Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 751
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167332, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960056

RESUMEN

Malignant cell plasticity is an important hallmark of tumor biology and crucial for metastasis and resistance. Cell plasticity lets cancer cells adapt to and escape the therapeutic strategies, which is the leading cause of cancer patient mortality. Epithelial cells acquire mobility via epithelial-mesenchymal transition (EMT), whereas mesenchymal cells enhance their migratory ability and clonogenic potential by acquiring amoeboid characteristics through mesenchymal-amoeboid transition (MAT). Tumor formation, progression, and metastasis depend on the tumor microenvironment (TME), a complex ecosystem within and around a tumor. Through increased migration and metastasis of cancer cells, the TME also contributes to malignancy. This review underscores the distinction between invasion pattern morphological manifestations and the diverse structures found within the TME. Furthermore, the mechanisms by which amoeboid-associated characteristics promote resistance and metastasis and how these mechanisms may represent therapeutic opportunities are discussed.

2.
Glycoconj J ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958800

RESUMEN

Altered glycosylation is a common feature of cancer cells. Some subsets of glycans are found to be frequently enriched on the tumor cell surface and implicated in different tumor phenotypes. Among these, changes in sialylation have long been associated with metastatic cell behaviors such as invasion and enhanced cell survival. Sialylation typically exists in three prominent linkages: α2,3, α2,6, and α2,8, catalyzed by a group of sialyltransferases. The aberrant expression of all three linkages has been related to cancer progression. The increased α2,6 sialylation on N-glycans catalyzed by ß-galactoside α2,6 sialyltransferase 1 (ST6Gal1) is frequently observed in many cancers. In contrast, functions of α2,3 sialylation on N-glycans catalyzed by at least three ß-galactoside α2,3-sialyltransferases, ST3Gal3, ST3Gal4, and ST3Gal6 remain elusive due to a possibility of compensating for one another. In this minireview, we briefly describe functions of sialylation and recent findings that different α2,3 sialyltransferases specifically modify target proteins, as well as sialylation regulatory mechanisms vis a complex formation among integrin α3ß1, Golgi phosphoprotein 3 (GOLPH3), phosphatidylinositol 4-kinase IIα (PI4KIIα), focal adhesion kinase (FAK) and sialyltransferase, which suggests a new concept for the regulation of glycosylation in cell biology.

3.
Cureus ; 16(6): e62706, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39036223

RESUMEN

BACKGROUND AND OBJECTIVE: The complex focal adhesion kinase (FAK)/Src and paxillin seem to play a key role in the pathogenesis and progression of cancer. The aim of this study is to evaluate the expression of these proteins in renal cell carcinomas (RCCs), considering the immunoreactive score (IRS), the positivity and the intensity, and to find any association with patients' clinical characteristics, histologic type and other pathological features that imply a possible pathophysiological or prognostic role of FAK/Src and paxillin in RCC. METHODS: Patients with RCC who had undergone partial or radical nephrectomy from January 2009 to September 2010 were eligible for this retrospective cross-sectional study. The immunohistochemical expression of FAK, Src and paxillin proteins in formalin-fixed paraffin-embedded tumour tissue was analysed in association with various clinicopathological features. RESULTS: Out of ninety patients, 58 had clear cell renal carcinoma, 15 had papillary, 11 had chromophobe and six had unclassified RCC. FAK, Src and paxillin were expressed in 55.6%, 32.2% and 18.9% of all cases, respectively. In univariate analysis, FAK positivity and IRS were more likely in patients with papillary and chromophobe histologic type versus clear cell RCC (p<0.005), Src positivity and IRS presented more frequently in stage T3 versus T1 (p<0.005) and paxillin positivity was more likely in patients with stage T3 versus T2 (p=0.021) and grades 3-4 versus grade 2 (p=0.013). Paxillin-IRS was not associated with any clinicopathological features. The same associations were also reproduced in the multifactorial analysis for the FAK and Src positivity and IRS, while it was found that paxillin positivity and IRS were associated with the female gender (p=0.052, p=0.024), and were higher in grades 3-4 versus grade 2 (p=0.022, p=0.020). CONCLUSIONS: Our study suggests that RCC shows immunohistochemical expression of FAK, Src and paxillin proteins, and this expression varies in relation to the histologic type, the stage and the stage/grade/gender, respectively. These findings imply a possible involvement of the FAK/Src signalling pathway in the pathogenesis and progression of cancer in RCC, providing future perspectives for targeted therapies with inhibitors.

