Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 14(10)2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39452833

RESUMEN

Reverse osmosis (RO) and nanofiltration (NF) are ubiquitous technologies in modern water treatment, finding applications across various sectors. However, the availability of high-quality water suitable for RO/NF feed is diminishing due to droughts caused by global warming, increasing demand, and water pollution. As concerns grow over the depletion of precious freshwater resources, a global movement is gaining momentum to utilize previously overlooked or challenging water sources, collectively known as "marginal water". Fouling is a serious concern when treating marginal water. In RO/NF, biofouling, organic and colloidal fouling, and scaling are particularly problematic. Of these, organic fouling, along with biofouling, has been considered difficult to manage. The major organic foulants studied are natural organic matter (NOM) for surface water and groundwater and effluent organic matter (EfOM) for municipal wastewater reuse. Polymeric substances such as sodium alginate, humic acid, and proteins have been used as model substances of EfOM. Fouling by low molecular weight organic compounds (LMWOCs) such as surfactants, phenolics, and plasticizers is known, but there have been few comprehensive reports. This review aims to shed light on fouling behavior by LMWOCs and its mechanism. LMWOC foulants reported so far are summarized, and the role of LMWOCs is also outlined for other polymeric membranes, e.g., UF, gas separation membranes, etc. Regarding the mechanism of fouling, it is explained that the fouling is caused by the strong interaction between LMWOC and the membrane, which causes the water permeation to be hindered by LMWOCs adsorbed on the membrane surface (surface fouling) and sorbed inside the membrane pores (internal fouling). Adsorption amounts and flow loss caused by the LMWOC fouling were well correlated with the octanol-water partition coefficient (log P). In part 2, countermeasures to solve this problem and applications using the LMWOCs will be outlined.

2.
Sci Rep ; 14(1): 24302, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39414887

RESUMEN

The positron annihilation lifetime (PAL) spectroscopy characteristics of ethylene-propylene-diene monomer rubber (EPDM) composites reinforced with treated wheat husk fibers (WHFs) were investigated for the first time. PAL spectroscopy is employed to study the free volume of polymers. The use of lignocellulosic materials as reinforcement in polymeric composites has gained attention due to their low cost, availability, and eco-friendliness. In this study, the impact of the loading concentration on the interfacial adhesion between the EPDM matrix and WHFs is quantified, along with the evaluation of swelling measurement and tensile properties. Additionally, the nanoscopic properties derived from PAL spectroscopy correlate with the composites' macroscopic properties. In addition, the dielectric properties of the investigated samples have been studied, and their conductivity has been calculated. To determine the conduction mechanism within these samples and how it is affected by the addition of WHF, the change in electrical conductivity with the frequency of the external electric field applied to the samples was studied, and from this, the conduction mechanism was determined, and the barrier height value was calculated. The experimental results provide insights into the relationship between the structure and properties of EPDM-WHF biocomposites, offering valuable knowledge for developing sustainable and high-performance materials.

3.
Small ; : e2405285, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39420752

RESUMEN

Recycling of valuable solutes and recovery of organic solvents via organic solvent nanofiltration (OSN) are important for sustainable development. However, the trade-off between solvent permeability and solute rejection hampers the application of OSN membranes. To address this issue, the poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) nanoparticle membrane with hierarchical pores is constructed for OSN via vacuum filtration. The small pores (the free volume of the polymer chain) charge for the solute rejection (high rejection efficiency for low molecule weight solute) and allow solvent passing while the large pores (the void between two PEDOT:PSS nanoparticles) promote the solvent transport. Owing to the lack of connectivity among the large pores, the fabricated PEDOT:PSS nanoparticle membrane enhanced solvent permeance while maintaining a high solute rejection efficiency. The optimized PEDOT:PSS membrane affords a MeOH permeance of 7.2 L m-2 h-1 bar-1 with over 90% rejection of organic dyes, food additives, and photocatalysts. Moreover, the rigidity of PEDOT endows the membrane with distinctive stability under high-pressure conditions. The membrane is used to recycle the valuable catalysts in a methanol solution for 150 h, maintaining good separation performance. Considering its high separation performance and stability, the proposed PEDOT:PSS membrane has great potential for industrial applications.

