Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 932: 172992, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719037

RESUMEN

The variability of element carbon (EC) mixed with secondary species significantly complicates the assessment of its environmental impact, reflecting the complexity and diversity of EC-containing particles' composition and morphology during their ascent and regional transport. While the catalytic role of EC in secondary aerosol formation is recognized, the effects of heterogeneous chemistry on secondary species formation within diverse EC particle types are not thoroughly understood, particularly in the troposphere. Alpine sites offer a prime environment to explore EC properties post-transport from the ground to the free troposphere. Consequently, we conducted a comprehensive study on the genesis of secondary aerosols in EC-containing particles at Mt. Hua (altitude: 2069 m) from 1 May to 10 July, using a single particle aerosol mass spectrometer (SPAMS). Our analysis identified six major EC particle types, with EC-K, EC-SN, and EC-NaK particles accounting for 27.6 %, 27.0 %, and 19.6 % of the EC particle population, respectively. The concentration-weighted trajectory (CWT) indicated that the lower free troposphere over Mt. Hua is significantly affected by anthropogenic emissions at ground-level, predominantly from northwestern and eastern China. Atmospheric interactions are crucial in generating high sulfate levels in EC-SN and EC-OC particles (> 70 %) and notable nitrate levels in EC-K, EC-BB, and EC-Fe particles (> 80 %). The observed high chloride content in EC-OC particles (56 ± 32 %) might enhance chlorine's reactivity with organic compounds via heterogeneous reactions within the troposphere. Distinct diurnal cycles for sulfate and nitrate are mainly driven by varying transport dynamics and formation processes, showing minimal dependency on EC particle types. Enhanced nocturnal oxalate conversion in EC-Fe particles is likely due to the aqueous oxidation of precursors, with Fe-catalyzed Fenton reactions enhancing OH radical production. This investigation provides critical insights into EC's role in secondary aerosol development during its transport in the lower free troposphere.

2.
Natl Sci Rev ; 11(1): nwad138, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38116089

RESUMEN

New particle formation (NPF) in the tropical free troposphere (FT) is a globally important source of cloud condensation nuclei, affecting cloud properties and climate. Oxidized organic molecules (OOMs) produced from biogenic volatile organic compounds are believed to contribute to aerosol formation in the tropical FT, but without direct chemical observations. We performed in situ molecular-level OOMs measurements at the Bolivian station Chacaltaya at 5240 m above sea level, on the western edge of Amazonia. For the first time, we demonstrate the presence of OOMs, mainly with 4-5 carbon atoms, in both gas-phase and particle-phase (in terms of mass contribution) measurements in tropical FT air from Amazonia. These observations, combined with air mass history analyses, indicate that the observed OOMs are linked to isoprene emitted from the rainforests hundreds of kilometers away. Based on particle-phase measurements, we find that these compounds can contribute to NPF, at least the growth of newly formed nanoparticles, in the tropical FT on a continental scale. Thus, our study is a fundamental and significant step in understanding the aerosol formation process in the tropical FT.

3.
Environ Sci Technol ; 57(44): 16834-16842, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37856673

RESUMEN

Tar balls are brown carbonaceous particles that are highly viscous, spherical, amorphous, and light absorbing. They are believed to form in biomass burning smoke plumes during transport in the troposphere. Tar balls are also believed to have a significant impact on the Earth's radiative balance, but due to poorly characterized optical properties, this impact is highly uncertain. Here, we used two nighttime samples to investigate the chemical composition and optical properties of individual tar balls transported in the free troposphere to the Climate Observatory "Ottavio Vittori" on Mt. Cimone, Italy, using multimodal microspectroscopy. In our two samples, tar balls contributed 50% of carbonaceous particles by number. Of those tar balls, 16% were inhomogeneously mixed with other constituents. Using electron energy loss spectroscopy, we retrieved the complex refractive index (RI) for a wavelength range from 200 to 1200 nm for both inhomogeneously and homogeneously mixed tar balls. We found no significant difference in the average RI of inhomogeneously and homogeneously mixed tar balls (1.40-0.03i and 1.36-0.03i at 550 nm, respectively). Furthermore, we estimated the top of the atmosphere radiative forcing using the Santa Barbara DISORT Atmospheric Radiative Transfer model and found that a layer of only tar balls with an optical depth of 0.1 above vegetation would exert a positive radiative forcing ranging from 2.8 W m-2 (on a clear sky day) to 9.5 W m-2 (when clouds are below the aerosol layer). Understanding the optical properties of tar balls can help reduce uncertainties associated with the contribution of biomass-burning aerosol in current climate models.


