Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Reprod Biol Endocrinol ; 22(1): 95, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095895

RESUMEN

BACKGROUND: Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development. METHODS: PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO5PA and AO10PA). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level. RESULTS: The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO10PA) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence. CONCLUSIONS: The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.


Asunto(s)
Folículo Ovárico , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido , Femenino , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/citología , Andamios del Tejido/química , Animales , Poliésteres/química , Ingeniería de Tejidos/métodos , Ovinos , Ovario/crecimiento & desarrollo , Ovario/citología , Oogénesis/fisiología , Oogénesis/efectos de los fármacos , Bioingeniería/métodos , Técnicas Reproductivas Asistidas , Fertilización In Vitro/métodos
2.
Cells ; 13(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39120279

RESUMEN

RESEARCH QUESTION: Theca interna cells (TICs) are an indispensable cell source for ovarian follicle development and steroidogenesis. Recent studies have identified theca stem cells (TSCs) in both humans and animals. Interestingly, TSCs express mesenchymal stem cell (MSC)-related markers and can differentiate into mesenchymal lineages. MSCs are promising for tissue engineering and regenerative medicine due to their self-renewal and differentiation abilities. Therefore, this study investigated the potential origin of TICs from MSCs. DESIGN: Whole ovaries from postmenopausal organ donors were obtained, and their cortex was cryopreserved prior to the isolation of stromal cells. These isolated cells were differentiated in vitro to TICs using cell media enriched with various growth factors and hormones. Immunocytochemistry, an enzyme-linked immunosorbent assay, flow cytometry, and reverse transcription-quantitative polymerase chain were employed at different timepoints. Data were analyzed using one-way ANOVA. RESULTS: Immunocytochemistry showed an increase in TIC markers from day 0 to day 8 and a significant rise in MSC-like markers on day 2. This corresponds with rising androstenedione levels from day 2 to day 13. Flow cytometry identified a decreasing MSC-like cell population from day 2 onwards. The CD13+ cell population and its gene expression increased significantly over time. NGFR and PDGFRA expression was induced on days 0 and 2, respectively, compared to day 13. CONCLUSIONS: This study offers insights into MSC-like cells as the potential origin of TICs. Differentiating TICs from these widely accessible MSCs holds potential significance for toxicity studies and investigating TIC-related disorders like polycystic ovary syndrome (PCOS).


Asunto(s)
Diferenciación Celular , Células Tecales , Femenino , Células Tecales/metabolismo , Células Tecales/citología , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Células Cultivadas , Biomarcadores/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética
3.
Clin Transl Med ; 14(8): e1791, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39113233

RESUMEN

BACKGROUND: Mutations in several translation initiation factors are closely associated with premature ovarian insufficiency (POI), but the underlying pathogenesis remains largely unknown. METHODS AND RESULTS: We generated eukaryotic translation initiation factor 5 (Eif5) conditional knockout mice aiming to investigate the function of eIF5 during oocyte growth and follicle development. Here, we demonstrated that Eif5 deletion in mouse primordial and growing oocytes both resulted in the apoptosis of oocytes within the early-growing follicles. Further studies revealed that Eif5 deletion in oocytes downregulated the levels of mitochondrial fission-related proteins (p-DRP1, FIS1, MFF and MTFR) and upregulated the levels of the integrated stress response-related proteins (AARS1, SHMT2 and SLC7A1) and genes (Atf4, Ddit3 and Fgf21). Consistent with this, Eif5 deletion in oocytes resulted in mitochondrial dysfunction characterized by elongated form, aggregated distribution beneath the oocyte membrane, decreased adenosine triphosphate content and mtDNA copy numbers, and excessive accumulation of reactive oxygen species (ROS) and mitochondrial superoxide. Meanwhile, Eif5 deletion in oocytes led to a significant increase in the levels of DNA damage response proteins (γH2AX, p-CHK2 and p-p53) and proapoptotic proteins (PUMA and BAX), as well as a significant decrease in the levels of anti-apoptotic protein BCL-xL. CONCLUSION: These findings indicate that Eif5 deletion in mouse oocytes results in the apoptosis of oocytes within the early-growing follicles via mitochondrial fission defects, excessive ROS accumulation and DNA damage. This study provides new insights into pathogenesis, genetic diagnosis and potential therapeutic targets for POI. KEY POINTS: Eif5 deletion in oocytes leads to arrest in oocyte growth and follicle development. Eif5 deletion in oocytes impairs the translation of mitochondrial fission-related proteins, followed by mitochondrial dysfunction. Depletion of Eif5 causes oocyte apoptosis via ROS accumulation and DNA damage response pathway.