4.
J Gastrointest Oncol ; 15(3): 818-828, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38989403

RESUMEN

Background: Recurrence and metastasis are the major obstacles affecting the therapeutic efficacy and clinical outcomes for patients with esophageal carcinoma (ESCA). Secreted phosphoprotein 1 (SPP1) is considered as a hub gene in ESCA and is negatively associated with disease-free survival (DFS) in ESCA. However, the exact roles and underlying mechanisms remain elusive. This study aims to examine the roles of SPP1 on ESCA, and elucidate the potential mechanisms. Methods: Bioinformatics were used to analyze the expression of SPP1 in ESCA tissues, and its relations with clinicopathological characteristics and clinical prognosis in patients with ESCA based on The Cancer Genome Atlas (TCGA) dataset. Loss-of-function was conducted to examine the roles of SPP1 on malignant behaviors of ESCA cells by cell counting kit-8 (CCK8), plate clone, wound healing, and transwell assays. Gene set enrichment analysis (GSEA) was conducted to screen the pathways associated with SPP1 in ESCA. Then, the enriched pathway and the underlying mechanism were elucidated by western blotting, cell adhesion, and cell spreading assays. Lastly, Y15 [a specific inhibitor of focal adhesion kinase (FAK)] was used to examine its potential to inhibit tumor growth in ESCA cells. Results: SPP1 was upregulated in ESCA tissues compared to the adjacent nontumorous tissues, which was closely associated with clinical stage, lymph node metastasis, histological subtype, and p53 mutation. A high expression of SPP1 indicated a poor clinical prognosis in patients with ESCA. The knockdown of SPP1 inhibited cell proliferative, migratory, and invasive capacities in ESCA cells. GSEA indicated that the focal adhesion pathway was closely related with SPP1 in ESCA. Further studies confirmed that the knockdown of SPP1 suppressed cell adhesion ability and reduced the expression of p-FAK and p-Erk in ESCA cells. In addition, Y15 inhibited FAK autophosphorylation and dramatically inhibited cell proliferation, migration, and invasion in ESCA cells. Conclusions: SPP1 promotes tumor progression in ESCA by activating FAK/Erk pathway, and FAK is a potential therapeutic target to overcome tumor recurrence and metastasis of ESCA.

5.
Front Oncol ; 14: 1397647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947885

RESUMEN

Background: Hepatoblastoma (HB) is the most common pediatric hepatic malignancy. Despite the progress in HB treatment, investigating HB pathomechanisms to optimize stratification and therapies remains a focal point to improve the outcome for high-risk patients. Methods: Here, we pointed to explore the impact of these mechanisms in HB. An observational study was performed on liver samples from a cohort of 17 patients with a diagnosis of HB and two normal liver samples. The in vitro experiments were executed on the Huh6 human HB cell line treated with the FAK inhibitor TAE226. Results: Our results highlight a significant up-regulation of mRNA and protein expression of FAK in livers from HB with respect to normal livers. The increased protein expression of total and Tyr397 phosphorylated FAK (pTyr397FAK) was significantly correlated with the expression of some epigenetic regulators of histone H3 methylation and acetylation. Of note, the expression of pTyr397FAK, N-methyltransferase enzyme (EZH2) and tri-methylation of the H3K27 residue correlated with tumor size and alpha-fetoprotein (AFP) levels. Finally, TAE226 caused a significant reduction of pTyr397FAK, epigenetic regulators, AFP, EPCAM, OCT4, and SOX2, in association with anti-proliferative and pro-apoptotic effects on HB cells. Conclusion: Our results suggest a role of FAK in HB that requires further investigations mainly focused on the exploration of its effective diagnostic and therapeutic translatability.