Asunto(s)
Contaminantes Atmosféricos , Clima , Atmósfera/química , Aerosoles/análisis , Italia , Contaminantes Atmosféricos/análisis
4.
J Environ Sci (China) ; 125: 831-842, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375965

RESUMEN

This study represents the first quantitative evaluation of pollution transport budget within the boundary layer of typical cities in the Beijing-Tianjin-Hebei (BTH) region from the perspective of horizontal and vertical exchanges and further discusses the impact of the atmospheric boundary layer (ABL)-free troposphere (FT) exchange on concentration of fine particulate matter (PM2.5) within the ABL during heavy pollution. From the perspective of the transport flux balance relationship, differences in pollution transport characteristics between the two cities is mainly reflected in the ABL-FT exchange effect. The FT mainly flowed into the ABL in BJ, while in SJZ, the outflow from the ABL to the FT was more intense. Combined with an analysis of vertical wind profile distribution, BJ was found to be more susceptible to the influence of northwest cold high prevailing in winter, while sinking of strong cold air allowed the FT flowing into the ABL influence the vertical exchange over BJ. In addition, we selected a typical pollution event for targeted analysis to understand mechanistic details of the influence of ABL-FT exchange on the pollution event. These results showed that ABL-FT interaction played an important role in PM2.5 concentration within the ABL during heavy pollution. Especially in the early stage of heavy pollution, FT transport contributed as much as 82.74% of PM2.5 within the ABL. These findings are significant for improving our understanding of pollution transport characteristics within the boundary layer and the effect of ABL-FT exchange on air quality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ciudades , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Material Particulado/análisis , China , Estaciones del Año , Beijing
5.
Environ Sci Technol ; 55(14): 10164-10174, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34213316

RESUMEN

Mass-independent fractionation (MIF) of stable even mass number mercury (Hg) isotopes is observed in rainfall and gaseous elemental Hg0 globally and is used to quantify atmospheric Hg deposition pathways. The chemical reaction and underlying even-Hg MIF mechanism are unknown however and speculated to be caused by Hg photo-oxidation on aerosols at the tropopause. Here, we investigate the Hg isotope composition of free tropospheric Hg0 and oxidized HgII forms at the high-altitude Pic du Midi Observatory. We find that gaseous oxidized Hg has positive Δ199Hg, Δ201Hg, and Δ200Hg and negative Δ204Hg signatures, similar to rainfall Hg, and we document rainfall Hg Δ196Hg to be near zero. Cloud water and rainfall Hg show an enhanced odd-Hg MIF of 0.3‰ compared to gaseous oxidized HgII, potentially indicating the occurrence of in-cloud aqueous HgII photoreduction. Diurnal MIF observations of free tropospheric Hg0 show how net Hg0 oxidation in high-altitude air masses leads to opposite even- and odd-MIF in Hg0 and oxidized HgII. We speculate that even-Hg MIF takes place by a molecular magnetic isotope effect during HgII photoreduction on aerosols that involves magnetic halogen nuclei. A Δ200Hg mass balance suggests that global Hg deposition pathways in models are likely biased toward HgII deposition. We propose that Hg cycling models could accommodate the Hg-isotope constraints on emission and deposition fluxes.


