Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
1.
Am J Bot ; : e16386, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107998

RESUMEN

PREMISE: A complicating factor in analyzing allopolyploid genomes is the possibility of physical interactions between homoeologous chromosomes during meiosis, resulting in either crossover (homoeologous exchanges) or non-crossover products (homoeologous gene conversion). Homoeologous gene conversion was first described in cotton by comparing SNP patterns in sequences from two diploid progenitors with those from the allopolyploid subgenomes. These analyses, however, did not explicitly consider other evolutionary scenarios that may give rise to similar SNP patterns as homoeologous gene conversion, creating uncertainties about the reality of the inferred gene conversion events. METHODS: Here, we use an expanded phylogenetic sampling of high-quality genome assemblies from seven allopolyploid Gossypium species (all derived from the same polyploidy event), four diploid species (two closely related to each subgenome), and a diploid outgroup to derive a robust method for identifying potential genomic regions of gene conversion and homoeologous exchange. RESULTS: We found little evidence for homoeologous gene conversion in allopolyploid cottons, and that only two of the 40 best-supported events were shared by more than one species. We did, however, reveal a single, shared homoeologous exchange event at one end of chromosome 1, which occurred shortly after allopolyploidization but prior to divergence of the descendant species. CONCLUSIONS: Overall, our analyses demonstrated that homoeologous gene conversion and homoeologous exchanges are uncommon in Gossypium, affecting between zero and 24 genes per subgenome (0.0-0.065%) across the seven species. More generally, we highlighted the potential problems of using simple four-taxon tests to investigate patterns of homoeologous gene conversion in established allopolyploids.

2.
bioRxiv ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39091816

RESUMEN

Functional innovation at the protein level is a key source of evolutionary novelties. The constraints on functional innovations are likely to be highly specific in different proteins, which are shaped by their unique histories and the extent of global epistasis that arises from their structures and biochemistries. These contextual nuances in the sequence-function relationship have implications both for a basic understanding of the evolutionary process and for engineering proteins with desirable properties. Here, we have investigated the molecular basis of novel function in a model member of an ancient, conserved, and biotechnologically relevant protein family. These Major Facilitator Superfamily sugar porters are a functionally diverse group of proteins that are thought to be highly plastic and evolvable. By dissecting a recent evolutionary innovation in an α-glucoside transporter from the yeast Saccharomyces eubayanus, we show that the ability to transport a novel substrate requires high-order interactions between many protein regions and numerous specific residues proximal to the transport channel. To reconcile the functional diversity of this family with the constrained evolution of this model protein, we generated new, state-of-the-art genome annotations for 332 Saccharomycotina yeast species spanning approximately 400 million years of evolution. By integrating phylogenetic and phenotypic analyses across these species, we show that the model yeast α-glucoside transporters likely evolved from a multifunctional ancestor and became subfunctionalized. The accumulation of additive and epistatic substitutions likely entrenched this subfunction, which made the simultaneous acquisition of multiple interacting substitutions the only reasonably accessible path to novelty.

3.
Genome Biol ; 25(1): 219, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138526

RESUMEN

BACKGROUND: In vertebrates, most protein-coding genes have a peak of GC-content near their 5' transcriptional start site (TSS). This feature promotes both the efficient nuclear export and translation of mRNAs. Despite the importance of GC-content for RNA metabolism, its general features, origin, and maintenance remain mysterious. We investigate the evolutionary forces shaping GC-content at the transcriptional start site (TSS) of genes through both comparative genomic analysis of nucleotide substitution rates between different species and by examining human de novo mutations. RESULTS: Our data suggests that GC-peaks at TSSs were present in the last common ancestor of amniotes, and likely that of vertebrates. We observe that in apes and rodents, where recombination is directed away from TSSs by PRDM9, GC-content at the 5' end of protein-coding gene is currently undergoing mutational decay. In canids, which lack PRDM9 and perform recombination at TSSs, GC-content at the 5' end of protein-coding is increasing. We show that these patterns extend into the 5' end of the open reading frame, thus impacting synonymous codon position choices. CONCLUSIONS: Our results indicate that the dynamics of this GC-peak in amniotes is largely shaped by historic patterns of recombination. Since decay of GC-content towards the mutation rate equilibrium is the default state for non-functional DNA, the observed decrease in GC-content at TSSs in apes and rodents indicates that the GC-peak is not being maintained by selection on most protein-coding genes in those species.