6.
J Dermatol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051469

RESUMEN

Excessive proliferation of keratinocytes is a crucial pathological risk feature of psoriasis. Focal adhesion kinase (FAK) is a non-receptor protein that primarily regulates cell proliferation and migration. However, the expression and regulatory mechanism of FAK in psoriasis remains unclear. This study aimed to investigate the regulation of FAK in psoriasis and examined the potential impact of FAK inhibitor on psoriasis. A small molecular selective FAK inhibitor, defactinib, was used to evaluate the effect of FAK on psoriasis in in vitro and in vivo functional assays. In our experiments, imiquimod (IMQ)-induced psoriasis mice and human keratinocytes cells were used to study the potential roles and mechanisms of FAK in psoriasis. FAK phosphorylation has been weakly detected in normal intact skin and is markedly elevated upon IMQ treatment. By reducing FAK phosphorylation (p-FAK), defactinib treatment could attenuate psoriasiform inflammation and epidermal hyperplasia in IMQ-treated mice compared with IMQ-induced mice treated with the vehicle. In in vitro studies, resiquimod (R848) increased (p-FAK) and promoted cell proliferation in human keratinocytes cells, while defactinib reversed this effect. Mechanistically, defactinib can alleviate the proliferation via JNK/YB1 pathway in vitro and in vivo. Defactinib significantly attenuates psoriasiform inflammation and epidermal hyperproliferation through the inhibition of the FAK-mediated axis. The downregulation of phosphorylated FAK then suppressed the activation of JNK/YB1 protein signaling pathway in psoriasis. Our work highlights targeting FAK as a potentially effective strategy for the treatment of psoriasis.

7.
Int J Mol Med ; 54(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38994756

RESUMEN

Drug resistance is a key factor underlying the failure of tumor chemotherapy. It enhances the stem­like cell properties of cancer cells, tumor metastasis and relapse. Luteolin is a natural flavonoid with strong anti­tumor effects. However, the mechanism(s) by which luteolin protects against paclitaxel (PTX)­resistant cancer cell remains to be elucidated. The inhibitory effect of luteolin on the proliferation of EC1/PTX and EC1 cells was detected by cell counting kit­8 assay. Colony formation and flow cytometry assays were used to assess clonogenic capacity, cell cycle and apoptosis. Wound healing and Transwell invasion tests were used to investigate the effects of luteolin on the migration and invasion of EC1/PTX cells. Western blotting was used to detect the protein levels of EMT­related proteins and stem cell markers after sphere formation. Parental cells and drug­resistant cells were screened by high­throughput sequencing to detect the differential expression of RNA and differential genes. ELISA and western blotting were used to verify the screened PI3K/Akt signaling pathway, key proteins of which were explored by molecular docking. Hematoxylin and eosin staining and TUNEL staining were used to observe tumor xenografts on morphology and apoptosis in nude mice. The present study found that luteolin inhibited tumor resistance (inhibited proliferation, induced cell cycle arrest and apoptosis and hindered migration invasion, EMT and stem cell spherification) in vitro in PTX­resistant esophageal squamous cell carcinoma (ESCC) cells. In addition, luteolin enhanced drug sensitivity and promoted the apoptosis of drug­resistant ESCC cells in combination with PTX. Mechanistically, luteolin may inhibit the PI3K/AKT signaling pathway by binding to the active sites of focal adhesion kinase (FAK), Src and AKT. Notably, luteolin lowered the tumorigenic potential of PTX­resistant ESCC cells but did not show significant toxicity in vivo. Luteolin enhanced drug chemosensitivity by downregulating the FAK/PI3K/AKT pathway in PTX­resistant ESCC and could be a promising agent for the treatment of PTX­resistant ESCC cancers.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Luteolina , Paclitaxel , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Luteolina/farmacología , Paclitaxel/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Línea Celular Tumoral , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Transducción de Señal/efectos de los fármacos , Ratones , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Ratones Desnudos , Movimiento Celular/efectos de los fármacos , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos Fitogénicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Masculino
8.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000274

RESUMEN

Understanding the molecular factors involved in the development of uterine myomas may result in the use of pharmacological drugs instead of aggressive surgical treatment. ANG1, CaSR, and FAK were examined in myoma and peripheral tissue samples taken from women after myoma surgery and in normal uterine muscle tissue samples taken from the control group. Tests were performed using tissue microarray immunohistochemistry. No statistically significant differences in ANG1 expression between the tissue of the myoma, the periphery, and the normal uterine muscle tissue of the control group were recorded. The CaSR value was reduced in the myoma and peripheral tissue and normal in the group of women without myomas. FAK expression was also lower in the myoma and periphery compared to the healthy uterine myometrium. Calcium supplementation could have an effect on stopping the growth of myomas.