4.
Materials (Basel) ; 17(20)2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39459840

RESUMEN

Soft matter electrolytes could solve the safety problem of widely used liquid electrolytes in Li-ion batteries which are burnable upon heating. Simultaneously, they could solve the problem of poor contact between electrodes and solid electrolytes. However, the ionic conductivity of soft matter electrolytes is relatively low when mechanical properties are relatively good. In the present review, mechanisms of ionic conduction in soft matter electrolytes are discussed in order to achieve higher ionic conductivity with sufficient mechanical properties where soft matter electrolytes are defined as polymer electrolytes and polymeric or inorganic gel electrolytes. They could also be defined by Young's modulus from about 105 Pa to 109 Pa. Many soft matter electrolytes exhibit VFT (Vogel-Fulcher-Tammann) type temperature dependence of ionic conductivity. VFT behavior is explained by the free volume model or the configurational entropy model, which is discussed in detail. Mostly, the amorphous phase of polymer is a better ionic conductor compared to the crystalline phase. There are, however, some experimental and theoretical reports that the crystalline phase is a better ionic conductor. Some methods to increase the ionic conductivity of polymer electrolytes are discussed, such as cavitation under tensile deformation and the microporous structure of polymer electrolytes, which could be explained by the conduction mechanism of soft matter electrolytes.

5.
Sci Rep ; 14(1): 20729, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39251740

RESUMEN

The deformation behavior of metallic glasses has been shown in prior studies to be often dependent on its structural state, namely higher energy "rejuvenated" state versus lower energy "relaxed" state. Here, the deformation behavior of thermally rejuvenated Zr-Cu-Al-(Ti) bulk metallic glasses (BMGs) was evaluated. Rejuvenation was achieved by cryogenic thermal cycling with increase of free volume measured in terms of enthalpy of relaxation. Hardness, stiffness, and yield strength of the BMGs were all found to decrease while plasticity increased after rejuvenation. More free volume in the rejuvenated BMG resulted in homogeneous plastic deformation as was evident from the high strain rate sensitivity and more pronounced shear band multiplication during uniaxial compression. Shear transformation zone (STZ) volume was calculated by cooperative shear model and correlated well with the change in structural state after rejuvenation. The enhanced plasticity with the addition of 1 at. % Ti as well as after cryogenic thermal cycling was explained by lower activation energy for shear flow initiation due to increased heterogeneity induced in the system. Molecular dynamics simulation demonstrated that the variation in plastic deformation behavior is correlated with local atomic structure changes.

6.
Molecules ; 29(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274995

RESUMEN

The microstructure and chemical properties of the corona discharge process could provide an effective method for predicting the performance of high-voltage cable insulation materials. In this work, the depth profile of the microstructure and chemical characteristics of corona discharge-treated PE were extensively investigated using Doppler broadening of position annihilation spectroscopy accompanied with positron annihilation lifetime spectroscopy, attenuated total reflectance Fourier transform infrared spectra, Raman spectra and contact angle measurement. By increasing corona discharge duration, the oxygen-containing polar groups, including hydroxyl, carbonyl and ester groups, strongly contribute to the deterioration of hydrophobicity and the enhancement of hydrophilicity. And the mean free volume size, with a broadening distribution, decreases slightly. The line shape S parameter decreases because of the decrease in free volume elements and the appearance of oxygen-containing groups. Also, the thickness of the degradation layer, determined from the S parameter with positron injection depth, increases and diffuses into the PE matrix. A linear S-W plot within the degradation layer of different corona treatment duration samples indicates the defect type does not change. The S parameter decreases and the W parameter increases with an increasing corona duration. Using a slow positron beam, the nondestructive probe can be used to profile the microstructure and chemical environment across the corona discharge damage depth, which is beneficial for investigating the surface and interfacial insulation materials.