Asunto(s)
Apoptosis , Daño del ADN , Ratones Noqueados , Oocitos , Especies Reactivas de Oxígeno , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Oocitos/metabolismo , Daño del ADN/genética , Femenino , Apoptosis/genética , Dinámicas Mitocondriales/genética , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción , Folículo Ovárico/metabolismo , Folículo Ovárico/crecimiento & desarrollo
4.
Reprod Biol Endocrinol ; 22(1): 98, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107809

RESUMEN

BACKGROUND: At present, a number of clinical trials have been carried out on GLP-1 receptor agonist liraglutide in the treatment of polycystic ovary syndrome (PCOS). However, the effect of liraglutide on follicle development and its specific mechanism are still unclear. METHODS: RNA sequencing was used to explore the molecular characteristics of granulosa cells from patients with PCOS treated with liraglutide. The levels of C-X-C motif chemokine ligand 10 (CXCL10) in follicular fluid were detected by ELISA, the expression levels of ovulation related genes and inflammatory factor genes in follicles and granulosa cells were detected by qPCR and the protein levels of connexin 43 (Cx43), Janus Kinase 2 (JAK2) and phosphorylated JAK2 were detected by Western blot. The mouse ovarian follicles culture system in vitro was used to detect the status of follicle development and ovulation. RESULTS: In the present study, we found that liraglutide inhibited the secretion of inflammatory factors in PCOS granulosa cells, among which CXCL10 was the most significant. In addition, CXCL10 was significantly higher in granulosa cells and follicular fluid in PCOS patients than in non-PCOS patients. We applied in vitro follicle culture and other techniques to carry out the mechanism exploration which revealed that CXCL10 disrupted the homeostasis of gap junction protein alpha 1 (GJA1) between oocyte and granulosa cells before physiological ovulation, thus inhibiting follicular development and ovulation. Liraglutide inhibited CXCL10 secretion in PCOS granulosa cells by inhibiting the JAK signaling pathway and can improved dehydroepiandrosterone (DHEA)-induced follicle development disorders, which is reversed by CXCL10 supplementation. CONCLUSIONS: The present study suggests that liraglutide inhibits CXCL10 secretion in granulosa cells through JAK signaling pathway, thereby improving the homeostasis of GJA1 between oocyte and granulosa cells before physiological ovulation and ultimately improving the follicular development and ovulation of PCOS, which provides more supportive evidence for the clinical application of liraglutide in the treatment of ovulatory disorders in PCOS. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Quimiocina CXCL10 , Células de la Granulosa , Liraglutida , Folículo Ovárico , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Femenino , Liraglutida/farmacología , Liraglutida/uso terapéutico , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Humanos , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Animales , Ratones , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Adulto , Ovulación/efectos de los fármacos , Líquido Folicular/metabolismo , Células Cultivadas , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
5.
Theriogenology ; 228: 81-92, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39116655

RESUMEN

OPN5 is one of the main deep brain photoreceptors (DBPs), converting photoperiodic information into neuroendocrine signals to regulate reproduction in birds. This study investigated the mechanism of OPN5-mediated photoperiodic regulation of reproduction by active immunization against OPN5. 96 female quail were divided into OPN5-immunized and control group under the same photoperiod: 16 L:8 D (d 1 to d 35), 8 L:16 D (d 36 to d 70) and 12 L:12 D (d 71 to d 126). OPN5-immunized group was conducted with OPN5 protein vaccination and control group was given a blank vaccine. Samples were collected on d 1, d 30, d 60, and d 126. Results showed switching photoperiod to 8 L:16 D decreased the laying rate, GSI%, numbers of YFs and WFs, serum levels of PRL, P4 and E2, and pituitary PRL and TSHß protein expressions in both groups (P < 0.05). Whereas the OPN5-immunized group exhibited higher laying rates than the control group (P < 0.05). The control group showed reduced GnRHR and TSHß gene expressions in the pituitary and increased GnIH and DIO3 transcript and/or protein abundance in the hypothalamus. (P < 0.05). The OPN5-immunized group had lower DIO3 expression at both mRNA and protein levels. (P < 0.05). Switching photoperiod from 8 L:16 D to 12 L:12 D increased the laying rates, GSI%, numbers of YFs and WFs, serum levels of PRL, and PRL protein expression in both groups (P < 0.05), and the responses were more pronounced in OPN5-immunized group (P < 0.05). In contrast to the control group, quail with OPN5-immunization had higher OPN5 and DIO2 transcript and/or protein levels but lower DIO3 expressions in the hypothalamus along the transition photoperiods (P < 0.05). The results revealed that OPN5 responds to photoperiod transition, and its activation mediates related signaling to up-regulate TSH-DIO2/DIO3 pathway and VIP-PRL secretion to prime quail reproductive functions.