Asunto(s)
Quinasa 1 de Adhesión Focal , Leiomioma , Receptores Sensibles al Calcio , Neoplasias Uterinas , Humanos , Femenino , Leiomioma/metabolismo , Leiomioma/patología , Leiomioma/genética , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/genética , Adulto , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patología , Neoplasias Uterinas/genética , Persona de Mediana Edad , Miometrio/metabolismo , Miometrio/patología , Inmunohistoquímica
9.
Expert Opin Ther Pat ; 34(8): 593-610, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38946486

RESUMEN

INTRODUCTION: Focal adhesion kinase (FAK) is a cytoplasmic non-receptor tyrosine kinase over-expressed in various malignancies which is related to various cellular functions such as adhesion, metastasis and proliferation. AREAS COVERED: There is growing evidence that FAK is a promising therapeutic target for designing inhibitors by regulating the downstream pathways of FAK. Some potential FAK inhibitors have entered clinical phase research. EXPERT OPINION: FAK could be an effective target in medicinal chemistry research and there were a variety of FAKIs have been patented recently. Here, we updated an overview of design, synthesis and structure-activity relationship of chemotherapeutic FAK inhibitors (FAKIs) from 2017 until now based on our previous work. We hope our efforts can broaden the understanding of FAKIs and provide new ideas and insights for future cancer treatment from medicinal chemistry point of view.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Proteína-Tirosina Quinasas de Adhesión Focal , Neoplasias , Patentes como Asunto , Inhibidores de Proteínas Quinasas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/enzimología , Animales , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Desarrollo de Medicamentos , Química Farmacéutica , Terapia Molecular Dirigida
10.
Eur J Med Chem ; 276: 116678, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39029337

RESUMEN

Focal adhesion kinase (FAK) is considered as a pivotal intracellular non-receptor tyrosine kinase, and has garnered significant attention as a promising target for anticancer drug development. As of early 2024, a total of 12 drugs targeting FAK have been approved for clinical or preclinical studies worldwide, including three PROTAC degraders. In recent three years (2021-2023), significant progress has been made in designing targeted FAK anticancer agents, including the development of a novel benzenesulfofurazan type NO-releasing FAK inhibitor and the first-in-class dual-target inhibitors simultaneously targeting FAK and HDACs. Given the pivotal role of FAK in the discovery of anticancer drugs, as well as the notable advancements achieved in FAK inhibitors and PROTAC degraders in recent years, this review is underbaked to present a comprehensive overview of the function and structure of FAK. Additionally, the latest findings on the inhibitors and PROTAC degraders of FAK from the past three years, along with their optimization strategies and anticancer activities, were summarized, which might help to provide novel insights for the development of novel targeted FAK agents with promising anticancer potential and favorable pharmacological profiles.

11.
J Cell Sci ; 137(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39034922

RESUMEN

Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal , Neoplasias , Transducción de Señal , Humanos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Animales , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Femenino , Microambiente Tumoral , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética
12.
J Funct Biomater ; 15(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38921520

RESUMEN

The use of endosseous dental implants may become unfeasible in the presence of significant maxillary bone atrophy; thus, surgical techniques have been proposed to promote bone regeneration in such cases. However, such techniques are complex and may expose the patient to complications. Subperiosteal implants, being placed between the periosteum and the residual alveolar bone, are largely independent of bone thickness. Such devices had been abandoned due to the complexity of positioning and adaptation to the recipient bone site, but are nowadays witnessing an era of revival following the introduction of new acquisition procedures, new materials, and innovative manufacturing methods. We have analyzed the changes induced in gene and protein expression in C-12720 human osteoblasts by differently surface-modified TiO2 materials to verify their ability to promote bone formation. The TiO2 materials tested were (i) raw machined, (ii) electropolished with acid mixture, (iii) sand-blasted + acid-etched, (iv) AlTiColorTM surface, and (v) anodized. All five surfaces efficiently stimulated the expression of markers of osteoblastic differentiation, adhesion, and osteogenesis, such as RUNX2, osteocalcin, osterix, N-cadherin, ß-catenin, and osteoprotegerin, while cell viability/proliferation was unaffected. Collectively, our observations document that presently available TiO2 materials are well suited for the manufacturing of modern subperiosteal implants.