7.
Anal Sci ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254883

RESUMEN

129Xe NMR spectroscopy of polymers can provide important information on void spaces, sometimes called free volume, in polymers. Unfortunately, the spectroscopy's low sensitivity has limited its widespread use in both academic and industrial research. In order to overcome such a difficult situation, hyper-CEST method which employs hyperpolarization and CEST techniques, is examined after the introduction of recirculation and subtraction modes. Alongside the incorporated stopped-flow technique, these modes were very efficient in detecting very weak hidden signals from cellulose nanofiber (CNF) and silk fibroin (SF) films and in discussing the void space in these polymers. From the analysis of detailed saturation frequency dependence in the increment of 100 Hz, the chemical shifts of hidden peaks were successfully determined to give reasonable values for the size of void space in CNF and SF. Application on thermoplastic polyurethane film also supported our method of analysis. The subtraction mode was very efficient in judging the presence or absence of any peak at a fixed saturation frequency. These facts support that the mode will surely be useful in the future exploratory study of very weak hidden signals.

8.
ACS Appl Mater Interfaces ; 16(40): 53843-53854, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39320115

RESUMEN

Microporous glassy polymer membranes suffer from physical aging, which adversely affects their performance in the short time frame. We show that the aging propensity of a model microporous polymer, poly(1-trimethylsilyl-1-propyne) (PTMSP), can be effectively mitigated by blending with as little as 5 wt % porous polymer network (PPN) composed of triptycene and isatin. The aging behavior of these materials was monitored via N2 pure gas permeability measurements over the course of 3 weeks, showing a 14% decline in PTMSP blended with 5 wt % PPN vs a 41% decline in neat PTMSP. Noteworthy, PPNs are 2 orders of magnitude cheaper than the porous aromatic frameworks previously used to control PTMSP aging. A variety of experimental and computational techniques, such as Positron Annihilation Lifetime Spectroscopy (PALS), free volume measurements, cross-polarization/magic angle spinning (CP/MAS) 13C NMR, transport measurements and molecular dynamics (MD) simulations were used to uncover the molecular mechanisms leading to enhanced aging resistance. We show that partial PTMSP chain adsorption into the PPN porosity reduces the PTMSP local segmental mobility, leading to improved aging resistance. Permeability coefficients were broken into their elementary sorption and diffusion contributions, to elucidate the mechanism by which the reduced PTMSP local segmental mobility affects selectivity in gas separation applications. Finally, we demonstrate that in these systems, where both chemical and physical interactions take place, transport coefficients must be corrected for thermodynamic nonidealities to avoid erroneous interpretation of the results.

9.
Nano Lett ; 24(40): 12382-12389, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39258768

RESUMEN

Finely tuning the pore structure of traditional nanofiltration (NF) membranes is challenging but highly effective for achieving efficient separations. Herein, we propose a concept of using macrocyclic amines (1,4,7-triazacyclononane, 3A; 1,4,7,10-tetraazacyclododecane, 4A1; and 1,4,8,11-tetraazacyclotetradecane, 4A2) with different intra-annular apertures to finely modulate the pore structure of microporous membranes via interfacial polymerization (IP). The boost in the intracavity size of the building blocks results in heightened steric hindrance of these amine monomers, leading to a controlled increase in membrane pore size, as demonstrated by both film characterizations and multiscale simulations. In conjunction with the increased intracavity size, the water permeability follows an augmented trend of 3A-TMC, 4A1-TMC, and 4A2-TMC (TMC: trimesoyl chloride) while exhibiting increased molecular weight cut-offs due to larger free-volume elements and stronger pore interconnectivity. Our proposed macrocyclic amine design strategy provides a guideline for finely regulated microporous membranes with high potential in NF-related applications.

10.
Appl Radiat Isot ; 212: 111459, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098142

RESUMEN

Investigating the mechanism of positron annihilation in liquid-scintillator based neutrino experiments could be helpful for positron reconstruction algorithms and positron-electron discrimination analysis. Based on this, we utilize a novel positron annihilation lifetime spectrometer to characterize a series of liquid scintillator samples without direct contact with the positron source by applying the anti-coincidence method, which facilitates the measurement of liquids with high accuracy and low background. We obtain an ortho-positronium (o-Ps) lifetime value of 3.02 ns for liquid scintillators composed of linear alkylbenzene and two solutes, and we also measure liquid scintillator samples by bubbling different gases to study the interaction of oxygen dissolved with positronium. The discussion of the annihilation behavior of o-Ps in liquid scintillators further clarify the factors affecting the lifetime and intensity of o-Ps, and the calculation of annihilation rate and free volume radius within the samples has potential applications in characterizing gas solubility and free volume in liquids with o-Ps as probe.