Asunto(s)
Fotoperiodo , Animales , Femenino , Folículo Ovárico/fisiología , Codorniz/fisiología , Opsinas/metabolismo , Opsinas/genética , Oviposición , Coturnix/fisiología , Coturnix/inmunología
6.
J Ovarian Res ; 17(1): 148, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020390

RESUMEN

Vitamin D3 plays a crucial role in female reproduction. As research progresses, the mechanisms of action of vitamin D3 on follicular development have been widely discussed. Firstly, key enzymes involved in the synthesis and metabolism of vitamin D3 have been discovered in the ovary, suggesting that vitamin D3 can be synthesized and metabolized locally within the ovary. Additionally, the detection of vitamin D3 receptors (VDR) in follicles suggests that vitamin D3 may exert its effects by binding specifically to these receptors during follicular development. Further research indicates that vitamin D3 promotes follicular growth by enhancing the development of granulosa cells (GCs) and oocytes. Currently, the mechanism of action of vitamin D3 in follicular development is becoming increasingly clear. Vitamin D3 promotes oocyte development by regulating molecules involved in meiotic arrest in oocytes. It also enhances granulosa cell proliferation by stimulating steroid hormone synthesis and cell cycle regulation. Additionally, vitamin D3 exerts anti-inflammatory effects by reducing oxidative stress and advanced glycation end-products (AGEs), mitigating the detrimental effects of inflammation on follicular development. These functions of vitamin D3 have clinical applications, such as in treating polycystic ovary syndrome (PCOS), improving female fertility, and enhancing outcomes in in vitro fertilization (IVF). This review summarizes the research progress on the role and mechanisms of vitamin D3 in follicular development and briefly summarizes its clinical applications.


Asunto(s)
Colecalciferol , Folículo Ovárico , Humanos , Femenino , Colecalciferol/metabolismo , Folículo Ovárico/metabolismo , Animales , Oocitos/metabolismo , Células de la Granulosa/metabolismo , Receptores de Calcitriol/metabolismo
7.
Porcine Health Manag ; 10(1): 25, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971810

RESUMEN

BACKGROUND: Most sows will experience negative energy balance during lactation resulting in impaired follicular development. This study aimed to treat 28-day lactating sows with altrenogest (ALT) to suppress follicle enlargement during lactation, and to assess the estrus and reproductive performance post-weaning. METHODS: In this study, we conducted two trials. In trial 1, we monitored the follicular development of lactating sows including 10 primiparous sows and 10 multiparous sows during the whole lactation to confirm the ALT administration time. In trial 2, a total of 42 primiparous and 111 multiparous sows were allocated to three treatments: Ctrl (control group, n = 51): no treatment; TAI (timed artificial insemination group, n = 51): sows were injected with equine chorionic gonadotropin (eCG) after weaning 24 h and gonadotropin-releasing hormone (GnRH) when they expressed estrus; and AT-TAI (ALT treatment-timed artificial insemination group, n = 51): base on the process of TAI group, the sows were fed with 20 mg ALT per day before weaning 10 days. All sows were artificially inseminated twice at 12 h and 36 h after estrus. The follicle size changes and serum hormone levels were explored in this process. RESULTS: Although the follicle size of multiparous sows was larger than primiparous sows during the whole lactation (P < 0.05), similar change trends of follicle size were observed in primiparous and multiparous sows. Meanwhile, the FSH, LH and E2 levels of multiparous sows were higher than primiparous sows. The ALT treatment significantly inhibits the increase in follicle size (P < 0.05) and reduces the serum levels of FSH, LH and E2 (P > 0.05). Additionally, ALT treatment increases estrus concentration and the preovulatory follicle size (P < 0.05), meanwhile, it delays the weaning-to-estrus interval (WEI, P < 0.001). However, the estrus rate, pregnancy rate, total pigs born and born alive did not differ between treatments (P > 0.05). CONCLUSIONS: There were significant differences in the size of follicles in the lactation between primiparous and multiparous sows. ALT treatment during the last ten days of lactation concentrated estrus expression leading to higher work efficiency of breeder in batch production, however, with no improvement in reproductive performance.

8.
MethodsX ; 12: 102756, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38883585

RESUMEN

Follicle culture is a process of dividing follicle unit structures from ovaries for continued culture in vitro in an incubator, which simulates the in vivo environment. Alginate gel is the most stable and most convenient 3D material currently used in follicle culture. We performed in vitro follicle culture following the standard operating procedure recommended by the Follicle Handbook and we have summarized our experience and skills in details. Through several experiments, we found only follicles tightly surrounded by theca cells can grow healthily until the preovulatory stage. In addition, the hardness of alginate gel is crucial for constructing the 3D culture system, and selecting appropriate tools can reduce damage to the alginate gel and shorten the time follicles are exposed to room temperature. Our detailed operation improves bioavailability and provides a more natural environment for the entire process of follicular growth.•Alginate gel is still the most suitable 3D material used for in vitro follicle culture.•Follicle integrity and the hardness of alginate gel are the keys for in vitro culture.•Detailed operation steps better protect the follicular microenvironment and improve bioavailability.

