Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Neurotherapeutics ; : e00456, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39366874

RESUMEN

Neuroactive steroids reduce mortality, decrease edema, and improve functional outcomes in preclinical and clinical traumatic brain injury (TBI) studies. In this study, we tested the efficacy of two related novel neuroactive steroids, NTS-104 and NTS-105, in a rat model of TBI. NTS-104 is a water-soluble prodrug of NTS-105, a partial progesterone receptor agonist. To investigate the effects of NTS-104 on TBI recovery, adult male Sprague Dawley rats received moderate parasagittal fluid-percussion injury or sham surgery and were treated with vehicle or NTS-104 (10 â€‹mg/kg, intramuscularly) at 4, 10, 24, and 48 â€‹h post-TBI. The therapeutic time window was also assessed using the neuroactive steroid NTS-105 (3 â€‹mg/kg, intramuscularly). Edema in the parietal cortex and hippocampus, measured at 3 days post-injury (DPI), was reduced by NTS-104 and NTS-105. NTS-105 was effective in reducing edema when given at 4, 10, or 24 â€‹h post-injury. Sensorimotor deficits in the cylinder test at 3 DPI were ameliorated by NTS-104 and NTS-105 treatment. Cognitive recovery, assessed with cue and contextual fear conditioning and retention of the water maze task assessed subacutely 1-3 weeks post-injury, also improved with NTS-104 treatment. Cortical and hippocampal atrophy at 22 DPI did not improve, indicating that NTS-104/NTS-105 may promote post-TBI cognitive recovery by controlling edema and other processes. These results demonstrate that NTS-104/NTS-105 is a promising therapeutic approach to improve motor and cognitive recovery after moderate TBI.

2.
Exp Neurol ; 382: 114962, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288831

RESUMEN

Post-traumatic epilepsy (PTE) is a recurrent and often drug-refractory seizure disorder caused by traumatic brain injury (TBI). No single drug treatment prevents PTE, but preventive drug combinations that may prophylax against PTE have not been studied. Based on a systematic evaluation of rationally chosen drug combinations in the intrahippocampal kainate (IHK) mouse model of acquired epilepsy, we identified two multi-targeted drug cocktails that exert strong antiepileptogenic effects. The first, a combination of levetiracetam (LEV) and topiramate, only partially prevented spontaneous recurrent seizures in the model. We therefore added atorvastatin (ATV) to the therapeutic cocktail (TC) to increase efficacy, forming "TC-001". The second cocktail - a combination of LEV, ATV, and ceftriaxone, termed "TC-002" - completely prevented epilepsy in the mouse IHK model. In the present proof-of-concept study, we tested whether the two drug cocktails prevent epilepsy in a rat PTE model in which recurrent electrographic seizures develop after severe rostral parasagittal fluid percussion injury (FPI). Following FPI, rats were either treated over 3-4 weeks with vehicle or drug cocktails, starting either 1 or 4-6 h after the injury. Using mouse doses of TC-001 and TC-002, no significant antiepileptogenic effect was obtained in the rat PTE model. However, when using allometric scaling of drug doses to consider the differences in body surface area between mice and rats, PTE was prevented by TC-002. Furthermore, the latter drug cocktail partially prevented the loss of perilesional cortical parvalbumin-positive GABAergic interneurons. Plasma and brain drug analysis showed that these effects of TC-002 occurred at clinically relevant levels of the individual TC-002 drug components. In silico analysis of drug-drug brain protein interactions by the STITCH database indicated that TC-002 impacts a larger functional network of epilepsy-relevant brain proteins than each drug alone, providing a potential network pharmacology explanation for the observed antiepileptogenic and neuroprotective effects observed with this combination.

