycine max) chalcone reductase5 (GmCHR5), and chili pepper (Capsicum annuum) MYB transcription factor (CaMYBA)) in Nicotiana benthamiana by agroinfiltration. Transient overexpression of c34671_g1_i1, DvAKR1, and CaMYBA resulted in increase in the accumulation of isoliquiritigenin 4'-glucosides, isoliquiritigenin 4'-O-glucoside, and isoliquiritigenin 4'-O-[6-O-(malonyl)-glucoside]. However, transient overexpression of c35662_g1_i1, DvAKR1, and CaMYBA did not increase accumulation of isoliquiritigenin 4'-glucosides. Using GmCHR5 instead of DvAKR1 showed similar results suggesting that c34671_g1_i1 has isoliquiritigenin 4'-glucosyltransferase activity. In addition, we conducted co-overexpression of four genes (c34671_g1_i1, c35662_g1_i1 or Am4'CGT, DvAKR1 or GmCHR5, CaMYBA, and chalcone 3-hydroxylase from dahlia). Accumulation of butein 4'-O-glucoside and butein 4'-O-[6-O-(malonyl)-glucoside] was detected for c35662_g1_i1, suggesting that c35662_g1_i1 has butein 4'-glucosyltransferase activity. Recombinant enzyme analysis also supported butein 4'-glucosyltransferases activity of c35662_g1_i1. Therefore, our results suggested that both c34671_g1_i1 and c35662_g1_i1 are 6'-deoxychalcone 4'-glucosyltransferases but with different substrate preference.


Asunto(s)
Capsicum , Chalcona , Chalconas , Dahlia , Glucosiltransferasas/genética , Glucósidos , Glycine max
8.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612838

RESUMEN

Petal blotch is a specific flower color pattern commonly found in angiosperm families. In particular, Rosa persica is characterized by dark red blotches at the base of yellow petals. Modern rose cultivars with blotches inherited the blotch trait from R. persica. Therefore, understanding the mechanism for blotch formation is crucial for breeding rose cultivars with various color patterns. In this study, the metabolites and genes responsible for the blotch formation in R. persica were identified for the first time through metabolomic and transcriptomic analyses using LC-MS/MS and RNA-seq. A total of 157 flavonoids were identified, with 7 anthocyanins as the major flavonoids, namely, cyanidin 3-O-(6″-O-malonyl) glucoside 5-O-glucoside, cyanidin-3-O-glucoside, cyanidin 3-O-galactoside, cyanidin O-rutinoside-O-malonylglucoside, pelargonidin 3-O-glucoside, pelargonidin 3,5-O-diglucoside, and peonidin O-rutinoside-O-malonylglucoside, contributing to pigmentation and color darkening in the blotch parts of R. persica, whereas carotenoids predominantly influenced the color formation of non-blotch parts. Zeaxanthin and antheraxanthin mainly contributed to the yellow color formation of petals at the semi-open and full bloom stages. The expression levels of two 4-coumarate: CoA ligase genes (Rbe014123 and Rbe028518), the dihydroflavonol 4-reductase gene (Rbe013916), the anthocyanidin synthase gene (Rbe016466), and UDP-flavonoid glucosyltransferase gene (Rbe026328) indicated that they might be the key structural genes affecting the formation and color of petal blotch. Correlation analysis combined with weighted gene co-expression network analysis (WGCNA) further characterized 10 transcription factors (TFs). These TFs might participate in the regulation of anthocyanin accumulation in the blotch parts of petals by modulating one or more structural genes. Our results elucidate the compounds and molecular mechanisms underlying petal blotch formation in R. persica and provide valuable candidate genes for the future genetic improvement of rose cultivars with novel flower color patterns.


Asunto(s)
Antocianinas , Rosa , Humanos , Rosa/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Fitomejoramiento , Perfilación de la Expresión Génica , Flavonoides , Glucósidos
9.
Molecules ; 29(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675642

RESUMEN

Flower color is an important ornamental feature that is often modulated by the contents of flavonoids. Chalcone synthase is the first key enzyme in the biosynthesis of flavonoids, but little is known about the role of R. delavayi CHS in flavonoid biosynthesis. In this paper, three CHS genes (RdCHS1-3) were successfully cloned from R. delavayi flowers. According to multiple sequence alignment and a phylogenetic analysis, only RdCHS1 contained all the highly conserved and important residues, which was classified into the cluster of bona fide CHSs. RdCHS1 was then subjected to further functional analysis. Real-time PCR analysis revealed that the transcripts of RdCHS1 were the highest in the leaves and lowest in the roots; this did not match the anthocyanin accumulation patterns during flower development. Biochemical characterization displayed that RdCHS1 could catalyze p-coumaroyl-CoA and malonyl-CoA molecules to produce naringenin chalcone. The physiological function of RdCHS1 was checked in Arabidopsis mutants and tobacco, and the results showed that RdCHS1 transgenes could recover the color phenotypes of the tt4 mutant and caused the tobacco flower color to change from pink to dark pink through modulating the expressions of endogenous structural and regulatory genes in the tobacco. All these results demonstrate that RdCHS1 fulfills the function of a bona fide CHS and contributes to flavonoid biosynthesis in R. delavayi.