11.
Molecules ; 29(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39203026

RESUMEN

Binary AsxSe100-x alloys from the border of a glass-forming region (65 < x < 70) subjected to nanomilling in dry and dry-wet modes are characterized by the XRPD, micro-Raman scattering (micro-RS) and revised positron annihilation lifetime (PAL) methods complemented by a disproportionality analysis using the quantum-chemical cluster modeling approach. These alloys are examined with respect to tetra-arsenic biselenide As4Se2 stoichiometry, realized in glassy g-As65Se35, glassy-crystalline g/c-As67Se33 and glassy-crystalline g/c-As70Se30. From the XRPD results, the number of rhombohedral As and cubic arsenolite As2O3 phases in As-Se alloys increases after nanomilling, especially in the wet mode realized in a PVP water solution. Nanomilling-driven amorphization and reamorphization transformations in these alloys are identified by an analysis of diffuse peak halos in their XRPD patterning, showing the interplay between the levels of a medium-range structure (disruption of the intermediate-range ordering at the cost of an extended-range one). From the micro-RS spectroscopy results, these alloys are stabilized by molecular thioarsenides As4Sen (n = 3, 4), regardless of their phase composition, remnants of thioarsenide molecules destructed under nanomilling being reincorporated into a glass network undergoing a polyamorphic transition. From the PAL spectroscopy results, volumetric changes in the wet-milled alloys with respect to the dry-milled ones are identified as resulting from a direct conversion of the bound positron-electron (Ps, positronium) states in the positron traps. Ps-hosting holes in the PVP medium appear instead of positron traps, with ~0.36-0.38 ns lifetimes ascribed to multivacancies in the As-Se matrix. The superposition of PAL spectrum peaks and tails for pelletized PVP, unmilled, dry-milled, and dry-wet-milled As-Se samples shows a spectacular smoothly decaying trend. The microstructure scenarios of the spontaneous (under quenching) and activated (under nanomilling) decomposition of principal network clusters in As4Se2-bearing arsenoselenides are recognized. Over-constrained As6·(2/3) ring-like network clusters acting as pre-cursors of the rhombohedral As phase are the main products of this decomposition. Two spontaneous processes for creating thioarsenides with crystalline counterparts explain the location of the glass-forming border in an As-Se system near the As4Se2 composition, while an activated decomposition process for creating layered As2Se3 structures is responsible for the nanomilling-driven molecular-to-network transition.

12.
Heliyon ; 10(15): e35438, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170339

RESUMEN

The solvation behavior of protein is an important factor in protein-based food products. In the present study, the xylitol (XY) - ovalbumin (OVN) interaction in an aqueous solution of different pH conditions is analyzed in two methods. In one method, the thermodynamic parameters Gibbs free energy, free volume, and internal pressure are calculated by using ultrasonic velocity, density, and viscosity in addition the refractive index is also measured. The second method is a theoretical method in which using the Laplace transform technique the diffused amount of protein have been calculated for OVN with and without XY in different pH environment. The addition of XY with OVN makes the system with more free energy and free volume as the internal pressure decreases. This trend shows that preferential interaction occurs between solvent-solute molecules. The diffusivity of OVN is reduced after the addition of XY representing the strength of protein-protein interaction. The effect of pH changes is well reflected in both experimental and theoretical results. The results confirm that acidic pH extremity offers more solvation of OVN compared to alkaline pH extremity.

13.
Polymers (Basel) ; 16(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125211

RESUMEN

The polymer liner of the hydrogen storage cylinder was studied to investigate better hydrogen storage capacity in Type-IV cylinders. Molecular dynamics methods were used to simulate the adsorption and diffusion processes of hydrogen in a graphene-filled polyamide 6 (PA6) system. The solubility and diffusion characteristics of hydrogen in PA6 systems filled with different filler ratios (3 wt%, 4 wt%, 5 wt%, 6 wt%, and 7 wt%) were studied under working pressures (0.1 MPa, 35 MPa, 52 MPa, and 70 MPa). The effects of filler ratio, temperature, and pressure on hydrogen diffusion were analyzed. The results show that at atmospheric pressure when the graphene content reaches 5 wt%, its permeability coefficient is as low as 2.44 × 10-13 cm3·cm/(cm2·s·Pa), which is a 54.6% reduction compared to PA6. At 358 K and 70 MPa, the diffusion coefficient of the 5 wt% graphene/PA6 composite system is 138% higher than that at 298 K and 70 MPa. With increasing pressure, the diffusion coefficients of all materials generally decrease linearly. Among them, pure PA6 has the largest diffusion coefficient, while the 4 wt% graphene/PA6 composite system has the smallest diffusion coefficient. Additionally, the impact of FFV (free volume fraction) on the barrier properties of the material was studied, and the movement trajectory of H2 in the composite system was analyzed.