9.
Poult Sci ; 103(8): 103903, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908121

RESUMEN

Carcass appearance is important economic trait, which affects customers in making purchase decisions. Both density and diameter of feather follicles are two important indicators of carcass appearance. However, the regulatory network and key genes be involved in feather follicle development remain poorly understood. To identify key genes and modules that involved in feather follicle development in chickens, 16 transcriptome datasets of Wannan chickens skin tissue (3 birds at the E9, E11, and E14, respectively, and 7 birds at the 12W) were used for weighted gene co-expression network analysis (WGCNA) analysis, and 12 skin tissue samples (3 birds for each stage) were selected for DEGs analysis. A total of 5,025, 2,337, and 10,623 DEGs were identified in 3 comparison groups, including the E9 vs. E11, the E11 vs. E14, and the E14 vs. 12W. Additionally, 31 co-expression gene modules were identified by WGCNA and the dark-orange, cyan, and blue module were found to be significantly associated with feather follicle development (p < 0.01). In total, 92,898 and 8,448 hub genes were obtained in the dark-orange, cyan, and blue modules, respectively. We focused on the cyan and blue modules, as 6 and 336 hub genes of these modules were identified to overlap with the DEGs of the three comparison groups, respectively. The 6 overlapped genes such as LAMC2, COL6A3, and COL6A2 etc., were over-represented in 12 categories such as focal adhesion and ECM-receptor interaction signaling pathway. Among the 336 genes that overlapped between the blue module and different DEGs comparison groups several genes including WNT7A and WNT9B were enriched in Wnt and ECM-receptor interaction signaling pathway. These results suggested that the LAMC2, COL6A3, COL6A2, WNT7A, and WNT9B genes may play a crucial role in the regulation of feather follicle development in Wannan chickens. Our results provided a reference for the molecular regulatory network and key genes in the development of feather follicles and contribute to molecular breeding for carcass appearance traits in chickens.


Asunto(s)
Pollos , Plumas , Redes Reguladoras de Genes , Animales , Pollos/genética , Pollos/fisiología , Pollos/crecimiento & desarrollo , Transcriptoma , Perfilación de la Expresión Génica/veterinaria , Proteínas Aviares/genética , Proteínas Aviares/metabolismo
10.
Mol Cell Endocrinol ; 592: 112322, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942281

RESUMEN

Polycystic ovary syndrome (PCOS) is a type of follicular dysplasia with an unclear pathogenesis, posing certain challenges in its diagnosis and treatment. Cancer susceptibility candidate 15 (CASC15), a long non-coding RNA closely associated with tumour development, has been implicated in PCOS onset and development. Therefore, this study aimed to investigate the molecular mechanisms underlying PCOS by downregulating CASC15 expression in both in vitro and in vivo models. We explored the potential regulatory relationship between CASC15 expression and PCOS by examining cell proliferation, cell cycle dynamics, cell autophagy, steroid hormone secretion capacity, and overall ovarian function in mice. We found that CASC15 expression in granulosa cells derived from patients with PCOS was significantly higher than those of the normal group (P < 0.001). In vitro experiments revealed that downregulating CASC15 significantly inhibited cell proliferation, promoted apoptosis, induced G1-phase cell cycle arrest, and influenced cellular autophagy levels. Moreover, downregulating CASC15 affected the follicular development process in newborn mouse ovaries. In vivo studies in mice demonstrated that disrupting CASC15 expression improved PCOS-related symptoms such as polycystic changes and hyperandrogenism, and significantly affected ovulation induction and embryo implantation in pregnant mice. Overall, CASC15 was highly expressed in granulosa cells of patients with PCOS and its downregulation improved PCOS-related symptoms by influencing granulosa cell function and follicular development in mice.