13.
Sci Rep ; 14(1): 12969, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839835

RESUMEN

Schistosomiasis, caused by Schistosoma trematodes, is a significant global health concern, particularly affecting millions in Africa and Southeast Asia. Despite efforts to combat it, the rise of praziquantel (PZQ) resistance underscores the need for new treatment options. Protein kinases (PKs) are vital in cellular signaling and offer potential as drug targets. This study focused on focal adhesion kinase (FAK) as a candidate for anti-schistosomal therapy. Transcriptomic and proteomic analyses of adult S. mekongi worms identified FAK as a promising target due to its upregulation and essential role in cellular processes. Molecular docking simulations assessed the binding energy of FAK inhibitors to Schistosoma FAK versus human FAK. FAK inhibitor 14 and PF-03814735 exhibited strong binding to Schistosoma FAK with minimal binding for human FAK. In vitro assays confirmed significant anti-parasitic activity against S. mekongi, S. mansoni, and S. japonicum, comparable to PZQ, with low toxicity in human cells, indicating potential safety. These findings highlight FAK as a promising target for novel anti-schistosomal therapies. However, further research, including in vivo studies, is necessary to validate efficacy and safety before clinical use. This study offers a hopeful strategy to combat schistosomiasis and reduce its global impact.


Asunto(s)
Proteómica , Schistosoma , Esquistosomiasis , Transcriptoma , Animales , Humanos , Proteómica/métodos , Schistosoma/efectos de los fármacos , Schistosoma/genética , Schistosoma/metabolismo , Esquistosomiasis/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Perfilación de la Expresión Génica/métodos , Inhibidores de Proteínas Quinasas/farmacología , Proteoma/metabolismo
14.
Clin Transl Med ; 14(7): e1742, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38925910

RESUMEN

BACKGROUND: White adipose tissue (WAT) has a key role in maintaining energy balance throughout the body, and their dysfunction take part in the regulation of diabetes mellitus. However, the internal regulatory mechanisms underlying are still unknown. METHODS AND RESULTS: We generated adipocyte-specific FAK KO (FAK-AKO) mice and investigated their phenotype. The cascade of adipocyte, macrophage in adipocyte tissues, and pancreatic ß-cells were proposed in FAK-AKO mice and validated by cell line studies using 3T3-L1, Raw264.7 and Min6. The FAK-AKO mice exhibited glucose intolerance, reduced adipose tissue mass and increased apoptosis, lipolysis and inflammatory response in adipose tissue. We further demonstrate that adipocyte FAK deletion increases ß cell apoptosis and inflammatory infiltrates into islets, which is potentiated if mice were treated with STZ. In the STZ-induced diabetes model, FAK AKO mice exhibit less serum insulin content and pancreatic ß cell area. Moreover, serum pro-inflammatory factors increased and insulin levels decreased after glucose stimulation in FAK AKO mice. In a parallel vitro experiment, knockdown or inhibition of FAK during differentiation also increased apoptosis, lipolysis and inflammatory in 3T3-L1 adipocytes, whereas the opposite was observed upon overexpression of FAK. Moreover, coculturing LPS-treated RAW264.7 macrophages with knockdown FAK of 3T3-L1 adipocytes increased macrophage pro-inflammatory response. Furthermore, conditioned medium from above stimulated Min6 cells apoptosis (with or without STZ), whereas the opposite was observed upon overexpression of FAK. Mechanistically, FAK protein interact with TRAF6 in adipocytes and knockdown or inhibition of FAK activated TRAF6/TAK1/NF-κB signaling, which exacerbates inflammation of adipocytes themselves. CONCLUSION: Adipocyte FAK deletion promotes both adipocyte apoptosis and adipose tissue inflammation. Pro-inflammatory factors released by the FAK-null adipose tissue further trigger apoptosis in pancreatic islets induced by the administration of STZ, thereby exacerbating the diabetes mellitus. This study reveals a link between FAK-mediated adipose inflammation and diabetes mellitus, a mechanism that has not been previously recognized.