Asunto(s)
Aciltransferasas , Chalconas , Flavonoides , Flores , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Rhododendron , Aciltransferasas/genética , Aciltransferasas/metabolismo , Flavonoides/biosíntesis , Flavonoides/metabolismo , Rhododendron/genética , Rhododendron/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Antocianinas/biosíntesis , Antocianinas/metabolismo , Clonación Molecular , Mutación
10.
Plants (Basel) ; 13(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674486

RESUMEN

Flower color is an important trait that affects the economic value of Prunus mume, a famous ornamental plant in the Rosaceae family. P. mume with purple-red flowers is uniquely charming and highly favored in landscape applications. However, little is known about its flower coloring mechanism, which stands as a critical obstacle on the path to innovative breeding for P. mume flower color. In this study, transcriptomic and targeted metabolomic analyses of purple-red P. mume and white P. mume were performed to elucidate the mechanism of flower color formation. In addition, the expression patterns of key genes were analyzed using an RT-qPCR experiment. The results showed that the differential metabolites were significantly enriched in the flavonoid synthesis pathway. A total of 14 anthocyanins emerged as the pivotal metabolites responsible for the differences in flower color between the two P. mume cultivars, comprising seven cyanidin derivatives, five pelargonium derivatives, and two paeoniflorin derivatives. Moreover, the results clarified that the metabolic pathway determining flower color in purple-red P. mume encompasses two distinct branches: cyanidin and pelargonidin, excluding the delphinidin branch. Additionally, through the integrated analysis of transcriptomic and metabolomic data, we identified 18 key genes responsible for anthocyanin regulation, thereby constructing the gene regulatory network for P. mume anthocyanin synthesis. Among them, ten genes (PmCHI, PmGT2, PmGT5, PmGST3, PmMYB17, PmMYB22, PmMYB23, PmbHLH4, PmbHLH10, and PmbHLH20) related to anthocyanin synthesis were significantly positively correlated with anthocyanin contents, indicating that they may be the key contributors to anthocyanin accumulation. Our investigation contributes a novel perspective to understanding the mechanisms responsible for flower color formation in P. mume. The findings of this study introduce novel strategies for molecular design breeding aimed at manipulating flower color in P. mume.

11.
PeerJ ; 12: e17275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650646

RESUMEN

Background: Sect. Chrysantha Chang, belonging to the Camellia genus, is one of the rare and precious ornamental plants distinguished by a distinctive array of yellow-toned petals. However, the variation mechanisms of petal color in Sect. Chrysantha Chang remains largely unclear. Methods: We conducted an integrated analysis of metabolome and transcriptome to reveal petal coloration mechanism in three species, which have different yellow tones petals, including C. chuongtsoensis (CZ, golden yellow), C. achrysantha (ZD, light yellow), and C. parvipetala (XB, milk white). Results: A total of 356 flavonoid metabolites were detected, and 295 differential metabolites were screened. The contents of 74 differential metabolites showed an upward trend and 19 metabolites showed a downward trend, among which 11 metabolites were annotated to the KEGG pathway database. We speculated that 10 metabolites were closely related to the deepening of the yellowness. Transcriptome analysis indicated that there were 2,948, 14,018 and 13,366 differentially expressed genes (DEGs) between CZ vs. ZD, CZ vs. XB and ZD vs. XB, respectively. Six key structural genes (CcCHI, CcFLS, CcDFR1, CcDFR2, CcDFR3, and CcCYP75B1) and five candidate transcription factors (MYB22, MYB28, MYB17, EREBP9, and EREBP13) were involved in the regulation of flavonoid metabolites. The findings indicate that flavonoid compounds influence the color intensity of yellow-toned petals in Sect. Chrysantha Chang. Our results provide a new perspective on the molecular mechanisms underlying flower color variation and present potential candidate genes for Camellia breeding.