11.
BMC Genomics ; 25(1): 574, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849762

RESUMEN

BACKGROUND: The Qinghai Tibetan sheep, a local breed renowned for its long hair, has experienced significant deterioration in wool characteristics due to the absence of systematic breeding practices. Therefore, it is imperative to investigate the molecular mechanisms underlying follicle development in order to genetically enhance wool-related traits and safeguard the sustainable utilization of valuable germplasm resources. However, our understanding of the regulatory roles played by coding and non-coding RNAs in hair follicle development remains largely elusive. RESULTS: A total of 20,874 mRNAs, 25,831 circRNAs, 4087 lncRNAs, and 794 miRNAs were annotated. Among them, we identified 58 DE lncRNAs, 325 DE circRNAs, 924 DE mRNAs, and 228 DE miRNAs during the development of medullary primary hair follicle development. GO and KEGG functional enrichment analyses revealed that the JAK-STAT, TGF-ß, Hedgehog, PPAR, cGMP-PKG signaling pathway play crucial roles in regulating fibroblast and epithelial development during skin and hair follicle induction. Furthermore, the interactive network analysis additionally identified several crucial mRNA, circRNA, and lncRNA molecules associated with the process of primary hair follicle development. Ultimately, by investigating DEmir's role in the ceRNA regulatory network mechanism, we identified 113 circRNA-miRNA pairs and 14 miRNA-mRNA pairs, including IGF2BP1-miR-23-x-novel-circ-01998-MSTRG.7111.3, DPT-miR-370-y-novel-circ-005802-MSTRG.14857.1 and TSPEAR-oar-miR-370-3p-novel-circ-005802- MSTRG.10527.1. CONCLUSIONS: Our study offers novel insights into the distinct expression patterns of various transcription types during hair follicle morphogenesis, establishing a solid foundation for unraveling the molecular mechanisms that drive hair development and providing a scientific basis for selectively breeding desirable wool-related traits in this specific breed.


Asunto(s)
Redes Reguladoras de Genes , Folículo Piloso , MicroARNs , ARN Circular , ARN Largo no Codificante , ARN Mensajero , Animales , Folículo Piloso/metabolismo , Folículo Piloso/crecimiento & desarrollo , ARN Circular/genética , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ovinos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Perfilación de la Expresión Génica , Piel/metabolismo , Transcriptoma , Feto/metabolismo
12.
Poult Sci ; 103(9): 103933, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38943801

RESUMEN

The Hungarian White Goose (Anser anser domesticus) is an excellent European goose breed, with high feather and meat production. Despite its importance in the poultry industry, no available genome assembly information has been published. This study aimed to present Chromosome-level and functional genome sequencing of the Hungarian White Goose. The results showed that the genome assembly has a total length of 1115.82 Mb, 39 pairs of chromosomes, 92.98% of the BUSCO index, and contig N50 and scaffold N50 were up to 2.32 Mb and 60.69 Mb, respectively. Annotation of the genome assembly revealed 19550 genes, 286 miRNAs, etc. We identified 235 expanded and 1,167 contracted gene families in this breed compared with the other 16 species. We performed a positive selection analysis between this breed and four species of Anatidae to uncover the genetic information underlying feather follicle development. Further, we detected the function of miR-199-x, miR-143-y, and miR-23-z on goose embryonic skin fibroblast. In summary, we have successfully generated a highly complete genome sequence of the Hungarian white goose, which will provide a great resource to improve our understanding of gene functions and enhance the studies on feather follicle development at the genomic level.


Asunto(s)
Plumas , Gansos , MicroARNs , ARN Mensajero , Animales , Gansos/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cromosomas/genética , Genoma , Multiómica
13.
Reprod Biol ; 24(2): 100889, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733657

RESUMEN

Mitophagy, the cellular process that removes damaged mitochondria, plays a crucial role in maintaining normal cell functions. It is deeply involved in the entire process of follicle development and is associated with various ovarian diseases. This review aims to provide a comprehensive overview of mitophagy regulation, emphasizing its role at different stages of follicular development. Additionally, the study illuminates the relationship between mitophagy and ovarian diseases, including ovary aging (OA), primary ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS). A detailed understanding of mitophagy could reveal valuable insights and novel strategies for managing female ovarian reproductive health.


Asunto(s)
Mitofagia , Folículo Ovárico , Mitofagia/fisiología , Femenino , Folículo Ovárico/fisiología , Humanos , Animales , Mitocondrias/fisiología , Mitocondrias/metabolismo , Insuficiencia Ovárica Primaria
14.
IEEE Open J Eng Med Biol ; 5: 316-329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766542

RESUMEN

Objective: A biological system's internal morphological structure or function can be changed as a result of the mechanical effect of focused ultrasound. Pulsed low-intensity focused ultrasound (LIFU) has mechanical effects that might induce follicle development with less damage to ovarian tissue. The potential development of LIFU as a non-invasive method for the treatment of female infertility is being considered, and this study sought to explore and confirm that LIFU can activate ovarian follicles. Results: We found a 50% increase in ovarian weight and in the number of mature follicles on the ultrasound-stimulated side with pulsed LIFU and intraperitoneal injection of 10 IU PMSG in 10-day-old rats. After ultrasound stimulation, the PCOS-like rats had a decrease in androgen levels, restoration of regular estrous cycle and increase in the number of mature follicles and corpora lutea, and the ratio of M1 and M2 type macrophages was altered in antral follicles of PCOS-like rats, consequently promoting further development and maturation of antral follicles. Conclusion: LIFU treatment could trigger actin changes in ovarian cells, which might disrupt the Hippo signal pathway to promote follicle formation, and the mechanical impact on the ovaries of PCOS-like rats improved antral follicle development.