Asunto(s)
Adipocitos , Apoptosis , Diabetes Mellitus Experimental , Quinasa 1 de Adhesión Focal , Células Secretoras de Insulina , Ratones Noqueados , Animales , Ratones , Apoptosis/genética , Células Secretoras de Insulina/metabolismo , Adipocitos/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Diabetes Mellitus Experimental/metabolismo , Inflamación/metabolismo , Inflamación/genética , Masculino , Tejido Adiposo/metabolismo , Modelos Animales de Enfermedad
15.
Biochem Biophys Res Commun ; 725: 150236, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897039

RESUMEN

BACKGROUND: Macrophage-derived foam cell formation is a hallmark of atherosclerosis and is retained during plaque formation. Strategies to inhibit the accumulation of these cells hold promise as viable options for treating atherosclerosis. Plexin D1 (PLXND1), a member of the Plexin family, has elevated expression in atherosclerotic plaques and correlates with cell migration; however, its role in macrophages remains unclear. We hypothesize that the guidance receptor PLXND1 negatively regulating macrophage mobility to promote the progression of atherosclerosis. METHODS: We utilized a mouse model of atherosclerosis based on a high-fat diet and an ox-LDL- induced foam cell model to assess PLXND1 levels and their impact on cell migration. Through western blotting, Transwell assays, and immunofluorescence staining, we explored the potential mechanism by which PLXND1 mediates foam cell motility in atherosclerosis. RESULTS: Our study identifies a critical role for PLXND1 in atherosclerosis plaques and in a low-migration capacity foam cell model induced by ox-LDL. In the aortic sinus plaques of ApoE-/- mice, immunofluorescence staining revealed significant upregulation of PLXND1 and Sema3E, with colocalization in macrophages. In macrophages treated with ox-LDL, increased expression of PLXND1 led to reduced pseudopodia formation and decreased migratory capacity. PLXND1 is involved in regulating macrophage migration by modulating the phosphorylation levels of FAK/Paxillin and downstream CDC42/PAK. Additionally, FAK inhibitors counteract the ox-LDL-induced migration suppression by modulating the phosphorylation states of FAK, Paxillin and their downstream effectors CDC42 and PAK. CONCLUSION: Our findings indicate that PLXND1 plays a role in regulating macrophage migration by modulating the phosphorylation levels of FAK/Paxillin and downstream CDC42/PAK to promoting atherosclerosis.


Asunto(s)
Aterosclerosis , Movimiento Celular , Células Espumosas , Ratones Endogámicos C57BL , Paxillin , Animales , Paxillin/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patología , Ratones , Aterosclerosis/metabolismo , Aterosclerosis/patología , Transducción de Señal , Lipoproteínas LDL/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteína de Unión al GTP cdc42/metabolismo , Macrófagos/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Modelos Animales de Enfermedad , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Ratones Noqueados , Glicoproteínas de Membrana , Péptidos y Proteínas de Señalización Intracelular
16.
Artículo en Inglés | MEDLINE | ID: mdl-38775643

