Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126323

RESUMEN

BACKGROUND: Mucormycosis is an aggressive, invasive fungal infection caused by moulds in the order Mucorales. Early diagnosis is key to improving patient prognosis, yet relies on insensitive culture or non-specific histopathology. A pan-Mucorales specific monoclonal antibody (mAb), TG11, was recently developed. Here, we investigate the spatio-temporal localisation of the antigen and specificity of the mAb for immunohistochemistry. METHODS: We use immunofluorescence (IF) microscopy to assess antigen localisation in eleven Mucorales species of clinical importance and live imaging of Rhizopus arrhizus germination. Immunogold transmission electron microscopy (immunoTEM) reveals the sub-cellular location of mAb TG11 binding. Finally, we perform immunohistochemistry of R. arrhizus in an ex vivo murine lung infection model alongside lung infection by Aspergillus fumigatus. RESULTS: IF revealed TG11 antigen production at the emerging hyphal tip and along the length of growing hyphae in all Mucorales except Sakasenea. Timelapse imaging revealed early antigen exposure during spore germination and along the growing hypha. ImmunoTEM confirmed mAb TG11 binding to the hyphal cell wall only. The TG11 mAb specifically stained Mucorales but not Aspergillus hyphae in infected murine lung tissue. CONCLUSIONS: TG11 detects early hyphal growth and has valuable potential for diagnosing mucormycosis by enhancing discriminatory detection of Mucorales in tissue.

2.
Appl Microbiol Biotechnol ; 108(1): 437, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133429

RESUMEN

ß-1,6-Glucan plays a crucial role in fungal cell walls by linking the outer layer of mannoproteins and the inner layer of ß-1,3-glucan, contributing significantly to the maintenance of cell wall rigidity. Therefore, the hydrolysis of ß-1,6-glucan by ß-1,6-glucanase directly leads to the disintegration of the fungal cell wall. Here, a novel ß-1,6-glucanase FlGlu30 was identified from the endophytic Flavobacterium sp. NAU1659 and heterologously expressed in Escherichia coli BL21 (DE3). The optimal reaction conditions of purified FlGlu30 were 50℃ and pH 6.0, resulting in a specific activity of 173.1 U/mg using pustulan as the substrate. The hydrolyzed products of FlGlu30 to pustulan were mainly gentianose within 1 h of reaction. With the extension of reaction time, gentianose was gradually hydrolyzed to glucose, indicating that FlGlu30 is an endo-ß-1,6-glucanase. The germination of Magnaporthe oryzae Guy11 spores could not be inhibited by FlGlu30, but the appressorium formation of spores was completely inhibited under the concentration of 250.0 U/mL FlGlu30. The disruptions of cell wall and accumulation of intracellular reactive oxide species (ROS) were observed in FlGlu30-treated M. oryzae Guy11 cells, suggesting the significant importance of ß-1,6-glucan as a potential antifungal target and the potential application of FlGlu30. KEY POINTS: • ß-1,6-Glucan is a key component maintaining the rigid structure of fungal cell wall. • ß-1,6-Glucanase is an antifungal protein with significant potential applications. • FlGlu30 is the first reported ß-1, 6-glucanase derived from Flavobacterium.


Asunto(s)
Antifúngicos , Pared Celular , Escherichia coli , Flavobacterium , Glicósido Hidrolasas , Flavobacterium/enzimología , Flavobacterium/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Hidrólisis , Antifúngicos/farmacología , Antifúngicos/metabolismo , Pared Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucanos/metabolismo , Concentración de Iones de Hidrógeno , beta-Glucanos/metabolismo , Clonación Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Especificidad por Sustrato , Polisacáridos
3.
bioRxiv ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979385

RESUMEN

Pattern recognition receptors (PRRs) such as C-type lectin receptors (CLRs) and Toll-like receptors (TLRs) are used by hosts to recognize pathogen-associated molecular patterns (PAMPs) in microorganisms and to initiate innate immune responses. While PRRs exist across invertebrate and vertebrate species, the functional homology of many of these receptors is still unclear. In this study, we investigate the innate immune response of zebrafish larvae to zymosan, a ß-glucan-containing particle derived from fungal cell walls. Macrophages and neutrophils robustly respond to zymosan and are required for zymosan-induced activation of the NF-κB transcription factor. Full activation of NF-κB in response to zymosan depends on Card9/Syk and Myd88, conserved CLR and TLR adaptor proteins, respectively. Two putative CLRs, Clec4c and Sclra, are both required for maximal sensing of zymosan and NF-κB activation. Altogether, we identify conserved PRRs and PRR signaling pathways in larval zebrafish that promote recognition of fungal PAMPs. These results inform modeling of human fungal infections in zebrafish and increase our knowledge of the evolution and conservation of PRR pathways in vertebrates.

4.
J Fungi (Basel) ; 10(7)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39057387

RESUMEN

Candidemia is an opportunistic mycosis with high morbidity and mortality rates. Even though Candida albicans is the main causative agent, other Candida species, such as Candida tropicalis, are relevant etiological agents of candidiasis and candidemia. Compared with C. albicans, there is currently limited information about C. tropicalis' biological aspects, including those related to the cell wall and the interaction with the host. Currently, it is known that its cell wall contains O-linked mannans, and the contribution of these structures to cell fitness has previously been addressed using cells subjected to chemical treatments or in mutants where O-linked mannans and other wall components are affected. Here, we generated a C. tropicalis pmt2∆ null mutant, which was affected in the first step of the O-linked mannosylation pathway. The null mutant was viable, contrasting with C. albicans where this gene is essential. The phenotypical characterization showed that O-linked mannans were required for filamentation; proper cell wall integrity and organization; biofilm formation; protein secretion; and adhesion to extracellular matrix components, in particular to fibronectin; and type I and type II collagen. When interacting with human innate immune cells, it was found that this cell wall structure is dispensable for cytokine production, but mutant cells were more phagocytosed by monocyte-derived macrophages. Furthermore, the null mutant cells showed virulence attenuation in Galleria mellonella larvae. Thus, O-linked mannans are minor components of the cell wall that are involved in different aspects of C. tropicalis' biology.

5.
Microbiol Spectr ; 12(8): e0349523, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38916333

RESUMEN

Fungal cell walls are dynamic extracellular matrices that enable efficient adaptation to changing environments. While the cell wall compositions of yeasts, human, and plant pathogenic fungi have been studied to some extent, the cell walls of mycoparasites remain poorly characterized. Trichoderma species comprise a diverse group of soil fungi with different survival strategies and lifestyles. The comparative study of cell wall carbohydrate-active enzymes in 13 Trichoderma spp. revealed that the types of enzymes involved in chitin and chitosan metabolism are phylogenetically distant between mycoparasitic and saprotrophic species. Here, we compare the carbohydrate composition and function of the cell wall of a saprotrophic strain Trichoderma reesei with that of the mycoparasitic, biological control agent Trichoderma atroviride. Monosaccharide and glycosidic linkage analyses as well as dual in situ interaction assays showed that the cell wall polysaccharide composition is conserved between both species, except for the amounts of chitin detected. The results suggest that the observed accumulation of chitosan during mycoparasitism may prevent host recognition. Remarkably, Trichoderma atroviride undergoes dynamic cell wall adaptations during both vegetative development and mycoparasitism, which appears to be confirmed by an evolutionarily expanded group of specialized enzymes. Overall, our analyses support the notion that habitat specialization is reflected in cell wall architecture and that plastic chitin remodeling may confer an advantage to mycoparasites, ultimately enabling the successful invasion and parasitism of plant pathogens. This information may potentially be exploited for the control of crop diseases using biological agents. IMPORTANCE: Trichoderma species are emerging model fungi for the development of biocontrol agents and are used in industrial biotechnology as efficient enzyme producers. Fungal cell walls are complex structures that differ in carbohydrate, protein, and enzyme composition across taxa. Here, we present a chemical characterization of the cell walls of two Trichoderma spp., namely the predominantly saprotrophic Trichoderma reesei and the mycoparasite Trichoderma atroviride. Chemical profiling revealed that Trichoderma spp. remodel their cell wall to adapt to particular lifestyles, with dynamic changes during vegetative development. Importantly, we found that chitosan accumulation during mycoparasitism of a fungal host emerged as a sophisticated strategy underpinning an effective attack. These insights shed light on the molecular mechanisms that allow mycoparasites to overcome host defenses and can be exploited to improve the application of T. atroviride in biological pest control. Moreover, our results provide valuable information for targeting the fungal cell wall for therapeutic purposes.


Asunto(s)
Pared Celular , Quitosano , Trichoderma , Pared Celular/metabolismo , Pared Celular/química , Quitosano/metabolismo , Trichoderma/metabolismo , Trichoderma/genética , Quitina/metabolismo , Polisacáridos/metabolismo , Hypocreales/metabolismo , Hypocreales/genética , Hypocreales/crecimiento & desarrollo , Filogenia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
6.
J Biosci Bioeng ; 138(2): 118-126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825558

RESUMEN

The α-1,3-glucanase Agl-EK14 from Flavobacterium sp. EK-14 comprises a signal peptide (SP), a catalytic domain (CAT), a first immunoglobulin-like domain (Ig1), a second immunoglobulin-like domain (Ig2), a ricin B-like lectin domain (RicinB), and a carboxy-terminal domain (CTD). SP and CTD are predicted to be involved in extracellular secretion, while the roles of Ig1, Ig2, and RicinB are unclear. To clarify their roles, domain deletion enzymes Agl-EK14ΔRicinB, Agl-EK14ΔIg2RicinB, and Agl-EK14ΔIg1Ig2RicinB were constructed. The insoluble α-1,3-glucan hydrolytic, α-1,3-glucan binding, and fungal cell wall hydrolytic activities of the deletion enzymes were almost the same and lower than those of Agl-EK14. Kinetic analysis revealed that the Km values of the deletion enzymes were similar and uniformly higher than those of Agl-EK14. These results suggest that the deletion of RicinB causes a decline in binding and hydrolytic activity and increases the Km value. To confirm the role of RicinB, Ig1, Ig2, and RicinB were fused with green fluorescent protein (GFP). As a result, RicinB-fused GFP (GFP-RicinB) showed binding to insoluble α-1,3-glucan and Aspergillus oryzae cell walls, whereas Ig1- and Ig2-fused GFP did not. These results indicated that RicinB is involved in α-1,3-glucan binding. The fusion protein GFP-Ig1Ig2RicinB was also constructed and GFP-Ig1Ig2RicinB showed strong binding to the cell wall of A. oryzae compared to GFP-RicinB. Gel filtration column chromatography suggested that the strong binding was due to GFP-Ig1Ig2RicinB loosely associated with itself.


Asunto(s)
Pared Celular , Flavobacterium , Glucanos , Dominios Proteicos , Flavobacterium/enzimología , Flavobacterium/genética , Flavobacterium/metabolismo , Pared Celular/metabolismo , Glucanos/metabolismo , Hidrólisis , Dominio Catalítico , Cinética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/química , Señales de Clasificación de Proteína
7.
New Phytol ; 243(3): 1101-1122, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38742361

RESUMEN

The appressorium of phytopathogenic fungi is a specific structure with a crucial role in plant cuticle penetration. Pathogens with melanized appressoria break the cuticle through cell wall melanization and intracellular turgor pressure. However, in fungi with nonmelanized appressorium, the mechanisms governing cuticle penetration are poorly understood. Here we characterize Row1, a previously uncharacterized appressoria-specific protein of Ustilago maydis that localizes to membrane and secretory vesicles. Deletion of row1 decreases appressoria formation and plant penetration, thereby reducing virulence. Specifically, the Δrow1 mutant has a thicker cell wall that is more resistant to glucanase degradation. We also observed that the Δrow1 mutant has secretion defects. We show that Row1 is functionally conserved at least among Ustilaginaceae and belongs to the Row family, which consists of five other proteins that are highly conserved among Basidiomycota fungi and are involved in U. maydis virulence. We observed similarities in localization between Row1 and Row2, which is also involved in cell wall remodelling and secretion, suggesting similar molecular functions for members of this protein family. Our data suggest that Row1 could modify the chitin-glucan matrix of the fungal cell wall and may be involved in unconventional protein secretion, thereby promoting both appressoria maturation and penetration.


Asunto(s)
Pared Celular , Proteínas Fúngicas , Enfermedades de las Plantas , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Pared Celular/metabolismo , Enfermedades de las Plantas/microbiología , Virulencia , Secuencia Conservada , Mutación/genética , Basidiomycota
8.
J Fungi (Basel) ; 10(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38786657

RESUMEN

Sporothrix schenckii is one of the etiological agents of sporotrichosis, a cutaneous and subcutaneous infection distributed worldwide. Like other medically relevant fungi, its cell wall is a molecular scaffold to display virulence factors, such as protective pigments, hydrolytic enzymes, and adhesins. Cell wall proteins with adhesive properties have been previously reported, but only a handful of them have been identified and characterized. One of them is Gp70, an abundant cell wall protein mainly found on the surface of yeast-like cells. Since the protein also has a role in the activity of 3-carboxy-cis,cis-muconate cyclase and its abundance is low in highly virulent strains, its role in the Sporothrix-host interaction remains unclear. Here, a set of GP70-silenced strains was generated, and the molecular and phenotypical characterization was performed. The results showed that mutants with high silencing levels showed a significant reduction in the adhesion to laminin and fibrinogen, enzyme activity, and defects in the cell wall composition, which included reduced mannose, rhamnose, and protein content, accompanied by an increment in ß-1,3-glucans levels. The cell wall N-linked glycan content was significantly reduced. These strains induced poor TNFα and IL-6 levels when interacting with human peripheral blood mononuclear cells in a dectin-1-, TLR2-, and TLR4-dependent stimulation. The IL-1ß and IL-10 levels were significantly higher and were stimulated via dectin-1. Phagocytosis and stimulation of neutrophil extracellular traps by human granulocytes were increased in highly GP70-silenced strains. Furthermore, these mutants showed virulence attenuation in the invertebrate model Galleria mellonella. Our results demonstrate that Gp70 is a versatile protein with adhesin properties, is responsible for the activity of 3-carboxy-cis,cis-muconate cyclase, and is relevant for the S. schenckii-host interaction.

9.
Pest Manag Sci ; 80(9): 4699-4713, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38771009

RESUMEN

BACKGROUND: ß-N-acetylhexosaminidases (HEXs) are widely distributed in fungi and involved in cell wall chitin metabolism and utilization of chitin-containing substrates. However, details of the fungal pathogens-derived HEXs in the interaction with their hosts remain limited. RESULTS: An insect nutrients-induced ß-N-acetylhexosaminidase, BbHex1, was identified from the entomopathogenic fungus Beauveria bassiana, which was involved in cell wall modification and degradation of insect cuticle. BbHex1 was localized to cell wall and secreted, and displayed enzyme activity to degrade the chitinase-hydrolyzed product (GlcNAc)2. Disruption of BbHex1 resulted in a significant decrease in the level of cell wall chitin in the presence of insect nutrients and during infection of insects, with impaired ability to penetrate insect cuticle, accompanying downregulated cell wall metabolism-involved and cuticle-degrading chitinase genes. However, the opposite phenotypes were examined in the gene overexpression strain. Distinctly altered cell wall structures caused by BbHex1 mutation and overexpression led to the easy activation and evasion (respectively) of insect immune response during fungal infection. As a result, BbHex1 contributed to fungal virulence. Bioinformatics analysis revealed that promoters of some co-expressed chitinase genes with the BbHex1 promoter shared conserved transcription factors Skn7, Msn2 and Ste12, and CreA-binding motifs, implying co-regulation of those genes with BbHex1. CONCLUSION: These data support a mechanism that the fungal pathogen specifically expresses BbHex1, which is co-expressed with chitinases to modify cell wall for evasion of insect immune recognition and to degrade insect cuticle, and contributes to the fungal virulence against insects. © 2024 Society of Chemical Industry.


Asunto(s)
Beauveria , Pared Celular , Quitinasas , beta-N-Acetilhexosaminidasas , Animales , Pared Celular/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Beauveria/fisiología , Beauveria/genética , Beauveria/enzimología , beta-N-Acetilhexosaminidasas/metabolismo , beta-N-Acetilhexosaminidasas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulencia , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/genética
10.
Trends Pharmacol Sci ; 45(4): 366-384, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493014

RESUMEN

Fungal infections are a major threat to human health. The limited availability of antifungal drugs, the emergence of drug resistance, and a growing susceptible population highlight the critical need for novel antifungal agents. The enzymes involved in fungal cell wall synthesis offer potential targets for antifungal drug development. Recent studies have enhanced our focus on the enzyme Fks1, which synthesizes ß-1,3-glucan, a critical component of the cell wall. These studies provide a deeper understanding of Fks1's function in cell wall biosynthesis, pathogenicity, structural biology, evolutionary conservation across fungi, and interaction with current antifungal drugs. Here, we discuss the role of Fks1 in the survival and adaptation of fungi, guided by insights from evolutionary and structural analyses. Furthermore, we delve into the dynamics of Fks1 modulation with novel antifungal strategies and assess its potential as an antifungal drug target.


Asunto(s)
Antifúngicos , Equinocandinas , Humanos , Antifúngicos/farmacología , Descubrimiento de Drogas
11.
Mol Microbiol ; 121(5): 912-926, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38400525

RESUMEN

Fungal cell walls represent the frontline contact with the host and play a prime role in pathogenesis. While the roles of the cell wall polymers like chitin and branched ß-glucan are well understood in vegetative and pathogenic development, that of the most prominent galactose-containing polymers galactosaminogalactan and fungal-type galactomannan is unknown in plant pathogenic fungi. Mining the genome of the maize pathogen Colletotrichum graminicola identified the single-copy key galactose metabolism genes UGE1 and UGM1, encoding a UDP-glucose-4-epimerase and UDP-galactopyranose mutase, respectively. UGE1 is thought to be required for biosynthesis of both polymers, whereas UGM1 is specifically required for fungal-type galactomannan formation. Promoter:eGFP fusion strains revealed that both genes are expressed in vegetative and in pathogenic hyphae at all stages of pathogenesis. Targeted deletion of UGE1 and UGM1, and fluorescence-labeling of galactosaminogalactan and fungal-type galactomannan confirmed that Δuge1 mutants were unable to synthesize either of these polymers, and Δugm1 mutants did not exhibit fungal-type galactomannan. Appressoria of Δuge1, but not of Δugm1 mutants, were defective in adhesion, highlighting a function of galactosaminogalactan in the establishment of these infection cells on hydrophobic surfaces. Both Δuge1 and Δugm1 mutants showed cell wall defects in older vegetative hyphae and severely reduced appressorial penetration competence. On intact leaves of Zea mays, both mutants showed strongly reduced disease symptom severity, indicating that UGE1 and UGM1 represent novel virulence factors of C. graminicola.


Asunto(s)
Colletotrichum , Proteínas Fúngicas , Galactosa , Enfermedades de las Plantas , Factores de Virulencia , Zea mays , Pared Celular/metabolismo , Colletotrichum/genética , Colletotrichum/metabolismo , Colletotrichum/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactanos/metabolismo , Galactosa/metabolismo , Galactosa/análogos & derivados , Hifa/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Mananos/metabolismo , Enfermedades de las Plantas/microbiología , UDPglucosa 4-Epimerasa/metabolismo , UDPglucosa 4-Epimerasa/genética , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Zea mays/microbiología
12.
J Gen Appl Microbiol ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38346750

RESUMEN

The glycoside hydrolase (GH) 71 α-1,3-glucanase (Agn1p) from Schizosaccharomyces pombe consists of an N-terminal signal sequence and a catalytic domain. Meanwhile, the GH87 α-1,3-glucanase (Agl-KA) from Bacillus circulans KA-304 consists of an N-terminal signal sequence, a first discoidin domain (DS1), a carbohydrate-binding module family 6 (CBM6), a threonine and proline repeat linker (TP), a second discoidin domain (DS2), an uncharacterized domain, and a catalytic domain. DS1, CBM6, and DS2 exhibit α-1,3-glucan binding activity. This study involved genetically fusing TP, DS1, CBM6, TP, and DS2 to the C-terminus of Agn1p, generating the fusion enzyme Agn1p-DCD. The fusion enzyme was then expressed in Escherichia coli and purified from the cell-free extract. Agn1p-DCD and Agn1p exhibited similar characteristics, such as optimal pH, optimal temperature, pH stability, and thermostability. Insoluble α-1,3-glucan (1%) hydrolyzing assay showed that Agn1p-DCD and Agn1p released approximately 7.6 and 5.0 mM of reducing sugars, respectively, after 48 h of reaction. Kinetic analysis and an α-1,3-glucan binding assay indicated that the addition of DS1, CBM6, and DS2 enhanced the affinity of Agn1p for α-1,3-glucan. Moreover, Agn1p-DCD contributed to enhancing the fungal growth inhibition activity when combined with a mixture of GH19 chitinase and GH16 ß-1,3-glucanase.

13.
Mol Plant Microbe Interact ; 37(3): 196-210, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37955547

RESUMEN

The cell wall (CW) of plant-interacting fungi, as the direct interface with host plants, plays a crucial role in fungal development. A number of secreted proteins are directly associated with the fungal CW, either through covalent or non-covalent interactions, and serve a range of important functions. In the context of plant-fungal interactions many are important for fungal development in the host environment and may therefore be considered fungal CW-associated effectors (CWAEs). Key CWAE functions include integrating chemical/physical signals to direct hyphal growth, interfering with plant immunity, and providing protection against plant defenses. In recent years, a diverse range of mechanisms have been reported that underpin their roles, with some CWAEs harboring conserved motifs or functional domains, while others are reported to have novel features. As such, the current understanding regarding fungal CWAEs is systematically presented here from the perspective of their biological functions in plant-fungal interactions. An overview of the fungal CW architecture and the mechanisms by which proteins are secreted, modified, and incorporated into the CW is first presented to provide context for their biological roles. Some CWAE functions are reported across a broad range of pathosystems or symbiotic/mutualistic associations. Prominent are the chitin interacting-effectors that facilitate fungal CW modification, protection, or suppression of host immune responses. However, several alternative functions are now reported and are presented and discussed. CWAEs can play diverse roles, some possibly unique to fungal lineages and others conserved across a broad range of plant-interacting fungi. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Proteínas Fúngicas , Hongos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Plantas/microbiología , Simbiosis/fisiología , Pared Celular/metabolismo , Enfermedades de las Plantas/microbiología
14.
Fungal Biol ; 127(12): 1551-1565, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38097329

RESUMEN

Histoplasma experiences nutritional stress during infection as a result of immune cells manipulating essential nutrients, such as metal ions, carbon, nitrogen, and vitamins. Copper (Cu) is an essential metallic micronutrient for living organisms; however, it is toxic in excess. Microbial pathogens must resist copper toxicity to survive. In the case of Histoplasma, virulence is supported by high-affinity copper uptake during late infection, and copper detoxification machinery during early macrophage infection. The objective of this study was to characterize the global molecular adaptation of Histoplasma capsulatum to copper excess using proteomics. Proteomic data revealed that carbohydrate breakdown was repressed, while the lipid degradation pathways were induced. Surprisingly, the production of fatty acids/lipids was also observed, which is likely a result of Cu-mediated damage to lipids. Additionally, the data showed that the fungus increased the exposition of glycan and chitin on the cell surface in high copper. Yeast upregulated antioxidant enzymes to counteract ROS accumulation. The induction of amino acid degradation, fatty acid oxidation, citric acid cycle, and oxidative phosphorylation suggest an increase in aerobic respiration for energy generation. Thus, H. capsulatum's adaptive response to high Cu is putatively composed of metabolic changes to support lipid and cell wall remodeling and fight oxidative stress.


Asunto(s)
Cobre , Histoplasma , Histoplasma/metabolismo , Cobre/metabolismo , Proteómica , Estrés Oxidativo , Ácidos Grasos , Pared Celular/metabolismo
15.
Planta ; 258(6): 116, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946063

RESUMEN

MAIN CONCLUSION: Each ß-1,3-glucanase with antifungal activity or yeast lytic activity hydrolyzes different structures of ß-1,3-glucans in the fungal cell wall, respectively. Plants express several glycoside hydrolases that target chitin and ß-glucan in fungal cell walls and inhibit pathogenic fungal infection. An antifungal ß-1,3-glucanase was purified from gazyumaru (Ficus microcarpa) latex, designated as GlxGluA, and the corresponding gene was cloned and expressed in Escherichia coli. The sequence shows that GlxGluA belongs to glycoside hydrolase family 17 (GH17). To investigate how GlxGluA acts to degrade fungal cell wall ß-glucan, it was compared with ß-1,3-glucanase with different substrate specificities. We obtained recombinant ß-1,3-glucanase (designated as CcGluA), which belongs to GH64, from the bacterium Cellulosimicrobium cellulans. GlxGluA inhibited the growth of the filamentous fungus Trichoderma viride but was unable to lyse the yeast Saccharomyces cerevisiae. In contrast, CcGluA lysed yeast cells but had a negligible inhibitory effect on the growth of filamentous fungi. GlxGluA degraded the cell wall of T. viride better than CcGluA, whereas CcGluA degraded the cell wall of S. cerevisiae more efficiently than GlxGluA. These results suggest that the target substrates in fungal cell walls differ between GlxGluA (GH17 class I ß-1,3-glucanase) and CcGluA (GH64 ß-1,3-glucanase).


Asunto(s)
Ficus , beta-Glucanos , Antifúngicos/farmacología , Antifúngicos/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucanos/metabolismo , Ficus/metabolismo , Látex/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/análisis , Glicósido Hidrolasas/metabolismo , Hongos/metabolismo , Bacterias/metabolismo , Pared Celular/metabolismo
16.
J Fungi (Basel) ; 9(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37888242

RESUMEN

Sporotrichosis is a cutaneous mycosis that affects humans and animals and has a worldwide distribution. This infection is mainly caused by Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. Current research about anti-Sporothrix immunity has been mainly focused on S. schenckii and S. brasiliensis, using different types of human or animal immune cells. Granulocytes are a group of cells relevant for cytokine production, with the capacity for phagocytosis and the generation of neutrophil extracellular traps (NETs). Considering their importance, this study aimed to compare the capacity of human granulocytes to stimulate cytokines, uptake, and form NETs when interacting with different Sporothrix species. We found that conidia, germlings, and yeast-like cells from S. schenckii, S. brasiliensis, and S. globosa play an important role in the interaction with these immune cells, establishing morphology- and species-specific cytokine profiles. S. brasil-iensis tended to stimulate an anti-inflammatory cytokine profile, whilst the other two species had a proinflammatory one. S. globosa cells were the most phagocytosed cells, which occurred through a dectin-1-dependent mechanism, while the uptake of S. brasiliensis mainly occurred via TLR4 and CR3. Cell wall N-linked and O-linked glycans, along with ß-1,3-glucan, played a significant role in the interaction of these Sporothrix species with human granulocytes. Finally, this study indicates that conidia and yeast-like cells are capable of inducing NETs, with the latter being a better stimulant. To the best of our knowledge, this is the first study that reports the cytokine profiles produced by human granulocytes interacting with Sporothrix cells.

17.
Appl Environ Microbiol ; 89(10): e0057323, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37702503

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) can perform oxidative cleavage of glycosidic bonds in carbohydrate polymers (e.g., cellulose, chitin), making them more accessible to hydrolytic enzymes. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. The AA10 LPMOs are active on chitin and/or cellulose and mostly found in bacteria and in some viruses and archaea. Interestingly, AA10-encoding genes are also encountered in some pathogenic fungi of the Ustilaginomycetes class, such as Ustilago maydis, responsible for corn smut disease. Transcriptomic studies have shown the overexpression of the AA10 gene during the infectious cycle of U. maydis. In fact, U. maydis has a unique AA10 gene that codes for a catalytic domain appended with a C-terminal disordered region. To date, there is no public report on fungal AA10 LPMOs. In this study, we successfully produced the catalytic domain of this LPMO (UmAA10_cd) in Pichia pastoris and carried out its biochemical characterization. Our results show that UmAA10_cd oxidatively cleaves α- and ß-chitin with C1 regioselectivity and boosts chitin hydrolysis by a GH18 chitinase from U. maydis (UmGH18A). Using a biologically relevant substrate, we show that UmAA10_cd exhibits enzymatic activity on U. maydis fungal cell wall chitin and promotes its hydrolysis by UmGH18A. These results represent an important step toward the understanding of the role of LPMOs in the fungal cell wall remodeling process during the fungal life cycle.IMPORTANCELytic polysaccharide monooxygenases (LPMOs) have been mainly studied in a biotechnological context for the efficient degradation of recalcitrant polysaccharides. Only recently, alternative roles and paradigms begin to emerge. In this study, we provide evidence that the AA10 LPMO from the phytopathogen Ustilago maydis is active against fungal cell wall chitin. Given that chitin-active LPMOs are commonly found in microbes, it is important to consider fungal cell wall as a potential target for this enigmatic class of enzymes.


Asunto(s)
Quitina , Polisacáridos , Quitina/metabolismo , Polisacáridos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Celulosa/metabolismo , Pared Celular/metabolismo
18.
World J Microbiol Biotechnol ; 39(9): 232, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37349471

RESUMEN

The fungal cell wall protects fungi against threats, both biotic and abiotic, and plays a role in pathogenicity by facilitating host adhesion, among other functions. Although carbohydrates (e.g. glucans, chitin) are the most abundant components, the fungal cell wall also harbors ionic proteins, proteins bound by disulfide bridges, alkali-extractable, SDS-extractable, and GPI-anchored proteins, among others; the latter consisting of suitable targets which can be used for fungal pathogen control. Pseudocercospora fijiensis is the causal agent of black Sigatoka disease, the principal threat to banana and plantain worldwide. Here, we report the isolation of the cell wall of this pathogen, followed by extensive washing to eliminate all loosely associated proteins and conserve those integrated to its cell wall. In the HF-pyridine protein fraction, one of the most abundant protein bands was recovered from SDS-PAGE gels, electro-eluted and sequenced. Seven proteins were identified from this band, none of which were GPI-anchored proteins. Instead, atypical (moonlight-like) cell wall proteins were identified, suggesting a new class of atypical proteins, bound to the cell wall by unknown linkages. Western blot and histological analyses of the cell wall fractions support that these proteins are true cell wall proteins, most likely involved in fungal pathogenesis/virulence, since they were found conserved in many fungal pathogens.


Asunto(s)
Ascomicetos , Musa , Enfermedades de las Plantas/microbiología , Pared Celular , Musa/microbiología , Proteínas Ligadas a GPI , Proteínas Fúngicas/genética
19.
J Biomol NMR ; 77(3): 111-119, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37289305

RESUMEN

In the last three decades, the scope of solid-state NMR has expanded to exploring complex biomolecules, from large protein assemblies to intact cells at atomic-level resolution. This diversity in macromolecules frequently features highly flexible components whose insoluble environment precludes the use of solution NMR to study their structure and interactions. While High-resolution Magic-Angle Spinning (HR-MAS) probes offer the capacity for gradient-based 1H-detected spectroscopy in solids, such probes are not commonly used for routine MAS NMR experiments. As a result, most exploration of the flexible regime entails either 13C-detected experiments, the use of partially perdeuterated systems, or ultra-fast MAS. Here we explore proton-detected pulse schemes probing through-bond 13C-13C networks to study mobile protein sidechains as well as polysaccharides in a broadband manner. We demonstrate the use of such schemes to study a mixture of microtubule-associated protein (MAP) tau and human microtubules (MTs), and the cell wall of the fungus Schizophyllum commune using 2D and 3D spectroscopy, to show its viability for obtaining unambiguous correlations using standard fast-spinning MAS probes at high and ultra-high magnetic fields.


Asunto(s)
Carbono , Protones , Humanos , Resonancia Magnética Nuclear Biomolecular , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Proteínas/química
20.
ACS Nano ; 17(11): 10872-10887, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37192052

RESUMEN

Although cytotoxic treatments hold tremendous potential in boosting antitumor immunity, efferocytosis of tumor-associated macrophages (TAMs) could negatively remove apoptotic tumor cells through LC3-associated phagocytosis (LAP), resulting in inefficient tumor antigen presentation and immunosuppressive tumor microenvironment. To address this issue, we developed TAM-targeting nanospores (PC-CW) inspired by the predominant tropism of Rhizopus oryzae toward macrophages. To construct PC-CW, we disguised poly(sodium-p-styrenesulfonate) (PSS)-coated polyethylenimine (PEI)-shRNA nanocomplexes with the cell wall of R. oryzae conidia. LAP blockade by PC-CW delayed the degradation of engulfed tumor debris within TAMs, which not only enhanced antigen presentation but also initiated the domino effect of the antitumor immune response through STING signaling and TAM repolarization. Benefiting from this, PC-CW successfully sensitized the immune microenvironment and amplified CD8+ T cell responses following chemo-photothermal therapy, leading to substantial tumor growth control and metastasis prevention in tumor-bearing mouse models. The bioengineered nanospores represent a simple and versatile immunomodulatory strategy targeting TAMs for robust antitumor immunotherapy.


Asunto(s)
Neoplasias , Macrófagos Asociados a Tumores , Ratones , Animales , Fagocitosis , Macrófagos/metabolismo , Neoplasias/terapia , Inmunoterapia/métodos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...