3.
Exp Neurol ; 379: 114879, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942266

RESUMEN

Traumatic brain injury (TBI) leads to changes in the neural circuitry of the hippocampus that result in chronic learning and memory deficits. However, effective therapeutic strategies to ameliorate these chronic learning and memory impairments after TBI are limited. Two pharmacological targets for enhancing cognition are nicotinic acetylcholine receptors (nAChRs) and GABAA receptors (GABAARs), both of which regulate hippocampal network activity to form declarative memories. A promising compound, 522-054, both allosterically enhances α7 nAChRs and inhibits α5 subunit-containing GABAARs. Administration of 522-054 enhances long-term potentiation (LTP) and cognitive functioning in non-injured animals. In this study, we assessed the effects of 522-054 on hippocampal synaptic plasticity and learning and memory deficits in the chronic post-TBI recovery period. Adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury or sham surgery. At 12 wk after injury, we assessed basal synaptic transmission and LTP at the Schaffer collateral-CA1 synapse of the hippocampus. Bath application of 522-054 to hippocampal slices reduced deficits in basal synaptic transmission and recovered TBI-induced impairments in LTP. Moreover, treatment of animals with 522-054 at 12 wk post-TBI improved cue and contextual fear memory and water maze acquisition and retention without a measurable effect on cortical or hippocampal atrophy. These results suggest that dual allosteric modulation of α7 nAChR and α5 GABAAR signaling may be a potential therapy for treating cognitive deficits during chronic recovery from TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Ratas Sprague-Dawley , Receptores de GABA-A , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Masculino , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Ratas , Receptores de GABA-A/metabolismo , Regulación Alostérica/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología
4.
J Neuroinflammation ; 21(1): 165, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937750

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is a significant risk factor for Alzheimer's disease (AD), and accumulating evidence supports a role for adaptive immune B and T cells in both TBI and AD pathogenesis. We previously identified B cell and major histocompatibility complex class II (MHCII)-associated invariant chain peptide (CLIP)-positive B cell expansion after TBI. We also showed that antagonizing CLIP binding to the antigen presenting groove of MHCII after TBI acutely reduced CLIP + splenic B cells and was neuroprotective. The current study investigated the chronic effects of antagonizing CLIP in the 5xFAD Alzheimer's mouse model, with and without TBI. METHODS: 12-week-old male wild type (WT) and 5xFAD mice were administered either CLIP antagonist peptide (CAP) or vehicle, once at 30 min after either sham or a lateral fluid percussion injury (FPI). Analyses included flow cytometric analysis of immune cells in dural meninges and spleen, histopathological analysis of the brain, magnetic resonance diffusion tensor imaging, cerebrovascular analysis, and assessment of motor and neurobehavioral function over the ensuing 6 months. RESULTS: 9-month-old 5xFAD mice had significantly more CLIP + B cells in the meninges compared to age-matched WT mice. A one-time treatment with CAP significantly reduced this population in 5xFAD mice. Importantly, CAP also improved some of the immune, histopathological, and neurobehavioral impairments in 5xFAD mice over the ensuing six months. Although FPI did not further elevate meningeal CLIP + B cells, it did negate the ability of CAP to reduce meningeal CLIP + B cells in the 5xFAD mice. FPI at 3 months of age exacerbated some aspects of AD pathology in 5xFAD mice, including further reducing hippocampal neurogenesis, increasing plaque deposition in CA3, altering microgliosis, and disrupting the cerebrovascular structure. CAP treatment after injury ameliorated some but not all of these FPI effects.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B , Linfocitos B , Lesiones Traumáticas del Encéfalo , Antígenos de Histocompatibilidad Clase II , Ratones Transgénicos , Animales , Ratones , Masculino , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Antígenos de Histocompatibilidad Clase II/metabolismo , Linfocitos B/efectos de los fármacos , Meninges/patología , Meninges/efectos de los fármacos , Precursor de Proteína beta-Amiloide/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Modelos Animales de Enfermedad , Presenilina-1/genética , Ratones Endogámicos C57BL
5.
Brain Behav Immun Health ; 38: 100797, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38803369