Asunto(s)
Camellia , Flores , Regulación de la Expresión Génica de las Plantas , Metaboloma , Pigmentación , Transcriptoma , Flores/genética , Flores/metabolismo , Metaboloma/genética , Pigmentación/genética , Camellia/genética , Camellia/metabolismo , Flavonoides/metabolismo , Perfilación de la Expresión Génica
12.
PeerJ ; 12: e17238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650650

RESUMEN

Floral color and scent profiles vary across species, geographical locations, and developmental stages. The exclusive floral color and fragrance of Chimonanthus praecox is contributed by a range of endogenous chemicals that distinguish it from other flowers and present amazing ornamental value. This comprehensive review explores the intricate interplay of environmental factors, chemicals and genes shaping the flower color and fragrance of Chimonanthus praecox. Genetic and physiological factors control morpho-anatomical attributes as well as pigment synthesis, while environmental factors such as temperature, light intensity, and soil composition influence flower characteristics. Specific genes control pigment synthesis, and environmental factors such as temperature, light intensity, and soil composition influence flower characteristics. Physiological processes including plant hormone contribute to flower color and fragrance. Hormones, notably ethylene, exert a profound influence on varioustraits. Pigment investigations have spotlighted specific flavonoids, including kaempferol 3-O-rutinoside, quercetin, and rutin. Red tepals exhibit unique composition with cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside being distinctive components. Elucidating the molecular basis of tepal color variation, particularly in red and yellow varieties, involves the identification of crucial regulatory genes. In conclusion, this review unravels the mysteries of Chimonanthus praecox, providing a holistic understanding of its flower color and fragrance for landscape applications. This comprehensive review uniquely explores the genetic intricacies, chemical and environmental influences that govern the mesmerizing flower color and fragrance of Chimonanthus praecox, providing valuable insights for its landscape applications. This review article is designed for a diverse audience, including plant geneticists, horticulturists, environmental scientists, urban planners, and students, offering understandings into the genetic intricacies, ecological significance, and practical applications of Chimonanthus praecox across various disciplines. Its appeal extends to professionals and enthusiasts interested in plant biology, conservation, and industries dependent on unique floral characteristics.


Asunto(s)
Calycanthaceae , Flores , Odorantes , Flores/genética , Calycanthaceae/genética , Calycanthaceae/metabolismo , Calycanthaceae/química , Odorantes/análisis , Pigmentación/genética , Color , Regulación de la Expresión Génica de las Plantas
13.
Front Plant Sci ; 15: 1343830, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495370

RESUMEN

Introduction: Flower color is one of the important ornamental traits in the plants, which plays an active role in attracting pollinators to pollinate plants and reproduce their offspring. The flower color of Impatiens uliginosa is rich, there are four main flower colors in nature: deep red, red, pink, and white. However, it remains unclear whether on four different flower colors mechanism of I. uliginosa. Methods: We investigate colorimetric measurement, observation of epidermal cells, cellular pH determination, extraction and determination of total anthocyanins and flavonoid, semi-quantitative determination of pigment components, and gene cloning and qRT-PCR of CHS genes to study four flower colors of I. uliginosa. Results: The L* and b* values were the highest in white flower, while the a* values were the highest in pink flower. The same shape of epidermal cells was observed in different flower colors, which was all irregular flat polygons, and there were partial lignification. Their cellular pH values were weakly acidic, while the pH values of the deep red flower was the highest and the white flower was the lowest. The highest pigment content of the four flower colors was total anthocyanin content. And malvidin-3-galactosidechloride (C23H25ClO12), cyanidin-3-O-glucoside (C21H21O11) and delphinidin (C15H11O7) were the main pigment components affecting the color of four different flower colors. The anthocyanin synthesis gene IuCHS was expressed in four flowers, and all three copies of it had the highest expression level in pink flower and the lowest expression level in white flower. Discussion: These results revealed the influence of main internal factors on four different flower colors of I. uliginosa, and provided a basis for further understanding of the intracellular and molecular regulatory mechanisms of flower color variation, and laid a foundation for the improvement of flower color breeding of Impatiens.

14.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474274

RESUMEN

Real-time quantitative PCR (qRT-PCR) is a pivotal technique for gene expression analysis. To ensure reliable and accurate results, the internal reference genes must exhibit stable expression across varied experimental conditions. Currently, no internal reference genes for Camellia impressinervis have been established. This study aimed to identify stable internal reference genes from eight candidates derived from different developmental stages of C. impressinervis flowers. We employed geNorm, NormFinder, and BestKeeper to evaluate the expression stability of these candidates, which was followed by a comprehensive stability analysis. The results indicated that CiTUB, a tubulin gene, exhibited the most stable expression among the eight reference gene candidates in the petals. Subsequently, CiTUB was utilized as an internal reference for the qRT-PCR analysis of six genes implicated in the petal pigment synthesis pathway of C. impressinervis. The qRT-PCR results were corroborated by transcriptome sequencing data, affirming the stability and suitability of CiTUB as a reference gene. This study marks the first identification of stable internal reference genes within the entire genome of C. impressinervis, establishing a foundation for future gene expression and functional studies. Identifying such stable reference genes is crucial for advancing molecular research on C. impressinervis.