RESUMEN

Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) inhibits platelet and leukocyte adhesion while promoting vasorelaxation in smooth muscle cells. Dysfunctional regulation of eNOS is a hallmark of various vascular pathologies, notably atherosclerosis, often associated with areas of low shear stress on endothelial cells (ECs). While the link between EC morphology and local hemodynamics is acknowledged, the specific impact of EC morphology on eNOS regulation remains unclear. Morphological differences between elongated, aligned ECs and polygonal, randomly oriented ECs correspond to variations in focal adhesion and cytoskeletal organization, suggesting differing levels of cytoskeletal prestress. However, the functional outcomes of cytoskeletal prestress, particularly in the absence of shear stress, are not extensively studied in ECs. Some evidence suggests that elongated ECs exhibit decreased immunogenicity and enhanced NO production. This study aims to elucidate the signaling pathways governing VEGF-stimulated eNOS regulation in the aligned EC phenotype characterized by elongated and aligned cells within a monolayer. Using anisotropic topographic cues, bovine aortic endothelial cells (BAECs) were elongated and aligned, followed by VEGF treatment in the presence or absence of cytoskeletal tension inhibitors. Phosphorylation of eNOS ser1179, AKT ser437 and FAK Tyr397 in response to VEGF challenge were significantly heightened in aligned ECs compared to unaligned ECs. Moreover this response proved to be robustly tied to cytoskeletal tension as evinced by the abrogation of responses in the presence of the myosin II ATPase inhibitor, blebbistatin. Notably, this work demonstrates for the first time the reliance on FAK phosphorylation in VEGF-mediated eNOS activation and the comparatively greater contribution of the cytoskeletal machinery in propagating VEGF-eNOS signaling in aligned and elongated ECs. This research underscores the importance of utilizing appropriate vascular models in drug development and sheds light on potential mechanisms underlying vascular function and pathology that can help inform vascular graft design.

17.
Cell Commun Signal ; 22(1): 300, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816763

RESUMEN

Optimizing the efficiency of definitive endoderm (DE) differentiation is necessary for the generation of diverse organ-like structures. In this study, we used the small molecule inhibitor saracatinib (SAR) to enhance DE differentiation of human embryonic stem cells and induced pluripotent stem cells. SAR significantly improved DE differentiation efficiency at low concentrations. The interaction between SAR and Focal Adhesion Kinase (FAK) was explored through RNA-seq and molecular docking simulations, which further supported the inhibition of DE differentiation by p-FAK overexpression in SAR-treated cells. In addition, we found that SAR inhibited the nuclear translocation of Yes-associated protein (YAP), a downstream effector of FAK, which promoted DE differentiation. Moreover, the addition of SAR enabled a significant reduction in activin A (AA) from 50 to 10 ng/mL without compromising DE differentiation efficiency. For induction of the pancreatic lineage, 10 ng/ml AA combined with SAR at the DE differentiation stage yielded a comparative number of PDX1+/NKX6.1+ pancreatic progenitor cells to those obtained by 50 ng/ml AA treatment. Our study highlights SAR as a potential modulator that facilitates the cost-effective generation of DE cells and provides insight into the orchestration of cell fate determination.


Asunto(s)
Benzodioxoles , Diferenciación Celular , Endodermo , Quinazolinas , Transducción de Señal , Humanos , Diferenciación Celular/efectos de los fármacos , Endodermo/efectos de los fármacos , Endodermo/citología , Endodermo/metabolismo , Benzodioxoles/farmacología , Transducción de Señal/efectos de los fármacos , Quinazolinas/farmacología , Factores de Transcripción/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Activinas/metabolismo , Simulación del Acoplamiento Molecular
18.
J Pharmacol Exp Ther ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777606

RESUMEN

Bi-directional signaling through platelet integrin αIIbß3 is essential in hemostasis and thrombosis. In quiescent platelets αIIbß3 is in a low-affinity ligand binding state. However, upon platelet activation by agonists through inside-out signaling, a rapid switch in the conformation of the integrin results in a high affinity ligand binding state capable of binding soluble fibrinogen. Ligand binding to the αIIbß3 induces a signaling termed outside-in signaling that regulate platelet spreading and clot retraction. These events are often interchangeably used to represent outside-in signaling pathway. Using pharmacological inhibitors of known signaling molecules that have been implicated to regulate outside-in signaling, we assessed human platelet spreading and clot retraction. We found that inhibition of PI3K, PLC, PKC, and FAK strongly attenuated both platelet spreading and clot retraction suggesting that they are essential for both clot retraction and platelet spreading. Whereas inhibition of Rac1, ROCK, p38, and MEK did not affect platelet spreading but significantly delayed clot retraction suggesting that these signaling molecules do not participate in platelet spreading. Interestingly, Src family kinases (SFKs) are required for platelet spreading and FAK activation but suppresses clot retraction since their inhibition causes faster clot retraction. Thus, it becomes evident that platelet spreading, and clot retraction are differently regulated through αIIbß3 outside-in signaling and should not be used interchangeably as readout for αIIbß3 outside-in signaling assessment. Significance Statement Current anti-platelet drugs have increased risk of bleeding and low efficacy. There is an increased effort to identify novel anti-platelet agents that have improved efficacy with reduced risk of bleeding. It is increasingly felt that inhibition of αIIbß3-induced outside-in signaling may inhibit thrombosis without compromising hemostasis. However, the signaling entities regulating outside-in signaling is poorly understood. Our work included in this manuscript delineates the distinct signaling pathways involved in outside-in signaling and identify potential novel targets for intervention of thrombosis.