RESUMEN

Traumatic brain injury (TBI) causes a prolonged inflammatory response in the central nervous system (CNS) driven by microglia. Microglial reactivity is exacerbated by stress, which often provokes sleep disturbances. We have previously shown that sleep fragmentation (SF) stress after experimental TBI increases microglial reactivity and impairs hippocampal function 30 days post-injury (DPI). The neuroimmune response is highly dynamic the first few weeks after TBI, which is also when injury induced sleep-wake deficits are detected. Therefore, we hypothesized that even a few weeks of TBI SF stress would synergize with injury induced sleep-wake deficits to promote neuroinflammation and impair outcome. Here, we investigated the effects of environmental SF in a lateral fluid percussion model of mouse TBI. Half of the mice were undisturbed, and half were exposed to 5 h of SF around the onset of the light cycle, daily, for 14 days. All mice were then undisturbed 15-30 DPI, providing a period for SF stress recovery (SF-R). Mice exposed to SF stress slept more than those in control housing 7-14 DPI and engaged in more total daily sleep bouts during the dark period. However, SF stress did not exacerbate post-TBI sleep deficits. Testing in the Morris water maze revealed sex dependent differences in spatial reference memory 9-14 DPI with males performing worse than females. Post-TBI SF stress suppressed neurogenesis-related gene expression and increased inflammatory signaling in the cortex at 14 DPI. No differences in sleep behavior were detected between groups during the SF stress recovery period 15-30 DPI. Microscopy revealed cortical and hippocampal IBA1 and CD68 percent-area increased in TBI SF-R mice 30 DPI. Additionally, neuroinflammatory gene expression was increased, and synaptogenesis-related gene expression was suppressed in TBI-SF mice 30 DPI. Finally, IPA canonical pathway analysis showed post-TBI SF impaired and delayed activation of synapse-related pathways between 14 and 30 DPI. These data show that transient SF stress after TBI impairs recovery and conveys long-lasting impacts on neuroimmune function independent of continuous sleep deficits. Together, these finding support that even limited exposure to post-TBI SF stress can have lasting impacts on cognitive recovery and regulation of the immune response to trauma.

6.
Burns Trauma ; 12: tkae004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817684

RESUMEN

Background: Extracellular cold-inducible RNA-binding protein (eCIRP) plays a vital role in the inflammatory response during cerebral ischaemia. However, the potential role and regulatory mechanism of eCIRP in traumatic brain injury (TBI) remain unclear. Here, we explored the effect of eCIRP on the development of TBI using a neural-specific CIRP knockout (KO) mouse model to determine the contribution of eCIRP to TBI-induced neuronal injury and to discover novel therapeutic targets for TBI. Methods: TBI animal models were generated in mice using the fluid percussion injury method. Microglia or neuron lines were subjected to different drug interventions. Histological and functional changes were observed by immunofluorescence and neurobehavioural testing. Apoptosis was examined by a TdT-mediated dUTP nick end labelling assay in vivo or by an annexin-V assay in vitro. Ultrastructural alterations in the cells were examined via electron microscopy. Tissue acetylation alterations were identified by non-labelled quantitative acetylation via proteomics. Protein or mRNA expression in cells and tissues was determined by western blot analysis or real-time quantitative polymerase chain reaction. The levels of inflammatory cytokines and mediators in the serum and supernatants were measured via enzyme-linked immunoassay. Results: There were closely positive correlations between eCIRP and inflammatory mediators, and between eCIRP and TBI markers in human and mouse serum. Neural-specific eCIRP KO decreased hemispheric volume loss and neuronal apoptosis and alleviated glial cell activation and neurological function damage after TBI. In contrast, eCIRP treatment resulted in endoplasmic reticulum disruption and ER stress (ERS)-related death of neurons and enhanced inflammatory mediators by glial cells. Mechanistically, we noted that eCIRP-induced neural apoptosis was associated with the activation of the protein kinase RNA-like ER kinase-activating transcription factor 4 (ATF4)-C/EBP homologous protein signalling pathway, and that eCIRP-induced microglial inflammation was associated with histone H3 acetylation and the α7 nicotinic acetylcholine receptor. Conclusions: These results suggest that TBI obviously enhances the secretion of eCIRP, thereby resulting in neural damage and inflammation in TBI. eCIRP may be a biomarker of TBI that can mediate the apoptosis of neuronal cells through the ERS apoptotic pathway and regulate the inflammatory response of microglia via histone modification.

7.
Methods Mol Biol ; 2761: 599-622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427264

RESUMEN

Road accidents, domestic falls, and persons associated with sports and military services exhibited the concussion or contusion type of traumatic brain injury (TBI) that resulted in chronic traumatic encephalopathy. In some instances, these complex neurological aberrations pose severe brain damage and devastating long-term neurological sequelae. Several preclinical (rat and mouse) TBI models simulate the clinical TBI endophenotypes. Moreover, many investigational neuroprotective candidates showed promising effects in these models; however, the therapeutic success of these screening candidates has been discouraging at various stages of clinical trials. Thus, a correct selection of screening model that recapitulates the clinical neurobiology and endophenotypes of concussion or contusion is essential. Herein, we summarize the advantages and caveats of different preclinical models adopted for TBI research. We suggest that an accurate selection of experimental TBI models may improve the translational viability of the investigational entity.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Contusiones , Ratas , Ratones , Animales , Roedores , Encéfalo , Modelos Animales de Enfermedad
8.
NMR Biomed ; 37(8): e5142, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38494895