Asunto(s)
Camellia , Camellia/genética , Perfilación de la Expresión Génica/métodos , Transcriptoma , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Flores/genética , Estándares de Referencia
15.
Mol Biol Rep ; 51(1): 328, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393428

RESUMEN

BACKGROUND: WD40 transcription factors are crucial in plant growth and developmental, significantly impacting plant growth regulation. This study investigates the WD40 transcription factor HmWDR68's role in developing the distinctive blue infertile flower colors in Hydrangea macrophylla 'Forever Summer'. METHODS AND RESULTS: The HmWDR68 gene was isolated by PCR, revealing an open reading frame of 1026 base pairs, which encodes 341 amino acids. Characterized by four WD40 motifs, HmWDR68 is a member of the WD40 family. Phylogenetic analysis indicates that HmWDR68 shares high homology with PsWD40 in Camellia sinensis and CsWD40 in Paeonia suffruticosa, both of which are integral in anthocyanin synthesis regulation. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that HmWDR68 expression in the blue infertile flowers of 'Forever Summer' hydrangea was significantly higher compared to other tissues and organs. Additionally, in various hydrangea varieties with differently colored infertile flowers, HmWDR68 expression was markedly elevated in comparison to other hydrangea varieties, correlating with the development of blue infertile flowers. Pearson correlation analysis revealed a significant association between HmWDR68 expression and the concentration of delphinidin 3-O-glucoside, as well as key genes involved in anthocyanin biosynthesis (HmF3H, HmC3'5'H, HmDFR, and HmANS) in the blue infertile flowers of 'Forever Summer' hydrangea (P < 0.01). CONCLUSION: These findings suggest HmWDR68 may specifically regulate blue infertile flower formation in hydrangea by enhancing delphinidin-3-O-glucoside synthesis, modulating expression of HmF3H, HmC3'5'H, HmDFR and HmANS. This study provides insights into HmWDR68's role in hydrangea's blue flowers development, offering a foundation for further research in this field.


Asunto(s)
Antocianinas , Hydrangea , Antocianinas/genética , Hydrangea/química , Hydrangea/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Pigmentación/genética , Flores/metabolismo , Glucósidos/metabolismo , Regulación de la Expresión Génica de las Plantas
16.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 239-251, 2024 Jan 25.
Artículo en Chino | MEDLINE | ID: mdl-38258644

RESUMEN

'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.


Asunto(s)
Glutamina/análogos & derivados , Extractos Vegetales , Poríferos , Prunus , Animales , Antocianinas , Barajamiento de ADN , Flores/genética , Prunus/genética
17.
Dev Biol ; 505: 1-10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37838025

RESUMEN

Flower color diversity is a key taxonomic trait in Meconopsis species, enhancing their appeal as ornamental flowers. However, knowledge of the molecular mechanisms of flower color formation in Meconopsis species is still limited. M. wilsonii subsp. australis (Australis) and M. wilsonii subsp. orientalis (Orientalis) have a developmental stage presenting red-purple flowers, while Orientalis also presents blue coloration at the full-bloom period, making them an important model for exploring the mechanism of blue flower formation in M. wilsonii. In this study, we collected petals from Australis and Orientalis at different developmental stages to compare the coloration differences between the two species and detect the molecular mechanisms of blue color in Orientalis. We identified that cyanidin was the main anthocyanin in the flowers of both species, and the blue color in Orientalis primarily arises from anthocyanins (Cyanidin-3-O-sambubioside). RNA sequencing analysis was performed to detect the gene expression in the anthocyanin biosynthesis pathway, and the results suggested that gene regulation for anthocyanin biosynthesis may not be the direct reason for blue color formation in Orientalis. In addition, the growth solid of Orientalis was rich in Fe and Mg ions, and a large amount of Fe and Mg ions accumulated in the petals of Orientalis. Combined with the gene functional enrichment results, we found that the purple and red-purple colors of these two species were presented by different glycosylation levels of cyanidin, while the violet color of Orientalis might be the results of metalloanthocyanins by Fe and Mg ions, which also relieved the toxicity caused by the high content of Fe and Mg ions in its cells. The environmental adaptation-related genes were highly expressed of in both species, such as adaptation to desiccation, water deprivation, freezing, etc. Our results revealed the coloration differences between Australis and Orientalis and described the molecular mechanisms of blue coloration in Orientalis. The data in our analysis could enrich the genetic resources for M. wilsonii for further studies.