14.
Polymers (Basel) ; 16(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065271

RESUMEN

In the development of thermoplastic products, it is necessary to conduct the necessary mechanical tests and evaluate the reliability of thermoplastics in each case, because the mechanical properties of the same material vary depending on the molding process conditions and product shape. In order to build a sustainable society, it is expected that the evaluation of the mechanical properties of thermoplastics, which are resource and energy saving, will be required. In this paper, the glass transition temperature and melting point of injection-molded thermoplastics were evaluated by differential scanning calorimetry, and the correlation between Poisson's ratio and free volume was obtained by applying the theory proposed by Flory et al. A certain correlation was found between the Poisson's ratio of polymers and the change in free volume determined by the glass transition temperature. It is also clear that this relationship can be approximated by orders of magnitude. The Poisson's ratio of the core layer tended to be smaller than that of the skin layer. It has also been found that there is a negative correlation between the Young's modulus and the free volume of the polymer material.

15.
Membranes (Basel) ; 14(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38921488

RESUMEN

As a central component for anion exchange membrane fuel cells (AEMFCs), the anion exchange membrane is now facing the challenge of further improving its conductivity and alkali stability. Herein, a twisted all-carbon backbone is designed by introducing stereo-contorted units with piperidinium groups dangled at the twisted sites. The rigid and twisted backbone improves the conduction of hydroxide and brings down the squeezing effect of the backbone on piperidine rings. Accordingly, an anion exchange membrane prepared through this method exhibits adapted OH- conductivity, low swelling ratio and excellent alkali stability, even in high alkali concentrations. Further, a fuel cell assembled with a such-prepared membrane can reach a power density of 904.2 mW/cm2 and be capable of continuous operation for over 50 h. These results demonstrate that the designed membrane has good potential for applications in AEMFCs.

16.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928177

RESUMEN

This work is the first one that provides not only evidence for the existence of free volumes in the human stratum corneum but also focuses on comparing these experimental data, obtained through the unique positron annihilation lifetime spectroscopy (PALS) method, with theoretical values published in earlier works. The mean free volume of 0.269 nm was slightly lower than the theoretical value of 0.4 nm. The lifetime τ3 (1.83 ns with a coefficient of variation CV of 3.21%) is dependent on the size of open sites in the skin. This information was used to calculate the free volume radius R (0.269 nm with CV 2.14%), free volume size Vf (0.081 nm3 with CV 4.69%), and the intensity I3 (9.01% with CV 10.94%) to estimate the relative fractional free volume fv (1.32 a.u. with CV 13.68%) in human skin ex vivo. The relation between the lifetime of o-Ps (τ3) and the radius of free volume (R) was formulated using the Tao-Eldrup model, which assumes spherical voids and applies to sites with radii smaller than 1 nm. The results indicate that PALS is a powerful tool for confirming the existence of free volumes and determining their size. The studies also focused on describing the probable locations of these nanospaces in SC lipid bilayers. According to the theory, these play an essential role in dynamic processes in biological systems, including the diffusion of low-molecular-weight hydrophobic and moderately hydrophilic molecules. The mechanism of their formation has been determined by the molecular dynamics of the lipid chains.


Asunto(s)
Epidermis , Membrana Dobles de Lípidos , Análisis Espectral , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Análisis Espectral/métodos , Epidermis/metabolismo , Epidermis/química , Piel/metabolismo , Piel/química
17.
Adv Mater ; : e2402133, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767177

RESUMEN

High-temperature flexible polymer dielectrics are critical for high density energy storage and conversion. The need to simultaneously possess a high bandgap, dielectric constant and glass transition temperature forms a substantial design challenge for novel dielectric polymers. Here, by varying halogen substituents of an aromatic pendant hanging off a bicyclic mainchain polymer, a class of high-temperature olefins with adjustable thermal stability are obtained, all with uncompromised large bandgaps. Halogens substitution of the pendant groups at para or ortho position of polyoxanorborneneimides (PONB) imparts it with tunable high glass transition from 220 to 245 °C, while with high breakdown strength of 625-800 MV/m. A high energy density of 7.1 J/cc at 200 °C is achieved with p-POClNB, representing the highest energy density reported among homo-polymers. Molecular dynamic simulations and ultrafast infrared spectroscopy are used to probe the free volume element distribution and chain relaxations pertinent to dielectric thermal properties. An increase in free volume element is observed with the change in the pendant group from fluorine to bromine at the para position; however, smaller free volume element is observed for the same pendant when at the ortho position due to steric hindrance. With the dielectric constant and bandgap remaining stable, properly designing the pendant groups of PONB boosts its thermal stability for high density electrification.

18.
ACS Appl Mater Interfaces ; 16(13): 16809-16819, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38502907

RESUMEN

Polymers/polymer matrix composites possessing low dielectric constants (low-k polymer dielectrics) contribute to the advance of electronics, for instance, microprocessor chips, mobile phone antennas, and data communication terminals. However, the intrinsic long-chain structural characteristic results in poor thermal conductivities, which draw heat accumulation and undermine the outstanding low-k performance of polymers. Herein, multisource free-volume effects that combine two novel kinds of extra free volume with the known in-cage free volume of polyhedral oligomeric silsesquioxanes (POSSs) are discussed to reduce the capacity for dielectric constant reduction. The multisource free-volume effects of POSSs are associated with the thermal conductive network formed by the hexagonal boron nitride (BN) in the polymer matrix. The results show a decent balance between low-k performance (dielectric constant is 2.08 at 1 MHz and 1.98 at 10 GHz) and thermal conductivity (0.555 W m-1 K-1, 4.91 times the matrix). The results provide a new idea to maximize the free-volume effects of POSSs to optimize dielectric properties together with other desired performances for the dielectrics.

19.
Elife ; 122024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241331

RESUMEN

A recent experiment on zebrafish blastoderm morphogenesis showed that the viscosity (η) of a non-confluent embryonic tissue grows sharply until a critical cell packing fraction (ϕS). The increase in η up to ϕS is similar to the behavior observed in several glass-forming materials, which suggests that the cell dynamics is sluggish or glass-like. Surprisingly, η is a constant above ϕS. To determine the mechanism of this unusual dependence of η on ϕ, we performed extensive simulations using an agent-based model of a dense non-confluent two-dimensional tissue. We show that polydispersity in the cell size, and the propensity of the cells to deform, results in the saturation of the available free area per cell beyond a critical packing fraction. Saturation in the free space not only explains the viscosity plateau above ϕS but also provides a relationship between equilibrium geometrical packing to the dramatic increase in the relaxation dynamics.


Asunto(s)
Blastodermo , Pez Cebra , Animales , Viscosidad , Fenómenos Químicos , Morfogénesis
20.
ACS Appl Mater Interfaces ; 16(5): 6403-6413, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38261353

RESUMEN

Composite materials have significantly advanced with the integration of inorganic nanoparticles as fillers in polymers. Achieving fine dispersion of these nanoparticles within the composites, however, remains a challenge. This study presents a novel solution inspired by the natural structure of Xanthium. We have developed a polymer of intrinsic microporosity (PIM)-based porous coupling agent, named PCA. PCA's rigid backbone structure enhances interfacial interactions through a unique intermolecular interlocking mechanism. This approach notably improves the dispersion of SiO2 nanoparticles in various organic solvents and low-polarity polymers. Significantly, PCA-modified SiO2 nanoparticles embedded in polyisoprene rubber showed enhanced mechanical properties. The Young's modulus increases to 30.7 MPa, compared to 5.4 MPa in hexadecyltrimethoxysilane-modified nanoparticles. Further analysis shows that PCA-modified composites not only become stiffer but also gain strength and ductility. This research demonstrates a novel biomimetic strategy for enhancing interfacial interactions in composites, potentially leading to stronger, more versatile composite materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...