19.
J Stomatol Oral Maxillofac Surg ; : 101921, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38795909

RESUMEN

BACKGROUND: Benign odontogenic lesions (BOLs) can cause severe jaw bone defects and compromise the quality of life of patients. Extracellular vesicles (EVs) are well-established and versatile players in mediating pathophysiological events. EVs in the interstitial space (tissue-derived EVs or Ti-EVs) possess higher specificity and sensitivity in disease-related biomarker discovery. However, the role of Ti-EV-loaded proteins in mediating the development of BOLs has remained untapped. Herein, we aim to explore the contribution of Ti-EV-loaded proteins to the development of BOLs. METHODS: Samples were obtained from 3 with dental follicle, 3 with dentigerous cyst (DC), 7 with odontogenic keratocyst (OKC), and 3 patients with ameloblastoma (AM). Tissue-derived EVs were then extracted, purified, and validated using ultracentrifugation, transmission electron microscopy, and western blotting. Proteins from Ti-EVs were analyzed using LC-ESI tandem mass spectroscopy and differentially expressed proteins were screened, which was then validated by immunohistochemistry and immunofluorescence assays. RESULTS: The protein profile of Ti-EVs in each group was mapped by LC-MS analysis. The top 10 abundant proteins in BOL-derived Ti-EVs were COL6A3, COL6A1, ALB, HIST1H4A, HBB, ACTB, HIST1H2BD, ANXA2, COL6A2 and FBN1. Additionally, unique proteins in the Ti-EVs from various lesions were identified. Moreover, focal adhesion kinase (FAK) and myeloid differentiation primary response 88 (MyD88) showed higher expressions in Ti-EVs derived from OKC and AM, which were confirmed by immunohistochemistry and immunofluorescence staining. CONCLUSIONS: Ti-EVs containing FAK and MyD88 might be related to the development of OKC and AM, which can be potential therapeutic targets.

20.
Expert Opin Investig Drugs ; 33(6): 639-651, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38676368

RESUMEN

INTRODUCTION: FAK, a nonreceptor cytoplasmic tyrosine kinase, plays a crucial role in tumor metastasis, drug resistance, tumor stem cell maintenance, and regulation of the tumor microenvironment. FAK has emerged as a promising target for tumor therapy based on both preclinical and clinical data. AREAS COVERED: This paper aims to summarize the molecular mechanisms underlying FAK's involvement in tumorigenesis and progression. Encouraging results have emerged from ongoing clinical trials of FAK inhibitors. Additionally, we present an overview of clinical trials for FAK inhibitors, examining their potential as promising treatments. The pertinent studies gathered from databases including PubMed, ClinicalTrials.gov. EXPERT OPINION: Since the first finding in 1990s, targeting FAK has became the focus of interests in many pharmaceutical companies. Through 30 years' discovery, the industry and academy gradually realized the features of FAK target which may not be a driver gene but a solid defense system for the cancer initiation and development. Currently, the ongoing clinical regimens involving FAK inhibition are all the combination strategies in which FAK inhibitors can further strengthen the cancer cell killing effects of other testing agents. The emerging positive signal in clinical trials foresee targeting FAK as class will be an effective mean to fight against cancers.


Asunto(s)
Antineoplásicos , Proteína-Tirosina Quinasas de Adhesión Focal , Neoplasias , Inhibidores de Proteínas Quinasas , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Animales , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/farmacología , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Microambiente Tumoral/efectos de los fármacos , Terapia Molecular Dirigida , Resistencia a Antineoplásicos , Desarrollo de Medicamentos , Progresión de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...