15.
Theriogenology ; 224: 58-67, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38749260

RESUMEN

Ovarian tissue vitrification is associated with multiple events that promote accumulation of ROS (reactive oxygen species) which culminate in follicular apoptosis. Thus, this study was aimed at evaluating the role of melatonin in vitrification and culture of feline (Felis catus) ovarian tissue. In phase 1, domestic cat ovaries were fragmented into equal circular pieces of 1.5 mm diameter by 1 mm thickness and divided into four groups (fresh control and 3 treatments). The treatments were exposed to vitrification solutions supplemented with melatonin at 0 M, 10-9 M, and 10-7 M, then vitrified-warmed, histologically evaluated and assayed for ROS. Consequently, phase 2 experiment was designed wherein ovarian fragments were divided into two groups. One group was exposed to vitrification solution without melatonin and the other with 10-7 M melatonin supplementation, then vitrified-warmed and cultured for ten days with fresh ovarian fragments as control prior to assessment for histology, immunohistochemistry (Ki-67, MCM-7 and caspase-3) and ROS. Concentration of ROS was lower (p = 0.0009) in 10-7 M supplemented group in addition to higher proportion of grade 1 follicles. After culture, proportions of intact and activated follicles were higher (p < 0.05) in melatonin supplemented group evidenced by higher expression of Ki-67 and MCM-7. Follicular apoptosis was lower in melatonin supplemented group. In conclusion, melatonin at 10-7 M concentration preserved follicular morphological integrity while reducing ROS concentration in vitrified-warmed feline ovarian tissue. It has also promoted the follicular viability and activation with reduced apoptosis during in vitro culture of vitrified-warmed feline ovarian tissue.


Asunto(s)
Melatonina , Folículo Ovárico , Estrés Oxidativo , Vitrificación , Animales , Femenino , Gatos , Melatonina/farmacología , Estrés Oxidativo/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Criopreservación/veterinaria , Criopreservación/métodos , Ovario/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Técnicas de Cultivo de Tejidos/veterinaria , Apoptosis/efectos de los fármacos
16.
Hum Reprod Open ; 2024(3): hoae028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803550