Asunto(s)
Composición de Base , Sitio de Iniciación de la Transcripción , Humanos , Animales , Mutación , Evolución Molecular , Sistemas de Lectura Abierta
4.
G3 (Bethesda) ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073776

RESUMEN

When adaptive phenotypic variation or QTLs map within an inverted segment of a chromosome, researchers often despair because the suppression of crossing over will prevent the discovery of selective target genes that established the rearrangement. If an inversion polymorphism is old enough, then the accumulation of gene conversion tracts offers the promise that QTLs or selected loci within inversions can be mapped. The inversion polymorphism of Drosophila pseudoobscura is a model system to show that gene conversion analysis is a useful tool for mapping selected loci within inversions. D. pseudoobscura has over 30 different chromosomal arrangements on the third chromosome (Muller C) in natural populations and their frequencies vary with changes in environmental habitats. Statistical tests of five D. pseudoobscura gene arrangements identified outlier genes within inverted regions that had potentially heritable variation, either fixed amino acid differences or differential expression patterns. We use genome sequences of the inverted third chromosome (Muller C) to infer 98,443 gene conversion tracts for a total coverage of 142 Mb or 7.2 x coverage of the 19.7 Mb chromosome. We estimated gene conversion tract coverage in the 2,668 genes on Muller C and tested whether gene conversion coverage was similar among arrangements for outlier versus non-outlier loci. Outlier genes had lower gene conversion tract coverage among arrangements than the non-outlier genes suggesting that selection removes exchanged DNA in the outlier genes. These data support the hypothesis that the third chromosome in D. pseudoobscura captured locally adapted combinations of alleles prior to inversion mutation events.

5.
Mol Ecol ; 33(15): e17453, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38953291

RESUMEN

The major histocompatibility complex (MHC) multigene family encodes key pathogen-recognition molecules of the vertebrate adaptive immune system. Hyper-polymorphism of MHC genes is de novo generated by point mutations, but new haplotypes may also arise by re-shuffling of existing variation through intra- and inter-locus gene conversion. Although the occurrence of gene conversion at the MHC has been known for decades, we still have limited understanding of its functional importance. Here, I took advantage of extensive genetic resources (~9000 sequences) to investigate broad scale macroevolutionary patterns in gene conversion processes at the MHC across nearly 200 avian species. Gene conversion was found to constitute a universal mechanism in birds, as 83% of species showed footprints of gene conversion at either MHC class and 25% of all allelic variants were attributed to gene conversion. Gene conversion processes were stronger at MHC-II than MHC-I, but inter-specific variation at both MHC classes was explained by similar evolutionary scenarios, reflecting fluctuating selection towards different optima and drift. Gene conversion showed uneven phylogenetic distribution across birds and was driven by gene copy number variation, supporting significant role of inter-locus gene conversion processes in the evolution of the avian MHC. Finally, MHC gene conversion was stronger in species with fast life histories (high fecundity) and in long-distance migrants, likely reflecting variation in population sizes and host-pathogen coevolutionary dynamics. The results provide a robust comparative framework for understanding macroevolutionary variation in gene conversion at the avian MHC and reinforce important contribution of this mechanism to functional MHC diversity.


Asunto(s)
Aves , Evolución Molecular , Conversión Génica , Complejo Mayor de Histocompatibilidad , Filogenia , Selección Genética , Animales , Aves/genética , Complejo Mayor de Histocompatibilidad/genética , Selección Genética/genética , Dosificación de Gen , Haplotipos/genética , Variación Genética
6.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38980178