RESUMEN

Integrating datasets from multiple sites and scanners can increase statistical power for neuroimaging studies but can also introduce significant inter-site confounds. We evaluated the effectiveness of ComBat, an empirical Bayes approach, to combine longitudinal preclinical MRI data acquired at 4.7 or 9.4 T at two different sites in Australia. Male Sprague Dawley rats underwent MRI on Days 2, 9, 28, and 150 following moderate/severe traumatic brain injury (TBI) or sham injury as part of Project 1 of the NIH/NINDS-funded Centre Without Walls EpiBioS4Rx project. Diffusion-weighted and multiple-gradient-echo images were acquired, and outcomes included QSM, FA, and ADC. Acute injury measures including apnea and self-righting reflex were consistent between sites. Mixed-effect analysis of ipsilateral and contralateral corpus callosum (CC) summary values revealed a significant effect of site on FA and ADC values, which was removed following ComBat harmonization. Bland-Altman plots for each metric showed reduced variability across sites following ComBat harmonization, including for QSM, despite appearing to be largely unaffected by inter-site differences and no effect of site observed. Following harmonization, the combined inter-site data revealed significant differences in the imaging metrics consistent with previously reported outcomes. TBI resulted in significantly reduced FA and increased susceptibility in the ipsilateral CC, and significantly reduced FA in the contralateral CC compared with sham-injured rats. Additionally, TBI rats also exhibited a reversal in ipsilateral CC ADC values over time with significantly reduced ADC at Day 9, followed by increased ADC 150 days after injury. Our findings demonstrate the need for harmonizing multi-site preclinical MRI data and show that this can be successfully achieved using ComBat while preserving phenotypical changes due to TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Ratas Sprague-Dawley , Animales , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Masculino , Ratas , Teorema de Bayes
9.
Neurotrauma Rep ; 5(1): 61-73, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38288298

RESUMEN

Chronic sleep/wake disturbances (SWDs) are strongly associated with traumatic brain injury (TBI) in patients and are being increasingly recognized. However, the underlying mechanisms are largely understudied and there is an urgent need for animal models of lifelong SWDs. The objective of this study was to develop a chronic TBI rodent model and investigate the lifelong chronic effect of TBI on sleep/wake behavior. We performed repetitive midline fluid percussion injury (rmFPI) in 4-month-old mice and monitored their sleep/wake behavior using the non-invasive PiezoSleep system. Sleep/wake states were recorded before injury (baseline) and then monthly thereafter. We found that TBI mice displayed a significant decrease in sleep duration in both the light and dark phases, beginning at 3 months post-TBI and continuing throughout the study. Consistent with the sleep phenotype, these TBI mice showed circadian locomotor activity phenotypes and exhibited reduced anxiety-like behavior. TBI mice also gained less weight, and had less lean mass and total body water content, compared to sham controls. Further, TBI mice showed extensive brain tissue loss and increased glial fibrillary acidic protein and ionized calcium-binding adaptor molecule 1 levels in the hypothalamus and vicinity of the injury, indicative of chronic neuropathology. In summary, our study identified a critical time window of TBI pathology and associated circadian and sleep/wake phenotypes. Future studies should leverage this mouse model to investigate the molecular mechanisms underlying the chronic sleep/wake phenotypes post-TBI early in life.