Asunto(s)
Antocianinas , Papaveraceae , Antocianinas/metabolismo , Papaveraceae/metabolismo , Fenotipo , Iones/metabolismo , Flores , Pigmentación/genética , Color , Regulación de la Expresión Génica de las Plantas
18.
New Phytol ; 241(1): 59-64, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37853523

RESUMEN

The evolutionary switch to hummingbird pollination exemplifies complex adaptation, requiring evolutionary change in multiple component traits. Despite this complexity, diverse lineages have converged on hummingbird-adapted flowers on a relatively short evolutionary timescale. Here, I review how features of the genetic basis of adaptation contribute to this remarkable evolutionary lability. Large-effect substitutions, large mutational targets for adaptation, adaptive introgression, and concentrated architecture all contribute to the origin and maintenance of hummingbird-adapted flowers. The genetic features of adaptation are likely shaped by the ecological and geographic context of the switch to hummingbird pollination, with implications for future evolutionary trajectories.


Asunto(s)
Evolución Biológica , Polinización , Animales , Polinización/genética , Flores/genética , Fenotipo , Aves
19.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069137

RESUMEN

Flavonol synthase (FLS) is the crucial enzyme of the flavonol biosynthetic pathways, and its expression is tightly regulated in plants. In our previous study, two alleles of LcFLS,LcFLS-A and LcFLS-B, have been identified in litchi, with extremely early-maturing (EEM) cultivars only harboring LcFLS-A, while middle-to-late-maturing (MLM) cultivars only harbor LcFLS-B. Here, we overexpressed both LcFLS alleles in tobacco, and transgenic tobacco produced lighter-pink flowers and showed increased flavonol levels while it decreased anthocyanin levels compared to WT. Two allelic promoters of LcFLS were identified, with EEM cultivars only harboring proLcFLS-A, while MLM cultivars only harbor proLcFLS-B. One positive and three negative R2R3-MYB transcription regulators of LcFLS expression were identified, among which only positive regulator LcMYB111 showed a consistent expression pattern with LcFLS, which both have higher expression in EEM than that of MLM cultivars. LcMYB111 were further confirmed to specifically activate proLcFLS-A with MYB-binding element (MBE) while being unable to activate proLcFLS-B with mutated MBE (MBEm). LcHY5 were also identified and can interact with LcMYB111 to promote LcFLS expression. Our study elucidates the function of LcFLS and its differential regulation in different litchi cultivars for the first time.


Asunto(s)
Litchi , Litchi/genética , Litchi/metabolismo , Regiones Promotoras Genéticas , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/metabolismo , Flavonoles/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
20.
G3 (Bethesda) ; 14(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-37974306

RESUMEN

Flower color plays a crucial role in the appeal and selection of ornamental plants, directly influencing breeding strategies and the broader horticulture industry. Lantana camara, a widely favored flowering shrub, presents a rich palette of flower colors. Yet, the intricate molecular mechanisms governing this color variation in the species have remained largely unidentified. With the aim of filling this gap, this study embarked on a comprehensive de novo transcriptome assembly and differential gene expression analysis across 3 distinct lantana accessions, each showcasing a unique flower color. By harnessing the capabilities of both PacBio and Illumina sequencing platforms, a robust transcriptome assembly, encompassing 123,492 gene clusters and boasting 94.2% BUSCO completeness, was developed. The differential expression analysis unveiled 72,862 unique gene clusters that exhibited varied expression across different flower stages. A pronounced upregulation of 8 candidate core anthocyanin biosynthesis genes in the red-flowered accession was uncovered. This was further complemented by an upregulation of candidate MYB75 (PAP1) and bHLH42 (TT8) transcription factors. A candidate carotenoid cleavage dioxygenase (CCD4a) gene cluster also manifested a marked upregulation in white flowers. The study unveils the molecular groundwork of lantana's flower color variation, offering insights for future research and potential applications in breeding ornamental plants with desired color traits.


Asunto(s)
Antocianinas , Lantana , Lantana/genética , Lantana/metabolismo , Regulación de la Expresión Génica de las Plantas , Pigmentación/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Transcriptoma , Flores/genética , Flores/metabolismo , Color
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...