RESUMEN

The role of balancing selection is a long-standing evolutionary puzzle. Balancing selection is a crucial evolutionary process that maintains genetic variation (polymorphism) over extended periods of time; however, detecting it poses a significant challenge. Building upon the Polymorphism-aware phylogenetic Models (PoMos) framework rooted in the Moran model, we introduce a PoMoBalance model. This novel approach is designed to disentangle the interplay of mutation, genetic drift, and directional selection (GC-biased gene conversion), along with the previously unexplored balancing selection pressures on ultra-long timescales comparable with species divergence times by analyzing multi-individual genomic and phylogenetic divergence data. Implemented in the open-source RevBayes Bayesian framework, PoMoBalance offers a versatile tool for inferring phylogenetic trees as well as quantifying various selective pressures. The novel aspect of our approach in studying balancing selection lies in polymorphism-aware phylogenetic models' ability to account for ancestral polymorphisms and incorporate parameters that measure frequency-dependent selection, allowing us to determine the strength of the effect and exact frequencies under selection. We implemented validation tests and assessed the model on the data simulated with SLiM and a custom Moran model simulator. Real sequence analysis of Drosophila populations reveals insights into the evolutionary dynamics of regions subject to frequency-dependent balancing selection, particularly in the context of sex-limited color dimorphism in Drosophila erecta.


Asunto(s)
Conversión Génica , Modelos Genéticos , Filogenia , Polimorfismo Genético , Selección Genética , Animales , Teorema de Bayes , Evolución Molecular , Masculino , Femenino
7.
Genes (Basel) ; 15(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39062640

RESUMEN

The model haloarchaeon Haloferax volcanii is polyploid with about 20 copies of its major chromosome. Recently it has been described that highly efficient intermolecular gene conversion operates in H. volcanii to equalize the chromosomal copies. In the current study, 24 genes were selected that encode proteins with orthologs involved in gene conversion or homologous recombination in archaea, bacteria, or eukaryotes. Single gene deletion strains of 22 genes and a control gene were constructed in two parent strains for a gene conversion assay; only radA and radB were shown to be essential. Protoplast fusions were used to generate strains that were heterozygous for the gene HVO_2528, encoding an enzyme for carotinoid biosynthesis. It was revealed that a lack of six of the proteins did not influence the efficiency of gene conversion, while sixteen mutants had severe gene conversion defects. Notably, lack of paralogous proteins of gene families had very different effects, e.g., mutant Δrad25b had no phenotype, while mutants Δrad25a, Δrad25c, and Δrad25d were highly compromised. Generation of a quadruple rad25 and a triple sph deletion strain also indicated that the paralogs have different functions, in contrast to sph2 and sph4, which cannot be deleted simultaneously. There was no correlation between the severity of the phenotypes and the respective transcript levels under non-stressed conditions, indicating that gene expression has to be induced at the onset of gene conversion. Phylogenetic trees of the protein families Rad3/25, MutL/S, and Sph/SMC/Rad50 were generated to unravel the history of the paralogous proteins of H. volcanii. Taken together, unselected intermolecular gene conversion in H. volcanii involves at least 16 different proteins, the molecular roles of which can be studied in detail in future projects.


Asunto(s)
Proteínas Arqueales , Conversión Génica , Haloferax volcanii , Haloferax volcanii/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Poliploidía , Genoma Arqueal/genética , Eliminación de Gen , Dosificación de Gen
8.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959451

RESUMEN

Meiotic recombination is a fundamental feature of sexually reproducing species. It is often required for proper chromosome segregation and plays important role in adaptation and the maintenance of genetic diversity. The molecular mechanisms of recombination are remarkably conserved across eukaryotes, yet meiotic genes and proteins show substantial variation in their sequence and function, even between closely related species. Furthermore, the rate and distribution of recombination shows a huge diversity within and between chromosomes, individuals, sexes, populations, and species. This variation has implications for many molecular and evolutionary processes, yet how and why this diversity has evolved is not well understood. A key step in understanding trait evolution is to determine its genetic basis-that is, the number, effect sizes, and distribution of loci underpinning variation. In this perspective, I discuss past and current knowledge on the genetic basis of variation in recombination rate and distribution, explore its evolutionary implications, and present open questions for future research.