10.
Epilepsy Res ; 199: 107263, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056191

RESUMEN

OBJECTIVE: Project 1 of the Preclinical Multicenter Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) consortium aims to identify preclinical biomarkers for antiepileptogenic therapies following traumatic brain injury (TBI). The international participating centers in Finland, Australia, and the United States have made a concerted effort to ensure protocol harmonization. Here, we evaluate the success of harmonization process by assessing the timing, coverage, and performance between the study sites. METHOD: We collected data on animal housing conditions, lateral fluid-percussion injury model production, postoperative care, mortality, post-TBI physiological monitoring, timing of blood sampling and quality, MR imaging timing and protocols, and duration of video-electroencephalography (EEG) follow-up using common data elements. Learning effect in harmonization was assessed by comparing procedural accuracy between the early and late stages of the project. RESULTS: The animal housing conditions were comparable between the study sites but the postoperative care procedures varied. Impact pressure, duration of apnea, righting reflex, and acute mortality differed between the study sites (p < 0.001). The severity of TBI on D2 post TBI assessed using the composite neuroscore test was similar between the sites, but recovery of acute somato-motor deficits varied (p < 0.001). A total of 99% of rats included in the final cohort in UEF, 100% in Monash, and 79% in UCLA had blood samples taken at all time points. The timing of sampling differed on day (D)2 (p < 0.05) but not D9 (p > 0.05). Plasma quality was poor in 4% of the samples in UEF, 1% in Monash and 14% in UCLA. More than 97% of the final cohort were MR imaged at all timepoints in all study sites. The timing of imaging did not differ on D2 and D9 (p > 0.05), but varied at D30, 5 months, and ex vivo timepoints (p < 0.001). The percentage of rats that completed the monthly high-density video-EEG follow-up and the duration of video-EEG recording on the 7th post-injury month used for seizure detection for diagnosis of post-traumatic epilepsy differed between the sites (p < 0.001), yet the prevalence of PTE (UEF 21%, Monash 22%, UCLA 23%) was comparable between the sites (p > 0.05). A decrease in acute mortality and increase in plasma quality across time reflected a learning effect in the TBI production and blood sampling protocols. SIGNIFICANCE: Our study is the first demonstration of the feasibility of protocol harmonization for performing powered preclinical multi-center trials for biomarker and therapy discovery of post-traumatic epilepsy.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Epilepsia Postraumática , Epilepsia , Animales , Ratas , Biomarcadores , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Epilepsia/etiología , Epilepsia/diagnóstico , Epilepsia Postraumática/etiología , Epilepsia Postraumática/tratamiento farmacológico , Convulsiones , Estudios Multicéntricos como Asunto
11.
Neurosci Lett ; 818: 137550, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37926292

RESUMEN

Mild traumatic brain injury (TBI) can lead to various disorders, encompassing cognitive and psychiatric complications. While pre-clinical studies have long investigated behavioral alterations, the fluid percussion injury (FPI) model still lacks a comprehensive behavioral battery that includes psychiatric-like disorders. To address this gap, we conducted multiple behavioral tasks over two months in adult male Wistar rats, focusing on mild FPI. Statistical analyses revealed that both naive and sham animals exhibited an increase in sweet liquid consumption over time. In contrast, the TBI group did not show any temporal changes, although mild FPI did induce a statistically significant decrease in sucrose consumption compared to control groups during the chronic phase. Additionally, social interaction tasks indicated reduced contact time in TBI animals. The elevated plus maze task demonstrated an increase in open-arm exploration following fluid percussion. Nonetheless, no significant differences were observed in the acute and chronic phases for the forced swim and light-dark box tasks. Evaluation of three distinct memory tasks in the chronic phase revealed that mild FPI led to long-term memory deficits, as assessed by the object recognition task, while the surgical procedure itself resulted in short-term spatial memory deficits, as evaluated by the Y-maze task. Conversely, working memory remained unaffected in the water maze task. Collectively, these findings provide a nuanced characterization of behavioral deficits induced by mild FPI.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Ratas , Animales , Masculino , Lesiones Traumáticas del Encéfalo/complicaciones , Percusión/efectos adversos , Ratas Wistar , Memoria a Corto Plazo , Modelos Animales de Enfermedad , Aprendizaje por Laberinto
12.
Exp Neurol ; 370: 114578, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37858696

RESUMEN

Traumatic brain injury leads to cellular and circuit changes in the dentate gyrus, a gateway to hippocampal information processing. Intrinsic granule cell firing properties and strong feedback inhibition in the dentate are proposed as critical to its ability to generate unique representation of similar inputs by a process known as pattern separation. Here we evaluate the impact of brain injury on cellular decorrelation of temporally patterned inputs in slices and behavioral discrimination of spatial locations in vivo one week after concussive lateral fluid percussion injury (FPI) in mice. Despite posttraumatic increases in perforant path evoked excitatory drive to granule cells and enhanced ΔFosB labeling, indicating sustained increase in excitability, the reliability of granule cell spiking was not compromised after FPI. Although granule cells continued to effectively decorrelate output spike trains recorded in response to similar temporally patterned input sets after FPI, their ability to decorrelate highly similar input patterns was reduced. In parallel, encoding of similar spatial locations in a novel object location task that involves the dentate inhibitory circuits was impaired one week after FPI. Injury induced changes in pattern separation were accompanied by loss of somatostatin expressing inhibitory neurons in the hilus. Together, these data suggest that the early posttraumatic changes in the dentate circuit undermine dentate circuit decorrelation of temporal input patterns as well as behavioral discrimination of similar spatial locations, both of which could contribute to deficits in episodic memory.