Asunto(s)
Mercurio , Fraccionamiento Químico , Monitoreo del Ambiente , Isótopos , Mercurio/análisis , Isótopos de Mercurio/análisis , Oxidación-Reducción
6.
Atmos Res ; 264: 1-11, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36936135

RESUMEN

In this study, we contrasted major secondary inorganic species and processes responsible for submicron particle formation (SPF) events in the boundary layer (BL) and free troposphere (FT) over the Korean Peninsula during Korea-United States Air Quality (KORUS-AQ) campaign (May-June, 2016) using aircraft observations. The number concentration of ultrafine particles with diameters between 3 nm and 10 nm (NCN3-10) during the entire KORUS-AQ period reached a peak (7,606 ± 12,003 cm -3) at below 1 km altitude, implying that the particle formation around the Korean Peninsula primarily occurred in the daytime BL. During the BL SPF case (7 May, 2016), the SPF over Seoul metropolitan area was more attributable to oxidation of NO2 rather than SO2-to-sulfate conversion. From the analysis of the relationship between nitrogen oxidation ratio (NOR) and temperature or relative humidity (RH), NOR showed a positive correlation only with temperature. This suggests that homogeneous gas-phase reactions of NO2 with OH or O3 contributed to nitrate formation. From the relationship between NCN3-10 (> 10,000 cm-3) and the NOR (or sulfur oxidation ratio) at Olympic Park in Seoul during the entire KORUS-AQ period, it was regarded that the relative importance of nitrogen oxidation was grown as the NCN3-10 increased. During the FT SPF case (31 May, 2016) over the yellow sea, the SO2-to-sulfate conversion seemed to influence SPF highly. The sulfate/CO ratio had a positive correlation with both the temperature and RH, suggesting that aqueous-phase pathways as well as gas-phase reactions might be attributable to sulfate formation in the FT. In particular, FT SPF event on 31 May was possibly caused by the direct transport of SO2 precursors from the continent above the shallow marine boundary layer under favorable conditions for FT SPF events, such as decreased aerosol surface area and increased solar radiation.

7.
Sci Total Environ ; 563-564: 40-52, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27135565

RESUMEN

The importance of the long-range transport (LRT) on O3 and CO budgets over the Eastern Mediterranean has been investigated using the state-of-the-art 3-dimensional global chemistry-transport model TM4-ECPL. A 3-D budget analysis has been performed separating the Eastern from the Western basins and the boundary layer (BL) from the free troposphere (FT). The FT of the Eastern Mediterranean is shown to be a strong receptor of polluted air masses from the Western Mediterranean, and the most important source of polluted air masses for the Eastern Mediterranean BL, with about 40% of O3 and of CO in the BL to be transported from the FT aloft. Regional anthropogenic sources are found to have relatively small impact on regional air quality in the area, contributing by about 8% and 18% to surface levels of O3 and CO, respectively. Projections using anthropogenic emissions for the year 2050 but neglecting climate change calculate a surface O3 decrease of about 11% together with a surface CO increase of roughly 10% in the Eastern Mediterranean.

8.
J Geophys Res Atmos ; 120(7): 2990-3005, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-26702368

RESUMEN

Organosulfates are important secondary organic aerosol (SOA) components and good tracers for aerosol heterogeneous reactions. However, the knowledge of their spatial distribution, formation conditions, and environmental impact is limited. In this study, we report two organosulfates, an isoprene-derived isoprene epoxydiols (IEPOX) (2,3-epoxy-2-methyl-1,4-butanediol) sulfate and a glycolic acid (GA) sulfate, measured using the NOAA Particle Analysis Laser Mass Spectrometer (PALMS) on board the NASA DC8 aircraft over the continental U.S. during the Deep Convective Clouds and Chemistry Experiment (DC3) and the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). During these campaigns, IEPOX sulfate was estimated to account for 1.4% of submicron aerosol mass (or 2.2% of organic aerosol mass) on average near the ground in the southeast U.S., with lower concentrations in the western U.S. (0.2-0.4%) and at high altitudes (<0.2%). Compared to IEPOX sulfate, GA sulfate was more uniformly distributed, accounting for about 0.5% aerosol mass on average, and may be more abundant globally. A number of other organosulfates were detected; none were as abundant as these two. Ambient measurements confirmed that IEPOX sulfate is formed from isoprene oxidation and is a tracer for isoprene SOA formation. The organic precursors of GA sulfate may include glycolic acid and likely have both biogenic and anthropogenic sources. Higher aerosol acidity as measured by PALMS and relative humidity tend to promote IEPOX sulfate formation, and aerosol acidity largely drives in situ GA sulfate formation at high altitudes. This study suggests that the formation of aerosol organosulfates depends not only on the appropriate organic precursors but also on emissions of anthropogenic sulfur dioxide (SO2), which contributes to aerosol acidity. KEY POINTS: IEPOX sulfate is an isoprene SOA tracer at acidic and low NO conditions Glycolic acid sulfate may be more abundant than IEPOX sulfate globally SO2 impacts IEPOX sulfate by increasing aerosol acidity and water uptake.