RESUMEN

STUDY QUESTION: What is the effect of the chemical in vitro activation (cIVA) protocol compared with fragmentation only (Frag, also known as mechanical IVA) on gene expression, follicle activation and growth in human ovarian tissue in vitro? SUMMARY ANSWER: Although histological assessment shows that cIVA significantly increases follicle survival and growth compared to Frag, both protocols stimulate extensive and nearly identical transcriptomic changes in cultured tissue compared to freshly collected ovarian tissue, including marked changes in energy metabolism and inflammatory responses. WHAT IS KNOWN ALREADY: Treatments based on cIVA of the phosphatase and tensin homolog (PTEN)-phosphatidylinositol 3-kinase (PI3K) pathway in ovarian tissue followed by auto-transplantation have been administered to patients with refractory premature ovarian insufficiency (POI) and resulted in live births. However, comparable effects with mere tissue fragmentation have been shown, questioning the added value of chemical stimulation that could potentially activate oncogenic responses. STUDY DESIGN SIZE DURATION: Fifty-nine ovarian cortical biopsies were obtained from consenting women undergoing elective caesarean section (C-section). The samples were fragmented for culture studies. Half of the fragments were exposed to bpV (HOpic)+740Y-P (Frag+cIVA group) during the first 24 h of culture, while the other half were cultured with medium only (Frag group). Subsequently, both groups were cultured with medium only for an additional 6 days. Tissue and media samples were collected for histological, transcriptomic, steroid hormone, and cytokine/chemokine analyses at various time points. PARTICIPANTS/MATERIALS SETTING METHODS: Effects on follicles were evaluated by counting and scoring serial sections stained with hematoxylin and eosin before and after the 7-day culture. Follicle function was assessed by quantification of steroids by ultra-performance liquid chromatography tandem-mass spectrometry at different time points. Cytokines and chemokines were measured by multiplex assay. Transcriptomic effects were measured by RNA-sequencing (RNA-seq) of the tissue after the initial 24-h culture. Selected differentially expressed genes (DEGs) were validated by quantitative PCR and immunofluorescence in cultured ovarian tissue as well as in KGN cell (human ovarian granulosa-like tumor cell line) culture experiments. MAIN RESULTS AND THE ROLE OF CHANCE: Compared to the Frag group, the Frag+cIVA group exhibited a significantly higher follicle survival rate, increased numbers of secondary follicles, and larger follicle sizes. Additionally, the tissue in the Frag+cIVA group produced less dehydroepiandrosterone compared to Frag. Cytokine measurement showed a strong inflammatory response at the start of the culture in both groups. The RNA-seq data revealed modest differences between the Frag+cIVA and Frag groups, with only 164 DEGs identified using a relaxed cut-off of false discovery rate (FDR) <0.1. Apart from the expected PI3K-protein kinase B (Akt) pathway, cIVA also regulated pathways related to hypoxia, cytokines, and inflammation. In comparison to freshly collected ovarian tissue, gene expression in general was markedly affected in both the Frag+cIVA and Frag groups, with a total of 3119 and 2900 DEGs identified (FDR < 0.001), respectively. The top enriched gene sets in both groups included several pathways known to modulate follicle growth such as mammalian target of rapamycin (mTOR)C1 signaling. Significant changes compared to fresh tissue were also observed in the expression of genes encoding for steroidogenesis enzymes and classical granulosa cell markers in both groups. Intriguingly, we discovered a profound upregulation of genes related to glycolysis and its upstream regulator in both Frag and Frag+cIVA groups, and these changes were further boosted by the cIVA treatment. Cell culture experiments confirmed glycolysis-related genes as direct targets of the cIVA drugs. In conclusion, cIVA enhances follicle growth, as expected, but the mechanisms may be more complex than PI3K-Akt-mTOR alone, and the impact on function and quality of the follicles after the culture period remains an open question. LARGE SCALE DATA: Data were deposited in the GEO data base, accession number GSE234765. The code for sequencing analysis can be found in https://github.com/tialiv/IVA_project. LIMITATIONS REASONS FOR CAUTION: Similar to the published IVA protocols, the first steps in our study were performed in an in vitro culture model where the ovarian tissue was isolated from the regulation of hypothalamic-pituitary-ovarian axis. Further in vivo experiments will be needed, for example in xeno-transplantation models, to explore the long-term impacts of the discovered effects. The tissue collected from patients undergoing C-section may not be comparable to tissue of patients with POI. WIDER IMPLICATIONS OF THE FINDINGS: The general impact of fragmentation and short (24 h) in vitro culture on gene expression in ovarian tissue far exceeded the effects of cIVA. Yet, follicle growth was stimulated by cIVA, which may suggest effects on specific cell populations that may be diluted in bulk RNA-seq. Nevertheless, we confirmed the impact of cIVA on glycolysis using a cell culture model, suggesting impacts on cellular signaling beyond the PI3K pathway. The profound changes in inflammation and glycolysis following fragmentation and culture could contribute to follicle activation and loss in ovarian tissue culture, as well as in clinical applications, such as fertility preservation by ovarian tissue auto-transplantation. STUDY FUNDING/COMPETING INTERESTS: This study was funded by research grants from European Union's Horizon 2020 Research and Innovation Programme (Project ERIN No. 952516, FREIA No. 825100), Swedish Research Council VR (2020-02132), StratRegen funding from Karolinska Institutet, KI-China Scholarship Council (CSC) Programme and the Natural Science Foundation of Hunan (2022JJ40782). International Iberian Nanotechnology Laboratory Research was funded by the European Union's H2020 Project Sinfonia (857253) and SbDToolBox (NORTE-01-0145-FEDER-000047), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund. No competing interests are declared.

17.
Biology (Basel) ; 13(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38785794

RESUMEN

The hair follicle is a specialized appendage of the skin that is critical for multiple functions, including thermoregulation, immune surveillance, and sebum production. Mammals are born with a fixed number of hair follicles that develop embryonically. Postnatally, these hair follicles undergo regenerative cycles of regression and growth that recapitulate many of the embryonic signaling pathways. Furthermore, hair cycles have a direct impact on skin regeneration in homeostasis, cutaneous wound healing, and disease conditions such as alopecia. Here, we review the current knowledge of hair follicle formation during embryonic development and the post-natal hair cycle, with an emphasis on the molecular signaling pathways underlying these processes. We then discuss efforts to capitalize on the field's understanding of in vivo mechanisms to bioengineer hair follicles or hair-bearing skin in vitro and how such models may be further improved to develop strategies for hair regeneration.

18.
Biol Cell ; 116(7): e2300069, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38679788

RESUMEN

Polycystic ovary syndrome or PCOS is an endocrine disorder in women of reproductive age. It is a diversified multi factorial disorder and diagnosis is very complicated because of its overlapping symptoms some of which are irregular menstrual cycle, acne in face, excess level of androgen (AE), insulin resistance, obesity, cardiovascular disease, mood disorder and type 2 diabetes (T2DM). PCOS may be caused by hormonal imbalance, genetic and epigenetic vulnerability, hypothalamic and ovarian troubles. PCOS is essentially hyperandrogenimia with oligo-anovulation. This review explains the abnormal regulation of autophagy related genes and proteins in different cells at various stages which leads to the genesis of PCOS. During nutrient starvation cells face stress condition, which it tries to overcome by activating its macroautophagy mechanism and by degrading the cytoplasmic material. This provides energy to the cell facilitating its survival. Downregulation of autophagy related genes in endometria has been observed in PCOS women. PCOS can be managed by maintaining proper lifestyle and medical treatment. Healthy meals and regular exercise can prevent the excessive weight and also reduce the PCOS complications. Medicines such as metformin, clomiphene, and the oral contraceptive pill can also balance the hormonal level. The imbalance in regulation of autophagy genes has been discussed with correlation to PCOS. The different management strategies for PCOS have also been summarized.


Asunto(s)
Autofagia , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Humanos , Femenino , Animales
19.
Poult Sci ; 103(6): 103760, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678750

RESUMEN

This study was aimed to evaluate the effect of vitamin E (VE) on laying performance, VE deposition, antioxidant capacity, immunity, follicle development, estrogen secretion, ovary metabolome, and cecal microbiota of laying hens. One hundred and twenty XinYang Black-Feathered laying hens (70 wk old) were randomly assigned to 2 groups (6 replicates of 20 birds), and fed a basal diet (containing 20 mg/kg VE, control (CON) group) and a basal diet supplemented with 20 mg/kg VE (VE group). The experiment lasted for 10 wk. Results showed that VE supplementation increased laying performance, antioxidant capacity, and immunity, as evidenced by increased (P < 0.05) performance (laying rate), antioxidant (glutathione peroxidase, total superoxide dismutase, total antioxidant capacity, and catalase) and immune (immunoglobulins) parameters, and decreased (P < 0.05) feed/egg ratio and malondialdehyde. Meanwhile, VE group had higher (P < 0.05) pregrade follicles, ovary index and serum estrogen levels than CON group. 16S rRNA sequencing showed that VE supplementation altered the cecal microbiota composition by increasing Bacteroides, Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG-001 and Megamonas abundances and reducing Christensenellaceae_R-7_group abundance (at genus level), which are mainly associated with the production of short-chain fatty acids. Metabolomic profiling of the ovary revealed that the major metabolites altered by VE supplementation were mainly related to follicle development, estrogen secretion, anti-inflammatory, antioxidant, phototransduction, bile acid synthesis, and nutrient transport. Furthermore, changes in cecal microbiota (at genus level) and ovary metabolites were highly correlated with laying performance, antioxidant, and immune parameters. In summary, VE contributed to the laying performance of aged laying hens by enhancing antioxidant, immune, and ovarian functions, promoting follicle development and estrogen secretion, and regulating gut microbiota and ovary metabolites. These findings will provide a new perspective on the mechanisms of egg production in aged poultry ovaries.


Asunto(s)
Alimentación Animal , Ciego , Pollos , Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Metaboloma , Ovario , Vitamina E , Animales , Pollos/fisiología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Suplementos Dietéticos/análisis , Ciego/microbiología , Ciego/efectos de los fármacos , Dieta/veterinaria , Alimentación Animal/análisis , Vitamina E/administración & dosificación , Vitamina E/farmacología , Metaboloma/efectos de los fármacos , Ovario/efectos de los fármacos , Ovario/metabolismo , Distribución Aleatoria , Antioxidantes/metabolismo
20.
Gen Comp Endocrinol ; 354: 114542, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38685391

RESUMEN

The follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) in cloudy catshark were cloned, and recombinant FSHR and LHR were expressed for characterization. Ventral lobe extract (VLE) from the pituitary contains homologous FSH and LH, and it stimulated the cAMP signaling of FSHR and LHR dose-dependently. Two transcript variants of LHR (LHR-L with exon 10 and LHR-S without) were identified, and LHR-S was the dominant form with higher basal cAMP activity without VLE stimulation. Among various developmental stages of follicles, FSHR expression was mainly associated with the pre-vitellogenic and early white follicles. When follicles were recruited into vitellogenesis, the expression of FSHR decreased while of LHR was upregulated reciprocally, suggesting that LHR may also be responsible for the control of vitellogenesis in chondrichthyans. The expression of LHR-L was upregulated among maturing follicles before ovulation, indicating LHR-L could have a specific role in receiving the LH surge signal for final maturation. Plasma LH-like activity was transiently increased prior to the progesterone (P4)-surge and testosterone-drop at the beginning of P4-phase, supporting a pituitary control of follicle-maturation via LH signaling in chondrichthyans. The expression of follicular LHR was downregulated during the P4-phase when LH-like activity was high, indicating that the LH-dependent downregulation of LHR is conserved in chondrichthyans as it is in other vertebrate lineages. (213 words).


Asunto(s)
Receptores de HFE , Receptores de HL , Animales , Receptores de HL/metabolismo , Receptores de HL/genética , Femenino , Receptores de HFE/metabolismo , Receptores de HFE/genética , Hormona Luteinizante/metabolismo , Hormona Folículo Estimulante/metabolismo , Peces/metabolismo , Peces/genética , Folículo Ovárico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...