Asunto(s)
Lesiones Encefálicas , Giro Dentado , Ratones , Animales , Reproducibilidad de los Resultados , Hipocampo , Neuronas
13.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762352

RESUMEN

We tested a hypothesis that in silico-discovered compounds targeting traumatic brain injury (TBI)-induced transcriptomics dysregulations will mitigate TBI-induced molecular pathology and augment the effect of co-administered antiseizure treatment, thereby alleviating functional impairment. In silico bioinformatic analysis revealed five compounds substantially affecting TBI-induced transcriptomics regulation, including calpain inhibitor, chlorpromazine, geldanamycin, tranylcypromine, and trichostatin A (TSA). In vitro exposure of neuronal-BV2-microglial co-cultures to compounds revealed that TSA had the best overall neuroprotective, antioxidative, and anti-inflammatory effects. In vivo assessment in a rat TBI model revealed that TSA as a monotherapy (1 mg/kg/d) or in combination with the antiseizure drug levetiracetam (LEV 150 mg/kg/d) mildly mitigated the increase in plasma levels of the neurofilament subunit pNF-H and cortical lesion area. The percentage of rats with seizures during 0-72 h post-injury was reduced in the following order: TBI-vehicle 80%, TBI-TSA (1 mg/kg) 86%, TBI-LEV (54 mg/kg) 50%, TBI-LEV (150 mg/kg) 40% (p < 0.05 vs. TBI-vehicle), and TBI-LEV (150 mg/kg) combined with TSA (1 mg/kg) 30% (p < 0.05). Cumulative seizure duration was reduced in the following order: TBI-vehicle 727 ± 688 s, TBI-TSA 898 ± 937 s, TBI-LEV (54 mg/kg) 358 ± 715 s, TBI-LEV (150 mg/kg) 42 ± 64 (p < 0.05 vs. TBI-vehicle), and TBI-LEV (150 mg/kg) combined with TSA (1 mg/kg) 109 ± 282 s (p < 0.05). This first preclinical intervention study on post-TBI acute seizures shows that a combination therapy with the tissue recovery enhancer TSA and LEV was safe but exhibited no clear benefit over LEV monotherapy on antiseizure efficacy. A longer follow-up is needed to confirm the possible beneficial effects of LEV monotherapy and combination therapy with TSA on chronic post-TBI structural and functional outcomes, including epileptogenesis.

14.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745454

RESUMEN

Traumatic brain injury leads to cellular and circuit changes in the dentate gyrus, a gateway to hippocampal information processing. Intrinsic granule cell firing properties and strong feedback inhibition in the dentate are proposed as critical to its ability to generate unique representation of similar inputs by a process known as pattern separation. Here we evaluate the impact of brain injury on cellular decorrelation of temporally patterned inputs in slices and behavioral discrimination of spatial locations in vivo one week after concussive lateral fluid percussion injury (FPI) in mice. Despite posttraumatic increases in perforant path evoked excitatory drive to granule cells and enhanced ΔFosB labeling, indicating sustained increase in excitability, the reliability of granule cell spiking was not compromised after FPI. Although granule cells continued to effectively decorrelate output spike trains recorded in response to similar temporally patterned input sets after FPI, their ability to decorrelate highly similar input patterns was reduced. In parallel, encoding of similar spatial locations in a novel object location task that involves the dentate inhibitory circuits was impaired one week after FPI. Injury induced changes in pattern separation were accompanied by loss of somatostatin expressing inhibitory neurons in the hilus. Together, these data suggest that the early posttraumatic changes in the dentate circuit undermine dentate circuit decorrelation of temporal input patterns as well as behavioral discrimination of similar spatial locations, both of which could contribute to deficits in episodic memory.

15.
Brain Sci ; 13(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37759831

RESUMEN

BACKGROUND: Multiple measures of injury severity are suggested as common data elements in preclinical traumatic brain injury (TBI) research. The robustness of these measures in characterizing injury severity is unclear. In particular, it is not known how reliably they predict individual outcomes after experimental TBI. METHODS: We assessed several commonly used measures of initial injury severity for their ability to predict chronic cognitive outcomes in a rat lateral fluid percussion (LFPI) model of TBI. At the time of injury, we assessed reflex righting time, neurologic severity scores, and 24 h weight loss. Sixty days after LFPI, we evaluated working memory using a spontaneous alternation T-maze task. RESULTS: We found that righting time and weight loss had no correlation to chronic T-maze performance, while neurologic severity score correlated weakly. DISCUSSION: Taken together, our results indicate that commonly used early measures of injury severity do not robustly predict longer-term outcomes. This finding parallels the uncertainty in predicting individual outcomes in TBI clinical populations.