9.
Sci Total Environ ; 493: 1088-97, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24925591

RESUMEN

PM10 aerosols from the summit of Mt. Hua (2060 m a.s.l) in central China during the winter and summer of 2009 were analyzed for dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls. Molecular composition of dicarboxylic acids (C2-C11) in the free tropospheric aerosols reveals that oxalic acid (C2, 399 ± 261 ng m(-3) in winter and 522 ± 261 ng m(-3) in summer) is the most abundant species in both seasons, followed by malonic (C3) and succinic (C4) acids, being consistent with that on ground levels. Most of the diacids are more abundant in summer than in winter, but adipic (C6) and phthalic (Ph) acids are twice lower in summer, suggesting more significant impact of anthropogenic pollution on the wintertime alpine atmosphere. Moreover, glyoxal (Gly) and methylglyoxal (mGly) are also lower in summer (12 ± 6.1 ng m(-3)) than in winter (22 ± 13 ng m(-3)). As both dicarbonyls are a major precursor of C2, their seasonal variation patterns, which are opposite to those of the diacids, indicate that the mountain troposphere is more oxidative in summer. C2 showed strong linear correlations with levoglucosan in winter and oxidation products of isoprene and monoterpene in summer. PCA analysis further suggested that the wintertime C2 and related SOA in the Mt. Hua troposphere mostly originate from photochemical oxidations of anthropogenic pollutants emitted from biofuel and coal combustion in lowland regions. On contrast, the summertime C2 and related SOA mostly originate from further oxidation of the mountainous isoprene and monoterpene oxidation products. The AIM model calculation results showed that oxalic acid concentration well correlated with particle acidity (R(2)=0.60) but not correlated with particle liquid water content, indicating that particle acidity favors the organic acid formation because aqueous-phase C2 production is the primary mechanism of C2 formation in ambient aerosols and is driven by acid-catalyzed oxidation.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Atmósfera/química , Ácido Oxálico/análisis , Contaminación del Aire/estadística & datos numéricos , China , Monitoreo del Ambiente , Estaciones del Año
10.
J Environ Manage ; 129: 333-40, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23978621

RESUMEN

Elevated particulate matter concentrations due to Asian long-range transport (LRT) are frequently observed in the free troposphere (FT) above the Pacific Northwest, U.S. Transport of this aerosol from the FT to the boundary layer (BL) and its effect to local air quality remain poorly constrained. We used data collected at the Mount Bachelor observatory (MBO, 2.8 km a.s.l) and from ground stations in the Pacific Northwest to study transport of fine particulate matter (PM) from the FT to the BL. During Asian LRT episodes PM concentrations were clearly elevated above the corresponding monthly averages at MBO as well as at low elevation sites across Washington and Oregon. Also, a clear correlation between MBO and low elevation sites was observed, indicating that LRT episodes are seen in both the FT and BL. In addition, drum impactor measurements show that the chemical composition of PM at MBO was similar to that measured at the BL sites. Using a simple regression model, we estimate that during springtime, when the transport from Asia is most effective, the contribution of Asian sources to PM2.5 in clean background areas of the Pacific Northwest was on average 1.7 µg m(-3) (representing approximately 50-80% of PM). The influence of LRT PM was also seen in measurement stations situated in the urban and urban background areas. However, the fraction of LRT PM was less pronounced (36-50% of PM) due to larger local emissions in the urban areas.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Material Particulado/análisis , Asia , Monitoreo del Ambiente , Modelos Teóricos , Nefelometría y Turbidimetría , Oregon , Tamaño de la Partícula , Washingtón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...