Asunto(s)
Variación Genética , Meiosis , Recombinación Genética , Meiosis/genética , Animales , Evolución Molecular , Evolución Biológica
9.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38829800

RESUMEN

It is commonly thought that the long-term advantage of meiotic recombination is to dissipate genetic linkage, allowing natural selection to act independently on different loci. It is thus theoretically expected that genes with higher recombination rates evolve under more effective selection. On the other hand, recombination is often associated with GC-biased gene conversion (gBGC), which theoretically interferes with selection by promoting the fixation of deleterious GC alleles. To test these predictions, several studies assessed whether selection was more effective in highly recombining genes (due to dissipation of genetic linkage) or less effective (due to gBGC), assuming a fixed distribution of fitness effects (DFE) for all genes. In this study, I directly derive the DFE from a gene's evolutionary history (shaped by mutation, selection, drift, and gBGC) under empirical fitness landscapes. I show that genes that have experienced high levels of gBGC are less fit and thus have more opportunities for beneficial mutations. Only a small decrease in the genome-wide intensity of gBGC leads to the fixation of these beneficial mutations, particularly in highly recombining genes. This results in increased positive selection in highly recombining genes that is not caused by more effective selection. Additionally, I show that the death of a recombination hotspot can lead to a higher dN/dS than its birth, but with substitution patterns biased towards AT, and only at selected positions. This shows that controlling for a substitution bias towards GC is therefore not sufficient to rule out the contribution of gBGC to signatures of accelerated evolution. Finally, although gBGC does not affect the fixation probability of GC-conservative mutations, I show that by altering the DFE, gBGC can also significantly affect nonsynonymous GC-conservative substitution patterns.


Asunto(s)
Evolución Molecular , Conversión Génica , Modelos Genéticos , Recombinación Genética , Selección Genética , Aptitud Genética , Mutación , Composición de Base , Ligamiento Genético
10.
Yeast ; 41(7): 423-436, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850080

RESUMEN

Meiotic crossovers play a vital role in proper chromosome segregation and evolution of most sexually reproducing organisms. Meiotic recombination can be visually observed in Saccharomyces cerevisiae tetrads using linked spore-autonomous fluorescent markers placed at defined intervals within the genome, which allows for analysis of meiotic segregation without the need for tetrad dissection. To automate the analysis, we developed a deep learning-based image recognition and classification pipeline for high-throughput tetrad detection and meiotic crossover classification. As a proof of concept, we analyzed a large image data set from wild-type and selected gene knock-out mutants to quantify crossover frequency, interference, chromosome missegregation, and gene conversion events. The deep learning-based method has the potential to accelerate the discovery of new genes involved in meiotic recombination in S. cerevisiae such as the underlying factors controlling crossover frequency and interference.


Asunto(s)
Intercambio Genético , Aprendizaje Profundo , Meiosis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/clasificación , Meiosis/genética , Segregación Cromosómica , Ensayos Analíticos de Alto Rendimiento/métodos , Procesamiento de Imagen Asistido por Computador/métodos
11.
Genetics ; 227(3)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38691577

RESUMEN

Although gene conversion (GC) in Saccharomyces cerevisiae is the most error-free way to repair double-strand breaks (DSBs), the mutation rate during homologous recombination is 1,000 times greater than during replication. Many mutations involve dissociating a partially copied strand from its repair template and re-aligning with the same or another template, leading to -1 frameshifts in homonucleotide runs, quasipalindrome (QP)-associated mutations and microhomology-mediated interchromosomal template switches. We studied GC induced by HO endonuclease cleavage at MATα, repaired by an HMR::KI-URA3 donor. We inserted into HMR::KI-URA3 an 18-bp inverted repeat where one arm had a 4-bp insertion. Most GCs yield MAT::KI-ura3::QP + 4 (Ura-) outcomes, but template-switching produces Ura+ colonies, losing the 4-bp insertion. If the QP arm without the insertion is first encountered by repair DNA polymerase and is then (mis)used as a template, the palindrome is perfected. When the QP + 4 arm is encountered first, Ura+ derivatives only occur after second-end capture and second-strand synthesis. QP + 4 mutations are suppressed by mismatch repair (MMR) proteins Msh2, Msh3, and Mlh1, but not Msh6. Deleting Rdh54 significantly reduces QP mutations only when events creating Ura+ occur in the context of a D-loop but not during second-strand synthesis. A similar bias is found with a proofreading-defective DNA polymerase mutation (poI3-01). DSB-induced mutations differed in several genetic requirements from spontaneous events. We also created a + 1 frameshift in the donor, expanding a run of 4 Cs to 5 Cs. Again, Ura+ recombinants markedly increased by disabling MMR, suggesting that MMR acts during GC but favors the unbroken, template strand.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación de la Incompatibilidad de ADN , