Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.717
Filtrar
1.
Photoacoustics ; 39: 100647, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39309019

RESUMEN

A novel method is introduced to improve the detection performance of photoacoustic spectroscopy for trace gas detection. For effectively suppressing various types of noise, this method integrates photoacoustic spectroscopy with residual networks model which encompasses a total of 40 weighted layers. Firstly, this approach was employed to accurately retrieve methane concentrations at various levels. Secondly, the analysis of the signal-to-noise ratio (SNR) of multiple sets of photoacoustic spectroscopy signals revealed significant enhancement. The SNR was improved from 21 to 805, 52-962, 98-944, 188-933, 310-941, and 587-936 across the different concentrations, respectively, as a result of the application of the residual networks. Finally, further exploration for the measurement precision and stability of photoacoustic spectroscopy system utilizing residual networks was carried out. The measurement precision of 0.0626 ppm was obtained and the minimum detectable limit was found to be 1.47 ppb. Compared to traditional photoacoustic spectroscopy method, an approximately 46-fold improvement in detection limit and 69-fold enhancement in measurement precision were achieved, respectively. This method not only advances the measurement precision and stability of trace gas detection but also highlights the potential of deep learning algorithms in spectroscopy detection.

2.
Sensors (Basel) ; 24(18)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39338712

RESUMEN

Using first-principles theory, this work purposes Ru-doped Janus WSSe (Ru-WSSe) monolayer as a potential gas sensor for detection of three typical gas species (CO, C2H2, and C2H4), in order to evaluate the operation status of the oil-immersed transformers. The Ru-doping behavior on the WSSe surface is analyzed, giving rise to the preferred doping site by the replacement of a Se atom with the formation energy of 0.01 eV. The gas adsorption of three gas species onto the Ru-WSSe monolayer is conducted, and chemisorption is identified for all three gas systems with the adsorption energy following the order: CO (-2.22 eV) > C2H2 (-2.01 eV) > C2H4 (-1.70 eV). Also, the modulated electronic properties and the frontier molecular orbital are investigated to uncover the sensing mechanism of Ru-WSSe monolayer upon three typical gases. Results reveal that the sensing responses of the Ru-WSSe monolayer, based on the variation of energy gap, to CO, C2H2, and C2H4 molecules are calculated to be 1.67 × 106, 2.10 × 105, and 9.61 × 103, respectively. Finally, the impact of the existence of O2 molecule for gas adsorption and sensing is also analyzed to uncover the potential of Ru-WSSe monolayer for practical application in the air atmosphere. The obtained high electrical responses manifest strong potential as a resistive sensor for detection of three gases. The findings hold practical implications for the development of novel gas sensing materials based on Janus WSSe monolayer. We anticipate that our results will inspire further research in this domain, particularly for applications in electrical engineering where the reliable detection of fault gases is paramount for maintaining the integrity and safety of power systems.

3.
Sensors (Basel) ; 24(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39338898

RESUMEN

Excellent stability, low cost, high response, and sensitivity of indium oxide (In2O3), a metal oxide semiconductor, have been verified in the field of gas sensing. Conventional In2O3 gas sensors employ simple and easy-to-manufacture resistive components as transducers. However, the swift advancement of the Internet of Things has raised higher requirements for gas sensors based on metal oxides, primarily including lowering operating temperatures, improving selectivity, and realizing integrability. In response to these three main concerns, field-effect transistor (FET) gas sensors have garnered growing interest over the past decade. When compared with other metal oxide semiconductors, In2O3 exhibits greater carrier concentration and mobility. The property is advantageous for manufacturing FETs with exceptional electrical performance, provided that the off-state current is controlled at a sufficiently low level. This review presents the significant progress made in In2O3 FET gas sensors during the last ten years, covering typical device designs, gas sensing performance indicators, optimization techniques, and strategies for the future development based on In2O3 FET gas sensors.

4.
Discov Nano ; 19(1): 157, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39331285

RESUMEN

Novel sensing applications benefit from multifunctional nanomaterials responsive to various external stimuli such as mechanics, electricity, light, humidity, or pollution. While few such materials occur naturally, the careful design of synergized nanomaterials unifies the cross-coupled properties which are weak or absent in single-phase materials. In this study, 2D MoS2 integrated with ultrathin dielectric oxide layers forms hetero-nanostructures with significant impacts on carrier transport. The ternary TiO2/MoS2/ZnO hetero-nanostructures, along with their individual properties, improve the performance of multifunctional sensing devices. The synthesized hetero-nanostructure exhibits a responsivity of up to 16 mA/W to 700 nm light and responds to 5 ppm ammonia gas at room temperature. These enhancements are attributed to interface charge transfer and photogating effects. The ternary TiO2/MoS2/ZnO hetero-nanostructure is compatible with existing semiconductor fabrication technologies, making it feasible to integrate into flexible, lightweight semiconductor devices and circuits. These results may inspire new photodetectors and sensing devices based on two-dimensional (2D) layered materials for IoT applications.

5.
Sensors (Basel) ; 24(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39275517

RESUMEN

Surface engineering techniques can be used to develop high-performance gas sensing materials and advance the development of sensors. In this study, we improved the gas sensing performance of two-dimensional (2D) WO3 nanoplates by combining surface Zn modification and the in situ formation of ZnWO4/WO3 heterojunctions. Introducing Zn atoms by surface modification can reconstruct the atomic surface of 2D WO3 nanoplates, creating additional active sites. This allowed for the preparation of various types of ZnWO4/WO3 heterojunctions on the surface of the WO3 nanoplates, which improved the selectivity and sensitivity to the target gas triethylamine. The sensor exhibited good gas sensing performance for triethylamine even at low operating temperatures and strongly resisted humidity changes. The ZnWO4/WO3 material we prepared demonstrated a nearly threefold improvement in the triethylamine (TEA) response, with a gas sensing responsivity of 40.75 for 10 ppm of TEA at 250 °C. The sensor based on ZnWO4/WO3 has a limit of detection (LOD) for TEA of 200 ppb in practical measurements (its theoretical LOD is even as low as 31 ppb). The method of growing ZnWO4 on the surface of WO3 nanoplates using surface modification techniques to form surface heterojunctions differs from ordinary composites. The results suggest that the in situ construction of surface heterojunctions using surface engineering strategies, such as in situ modifying, is a practical approach to enhance the gas sensing properties and resistance to the humidity changes of metal oxide materials.

6.
Sensors (Basel) ; 24(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39275601

RESUMEN

The detection of dimethyl sulphide (DMS) at levels between ppb and ppm is a significant area of research due to the necessity of monitoring the presence of this gas in a variety of environments. These include environmental protection, industrial safety and medical diagnostics. Issues related to certain uncertainties concerning the influence of high humidity on DMS measurements with resistive gas sensors, e.g., in the detection of this marker in exhaled air, of the still unsatisfactory lower detection limit of DMS are the subject of intensive research. This paper presents the results of modifying the composition of the ZnO-based sensor layer to develop a DMS sensor with higher sensitivity and lower detection limit (LOD). Improved performance was achieved by using ZnO in the form of hexagonal nano- and microplates doped with gold nanoparticles (0.75 wt.%) and by using a well-proven sepiolite-based passive filter. The modification of the layer composition with respect to the authors' previous studies contributed to the development of a sensor that is highly sensitive to 1 ppm DMS (S = 11.4) and achieves an LOD of up to 406 ppb, despite the presence of a high water vapour content (90% RH) in the analysed atmosphere.

7.
Sensors (Basel) ; 24(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39275763

RESUMEN

Photodetectors and gas sensors are vital in modern technology, spanning from environmental monitoring to biomedical diagnostics. This paper explores the UV detection and gas sensing properties of a zinc oxide (ZnO) nanorod array (ZNA) grown on silver nanowire mesh (AgNM) using a hydrothermal method. We examined the impact of different zinc acetate precursor concentrations on their properties. Results show the AgNM forms a network with high transparency (79%) and low sheet resistance (7.23 Ω/□). A sol-gel ZnO thin film was coated on this mesh, providing a seed layer with a hexagonal wurtzite structure. Increasing the precursor concentration alters the diameter, length, and area density of ZNAs, affecting their performance. The ZNA-AgNM-based photodetector shows enhanced dark current and photocurrent with increasing precursor concentration, achieving a maximum photoresponsivity of 114 A/W at 374 nm and a detectivity of 6.37 × 1014 Jones at 0.05 M zinc acetate. For gas sensing, the resistance of ZNA-AgNM-based sensors decreases with temperature, with the best hydrogen response (2.71) at 300 °C and 0.04 M precursor concentration. These findings highlight the potential of ZNA-AgNM for high-performance UV photodetectors and hydrogen gas sensors, offering an alternative way for the development of future sensing devices with enhanced performance and functionality.

8.
Molecules ; 29(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274910

RESUMEN

The rapid expansion of industrial activities has resulted in severe environmental pollution manifested by organic dyes discharged from the food, textile, and leather industries, as well as hazardous gas emissions from various industrial processes. Titanium dioxide (TiO2)-nanostructured materials have emerged as promising candidates for effective photocatalytic dye degradation and gas sensing applications owing to their unique physicochemical properties. This study investigates the development of a photocatalyst and a liquefied petroleum gas (LPG) sensor using hydrothermally synthesized globosa-like TiO2 nanostructures (GTNs). The synthesized GTNs are then evaluated to photocatalytically degrade methylene blue dye, resulting in an outstanding photocatalytic activity of 91% degradation within 160 min under UV light irradiation. Furthermore, these nanostructures are utilized to sense liquefied petroleum gas, which attains a superior sensitivity of 7.3% with high response and recovery times and good reproducibility. This facile and cost-effective hydrothermal method of fabricating TiO2 nanostructures opens a new avenue in photocatalytic dye degradation and gas sensing applications.

9.
ACS Sens ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321551

RESUMEN

Disease diagnosis of Helicobacter pylori (Hp) through human exhaled breath analysis has attracted considerable attention. However, conventional methods, such as carbon 13 (13C) breath test and infrared spectrometers, are facing the challenge of achieving portability and reliability synchronously. Herein, we report a portable and hand-held Hp analyzer using a bimetallic PtRu@SnO2-based gas sensor for the prediagnosis of Hp infection, which is based on detecting ammonia (NH3) as a potential biomarker in exhaled breath. Owing to the surface functionalization through highly catalytically active bimetallic PtRu nanoparticles (NPs) prepared by a photochemical reduction strategy, the PtRu@SnO2-based sensor exhibits high sensitivity and selectivity toward trace-level (200 ppb) NH3 even at high-humidity surroundings (80% RH). Consequently, the designed portable and hand-held Hp analyzer makes the accurate determination of NH3 at 800 ppb in exhaled breath. The tuning of energy band structure and electrical characteristics and the catalytic modulation of NH3 oxidation by PtRu NPs are proposed to be the reasons behind the enhanced NH3 gas-sensing performance, as confirmed by in situ analysis using an online MKS MultiGas 2030 FTIR gas analyzer. This work paves the way for the prediagnosis of Hp infection using a metal oxide gas sensor.

10.
ACS Sens ; 9(9): 4578-4590, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39223701

RESUMEN

The real-time and room-temperature detection of nitrogen dioxide (NO2) holds significant importance for environmental monitoring. However, the performance of NO2 sensors has been hampered by the trade-off between the high sensitivity and stability of conventional sensitive materials. Here, we present a novel fully flexible paper-based gas sensing structure by combining a homogeneous screen-printed titanium carbide (Ti3C2Tx) MXene-based nonmetallic electrode with a MoS2 quantum dots/Ti3C2Tx (MoS2 QDs/Ti3C2Tx) gas-sensing film. These precisely designed gas sensors demonstrate an improved response value (16.3% at 5 ppm) and a low theoretical detection limit of 12.1 ppb toward NO2, which exhibit a remarkable 3.5-fold increase in sensitivity compared to conventional Au interdigital electrodes. The outstanding performance can be attributed to the integration of the quantum confinement effect of MoS2 QDs and the conductivity of Ti3C2Tx, establishing the main active adsorption sites and enhanced charge transport pathways. Furthermore, an end-sealing effect strategy was applied to decorate the defect sites with naturally oxygen-rich tannic acid and conductive polymer, and the formed hydrogen bonding network at the interface effectively mitigated the oxidative degradation of the Ti3C2Tx-based gas sensors. The exceptional stability has been achieved with only a 1.8% decrease in response over 4 weeks. This work highlights the innovative design of high-performance gas sensing materials and homogeneous gas sensor techniques.


Asunto(s)
Electrodos , Dióxido de Nitrógeno , Puntos Cuánticos , Titanio , Dióxido de Nitrógeno/análisis , Titanio/química , Puntos Cuánticos/química , Molibdeno/química , Límite de Detección , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Gases/química , Gases/análisis , Disulfuros
11.
ACS Sens ; 9(9): 4777-4787, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39254107

RESUMEN

The performance of semiconductor sensors is determined by reaction kinetics, conductivity, and electron mobility, which are undoubtedly closely related to the electron motion behavior. Therefore, the effective regulation of electronic states is crucial for improving gas sensing properties. Previous methods of enhancing the gas-sensing performance have induced complex material modifications, and the extent of performance improvement is usually very limited. Further optimization of the gas sensing performance requires continuous efforts to advance new technologies. Toward this issue, a novel magnetic field-induced strategy is adopted to boost the carrier transfer efficiency of nonferromagnetic semiconductors. The gas sensing investigation results manifest that the applied magnetic field can effectively enhance the sensitivity and reduce the baseline resistance. The In2O3 NC-2 (In2O3 nanocubes) with an applied magnetic field have a greatly enhanced response of 161.4 toward 100 ppm formaldehyde, which is 2.5 times higher than that without magnetic field. The enhanced gas sensing properties can be mainly attributed to magnetization of reactive materials, which makes the orientation of electronic magnetic moments consistent, thus greatly contributing to reactivity. This work introduces a practical approach to effectively improve gas sensing performance without further morphology optimization, noble metal catalysis, structural modification, and material cladding. The results of this study provide new insights for designing novel gas sensors to improve the gas sensing performance.


Asunto(s)
Campos Magnéticos , Semiconductores , Gases/química , Gases/análisis
12.
ACS Appl Mater Interfaces ; 16(38): 51738-51747, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39263994

RESUMEN

Oxygen vacancies (VO) in metal oxide semiconductors play an important role in improving gas-sensing performance of chemiresistive gas sensors. Nonetheless, there is still a lack of clear understanding of the inherent mechanism of the influence of oxygen vacancies on gas sensing due to generally focusing on the concentration of VO. Herein, oxygen vacancies were rationally modulated in WO3 nanoflower structures via an annealing process, resulting in a transformation of VO from neutral (VO0) to a doubly ionized (VO2+) state. Density functional theory (DFT) calculations indicate that VO2+ is significantly more efficient than VO0 for NO2 detection in competition with atmospheric O2. Benefiting from a high concentration of VO2+, the WO3-450 (WO3 annealed at 450 °C) sensor exhibits excellent sensing performance with an ultrahigh sensitivity (3674.1 to 5 ppm NO2), superior selectivity, and long-term stability (one month). Furthermore, the sensor with the wide range of concentration detection not only can detect NO2 gas with parts per million (ppm) but also can detect NO2 with parts per billion (ppb) level concentration, with a high sensibility reaching 2.8 to 25 ppb NO2 and over 100 to 100 ppb NO2. This study elucidates the oxygen vacancy mediated sensing mechanism toward NO2 and provides an effective strategy for the rational design of gas sensors with high sensing performance.

13.
ACS Appl Mater Interfaces ; 16(38): 51354-51363, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39264240

RESUMEN

In this study, the W-doped Nickel oxide (NiO) nanoflowers were synthesized using a straightforward hydrothermal method, significantly enhancing the sensing performance toward triethylamine through dual-functional tungsten doping. The optimal doping concentration not only increased the specific surface area of NiO from 25.54 to 189.19 m2 g-1 but also reduced the formation energy of oxygen vacancies. The sensor containing 4 at % W-doped NiO demonstrated exceptional sensitivity to triethylamine, achieving a detection level as high as 229.0 for concentrations of 100 ppm at 237.5 °C. This triethylamine sensor represents a 135-fold enhancement over sensors fabricated from undoped NiO, and offers a rapid response/recovery time of 8 and 30 s, respectively. Furthermore, at a lower triethylamine concentration of 50 ppb, indicating a lower detection limit.

14.
ACS Sens ; 9(9): 4851-4859, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39283999

RESUMEN

Graphene transistor sensors, with advantages such as facile surface functionalization and high sensitivity, have gained extensive research interest in gas detection applications. This study fabricated back-gated graphene transistors and employed a hydroxylation scheme for the surface functionalization of graphene. On the basis of the interaction mechanisms between gas molecules and graphene's electrical properties, a compact electrical kinetics model considering the gas-solid surface reaction of graphene transistors is proposed. The model can accurately predict the electrical kinetic performance and can be used to optimize sensor characteristics. The bias condition of a higher response can be rapidly determined. In addition, the density of hydroxyl groups on graphene is revealed to be the direction of improvement and a key factor of response. Hence, the gas detection capacity of sensors with varying densities of hydroxyl groups was assessed concerning ammonia gas, and design technology co-optimization (DTCO) is realized. Measurement results show that the sensor with 70 s of hydroxylation time has a 7.7% response under 22 ppm ammonia gas.


Asunto(s)
Amoníaco , Grafito , Transistores Electrónicos , Grafito/química , Cinética , Hidroxilación , Amoníaco/análisis , Amoníaco/química , Gases/química , Gases/análisis
15.
ACS Sens ; 9(9): 4870-4878, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39291846

RESUMEN

With the rising popularity of smart homes, there is an urgent need for devices that can perform real-time online detection of ammonia (NH3) concentrations for food quality measurement. In addition, timely warning is crucial to preventing individual deaths from NH3. However, few studies can realize continuous monitoring of NH3 with high stability and subsequent application validation. Herein, we report on an integrated device equipped with a nitrogen-doped Ti3C2Tx gas sensor that shows great potential in detecting food spoilage and NH3 leakage. The nitrogen doping results in the lattice misalignment of Ti3C2Tx, subsequently realizing effective barrier height modulation and enhanced charge transfer efficiency of nitrogen-doped Ti3C2Tx. Density functional theory calculations confirm the greatly enhanced adsorption of NH3 on nitrogen-doped Ti3C2Tx. Our work can inspire the design of efficient gas sensors for real-time and wireless detection of food spoilage and NH3 leakage.


Asunto(s)
Amoníaco , Nitrógeno , Titanio , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Amoníaco/análisis , Nitrógeno/química , Titanio/química
16.
Adv Sci (Weinh) ; : e2408096, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340830

RESUMEN

La-decorated Bi2O2CO3 (BCO-La) microspheres are synthesized using a facile wet chemical strategy for sensing low-concentration nonanal (C9H18O) at room temperature. These BCO-La gas sensors are applied to evaluate agricultural product quality, specifically for cooked rice. The sensitivity of the BCO-6La sensor significantly surpassed that of the pure BCO sensor, achieving a response value of 174.6 when detecting 30 ppm nonanal gas. Notably, the BCO-6La sensor demonstrated a faster response time (36 s) when exposed to 18 ppm of nonanal. Additionally, the selectivity toward nonanal gas detection is higher (approximately 4-24 times) compared to interfering gases (1-octanol, geranyl acetone, linalool, hexanal, 2-pentyfuran, and 1-octen-3-ol) during cooked rice quality detection. The gas sensing mechanism and the factors contributing to the enhanced sensing performance of the BCO-La microspheres are demonstrated through in situ FT-IR spectra and DFT analysis while the realistic detection scenario is carried out. In a broader context, the reported sensors here represent a novel platform for the detection and monitoring of gases released by agricultural products during storage.

17.
Artículo en Inglés | MEDLINE | ID: mdl-39312208

RESUMEN

A promising strategy is proposed for fabricating flexible pressure/gas sensors, which have a microprotuberance and microwrinkle structure at micropillars on their sensing substrates. The sensing substrates were prepared by compression molding thermoplastic polyurethane (TPU; an industrial grade polymer) and subsequent pyrrole polymerization. Benefiting from the hierarchical structure on the sensing substrates, the flexible sensors exhibit high performances in detecting both pressure and ammonia (NH3). Mechanism for the functionalities of the hierarchical structure of the pressure sensors was analyzed. Such unique hierarchical structure endows the interlocked pressure sensor by assembling the substrates prepared at 60 min polymerization time with a relatively high sensitivity in a wider linearity range (1.15 kPa-1, 0-800 Pa), a lower detection limit of 6.2 Pa, and shorter response and recovery times (26/28 ms). The combination of stronger interfacial interaction between the TPU and polypyrrole layer, the mutual support of the interlocked micropillars, and the inherent high resilience of TPU endows the pressure sensor with lower hysteresis, good repeatability and stability, and higher durability (10,000 cycles). The interlocked pressure sensor can detect full-range human physiological activities from weak physiological signals (such as face muscle contraction, heartbeat, and breath) to body movements (such as head, elbow, and foot movement). The gas sensor assembled with the hierarchical sensing substrate prepared at 60 min polymerization time exhibits selective, stable, and faster sensing responses to NH3. The proposed facile and cost-effective preparation strategy can be an excellent candidate for fabricating high-performance and multifunctional sensors.

18.
Talanta ; 281: 126916, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39305764

RESUMEN

In this work, three different dyes have been tested for the determination of gaseous ammonia. This gas is one of the products of microbial degradation and therefore its presence is an indicator of deterioration and could be used as a food freshness indicator. Three different sensors have been prepared and tested, two of them using the natural pigments curcumin and anthocyanin and the other one using bromothymol blue. All of them are biocompatible and therefore allowed to use in contact with food. Different compositions, materials for deposition, stability and reversibility for ammonia gas detection have been studied under high humidity conditions simulating real packaged food conditions. Colorimetry is the technique used to obtain the analytical parameter, the H coordinate of the HSV colour space, simply using a camera, avoiding the use of complex instrumentation. Sensibility, toxicity grade and stability found show that the sensor could be implemented in packaged food and form the basis of a freshness indicator for the food industry.

19.
Talanta ; 281: 126814, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39245007

RESUMEN

Constructing heterostructures is an effective way to improve the carrier mobility for metal oxide sensing material, since heterojunctions are usually built only on the surface of the material, the carrier transport efficiency inside the material still needs to be improved. In this paper, BiVO4 nanocrystals (BVO NCs) with an average size of 1 nm generated by pulsed laser irradiation were embedded in situ at the particle boundaries (PBs) of SnO2 nanofibers to form an effective n-n heterojunctions inside the material. After embedding the BVO NCs in the SnO2 samples, the response value for 10 ppm NO was improved to 48.91, which was 2.5 times higher than that of pure SnO2 at near room temperature (50 °C). Meanwhile, the detection limit was lowered to 50 ppb with excellent long term stability. Detailed analysis and theoretical calculations demonstrated that the formation of abundant n-n heterojunctions not only promotes the electron-hole separation and the carrier mobility, but also reduces the conductivity and adsorption energy of the material, which significantly improves its sensing performance. This work demonstrates a new approach to modulate the gas-sensing performance of metal oxide semiconductors by generating heterostructure inside the bulk of the material.

20.
Sci Rep ; 14(1): 21469, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277591

RESUMEN

In general, defects are crucial in designing the different properties of two-dimensional materials. Therefore large variations in the electric and optical characteristics of two-dimensional layered molybdenum disulphide might be attributed to defects. This study presents the design of a temperature and nitrogen sensor based on few-layer molybdenum disulfide sheets (FLMS), which was developed from bulk MoS2 (BMS) through an exfoliation approach. The produced sulfur defect, molybdenum defect, line defect, and plane defect were characterized by scanning transmission electron microscopy (STEM), which substantially impacts the sensing characteristics of the resulting FLMS. Our theoretical analysis validates that the sulfur vacancies of the MoS2 lattice improve sensing performance by promoting effective charge transfer and surface interactions with target analytes. The FLMS-based sensor showed a high sensitivity for detecting nitrogen gas with a detection limit (LOD) of ~ 0.18 ppm. Additionally, temperature-detecting capabilities were assessed over various temperatures, showing outstanding stability and repeatability. To the best of our knowledge, this material is the first of its kind, demonstrating visible N2 gas sensing with chromic behaviour.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...