16.
J Neurotrauma ; 40(21-22): 2442-2448, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37387400

RESUMEN

Abstract The hippocampus plays a prominent role in learning and memory formation. The functional integrity of this structure is often compromised after traumatic brain injury (TBI), resulting in lasting cognitive dysfunction. The activity of hippocampal neurons, particularly place cells, is coordinated by local theta oscillations. Previous studies aimed at examining hippocampal theta oscillations after experimental TBI have reported disparate findings. Using a diffuse brain injury model, the lateral fluid percussion injury (FPI; 2.0 atm), we report a significant reduction in hippocampal theta power that persists for at least three weeks after injury. We questioned whether the behavioral deficit associated with this reduction of theta power can be overcome by optogenetically stimulating CA1 neurons at theta in brain injured rats. Our results show that memory impairments in brain injured animals could be reversed by optogenetically stimulating CA1 pyramidal neurons expressing channelrhodopsin (ChR2) during learning. In contrast, injured animals receiving a control virus (lacking ChR2) did not benefit from optostimulation. These results suggest that direct stimulation of CA1 pyramidal neurons at theta may be a viable option for enhancing memory after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Optogenética , Ratas , Animales , Hipocampo , Células Piramidales/fisiología , Encéfalo , Neuronas/fisiología , Ritmo Teta/fisiología
17.
Neurotrauma Rep ; 4(1): 384-395, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37350791

RESUMEN

We report on a case study of a Wistar rat that was investigated in detail because it exhibited no N3 sleep in electroencephalography (EEG) after lateral fluid-percussion injury (FPI)-induced traumatic brain injury (TBI). The rat (#112) belonged to a cohort of 28 adult Wistar rats exposed to lateral FPI. Rats were monitored by continuous video EEG for 30 days to follow-up on the evolution of sleep disturbances. The beam walking test was used to measure post-TBI functional recovery. Severity of the cortical lesion area, total brain volume, and cortical volume were measured from histological brain sections. Rat #112 had a normal body and skull appearance. Its baseline body weight did not differ from that of the rest of the cohort. At baseline, rat #112 crossed the beam in 6.3 sec (score range for the rest of the cohort, 4.7-44.3) and showed no evident slipping of the paws, scoring a 5.3 (score range for the rest of cohort, 4.3-6.0). On day 30 post-TBI, however, rat #112 was the only rat with a score of 0 on the beam. Histological analysis at 30 days post-TBI revealed a small 0.6-mm2 post-TBI lesion in the somatosensory cortex (lesion size range for the rest of the cohort, 1.2-10.9). The brain volume of rat #112 was 2-fold larger than the mean volume of the rest of the cohort (1592 vs. 758 mm3), the ventricles were remarkably enlarged, and the layered cerebral cortex was very thin. Analysis of the sleep EEG revealed that rat #112 had rapid eye movement sleep and wakefulness, but no N3 sleep, during the 72-h EEG epoch analyzed. This case report demonstrates that brain abnormalities presumably unrelated to the impact-induced cortical lesion, such as presumed pre-existing hydrocephalus, may worsen TBI-induced behavioral and electrographical outcome measures and complicate the assessment of the cause of the abnormalities.

18.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166781, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37286142

RESUMEN

Traumatic brain injury (TBI) is major neurological burden globally, and effective treatments are urgently needed. TBI is characterized by a reduction in energy metabolism and synaptic function that seems a primary cause of neuronal dysfunction. R13, a small drug and BDNF mimetic showed promising results in improving spatial memory and anxiety-like behavior after TBI. Additionally, R13 was found to counteract reductions in molecules associated with BDNF signaling (p-TrkB, p-PI3K, p-AKT), synaptic plasticity (GluR2, PSD95, Synapsin I) as well as bioenergetic components such as mitophagy (SOD, PGC-1α, PINK1, Parkin, BNIP3, and LC3) and real-time mitochondrial respiratory capacity. Behavioral and molecular changes were accompanied by adaptations in functional connectivity assessed using MRI. Results highlight the potential of R13 as a therapeutic agent for TBI and provide valuable insights into the molecular and functional changes associated with this condition.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Factor Neurotrófico Derivado del Encéfalo , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Transducción de Señal , Mitocondrias/metabolismo , Metabolismo Energético
19.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166728, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37137432

RESUMEN

Clinical evidence indicates that injury to the brain elicits systemic metabolic disturbances that contributes to the brain pathology. Since dietary fructose is metabolized in the liver, we explored mechanisms by which traumatic brain injury (TBI) and dietary fructose influence liver function and their possible repercussions to brain. Consumption of fructose contributed to the detrimental effects of TBI on liver operation, in terms of glucose and lipid metabolism, de novo lipogenesis, lipid peroxidation. Thyroid hormone (T4) is metabolized in the liver and found that T4 supply improved lipid metabolism by reducing de novo lipogenesis, lipid accumulation, lipogenic enzymes (ACC, AceCS1, FAS), lipid peroxidation in liver in response to fructose and fructose-TBI. T4 supply also helped to normalize glucose metabolism and improve insulin sensitivity. Furthermore, T4 counteracted elevations of the pro-inflammatory cytokines, Tnfα and Mcp-1 after TBI and/or fructose intake in liver and circulation. T4 also exerted an effect on isolated primary hepatocytes by potentiating phosphorylation of AMPKα and AKT substrate, AS160, leading to increased glucose uptake. In addition, T4 restored the metabolism of DHA in the liver disrupted by TBI and fructose, adding important information to optimize the action of DHA in therapeutics. The overall evidence seems to indicate that the liver works as a gate for the regulation of the effects of brain injury and foods on brain pathologies.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Hígado , Humanos , Hígado/metabolismo , Hepatocitos/metabolismo , Fructosa/farmacología , Lesiones Traumáticas del Encéfalo/metabolismo , Hormonas Tiroideas/metabolismo
20.
Epilepsia Open ; 8(2): 586-608, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37026764

RESUMEN

OBJECTIVE: We used the lateral fluid percussion injury (LFPI) model of moderate-to-severe traumatic brain injury (TBI) to identify early plasma biomarkers predicting injury, early post-traumatic seizures or neuromotor functional recovery (neuroscores), considering the effect of levetiracetam, which is commonly given after severe TBI. METHODS: Adult male Sprague-Dawley rats underwent left parietal LFPI, received levetiracetam (200 mg/kg bolus, 200 mg/kg/day subcutaneously for 7 days [7d]) or vehicle post-LFPI, and were continuously video-EEG recorded (n = 14/group). Sham (craniotomy only, n = 6), and naïve controls (n = 10) were also used. Neuroscores and plasma collection were done at 2d or 7d post-LFPI or equivalent timepoints in sham/naïve. Plasma protein biomarker levels were determined by reverse phase protein microarray and classified according to injury severity (LFPI vs. sham/control), levetiracetam treatment, early seizures, and 2d-to-7d neuroscore recovery, using machine learning. RESULTS: Low 2d plasma levels of Thr231 -phosphorylated tau protein (pTAU-Thr231 ) and S100B combined (ROC AUC = 0.7790) predicted prior craniotomy surgery (diagnostic biomarker). Levetiracetam-treated LFPI rats were differentiated from vehicle treated by the 2d-HMGB1, 2d-pTAU-Thr231 , and 2d-UCHL1 plasma levels combined (ROC AUC = 0.9394) (pharmacodynamic biomarker). Levetiracetam prevented the seizure effects on two biomarkers that predicted early seizures only among vehicle-treated LFPI rats: pTAU-Thr231 (ROC AUC = 1) and UCHL1 (ROC AUC = 0.8333) (prognostic biomarker of early seizures among vehicle-treated LFPI rats). Levetiracetam-resistant early seizures were predicted by high 2d-IFNγ plasma levels (ROC AUC = 0.8750) (response biomarker). 2d-to-7d neuroscore recovery was best predicted by higher 2d-S100B, lower 2d-HMGB1, and 2d-to-7d increase in HMGB1 or decrease in TNF (P < 0.05) (prognostic biomarkers). SIGNIFICANCE: Antiseizure medications and early seizures need to be considered in the interpretation of early post-traumatic biomarkers.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Proteína HMGB1 , Ratas , Masculino , Animales , Levetiracetam/farmacología , Ratas Sprague-Dawley , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Biomarcadores , Proteínas Sanguíneas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...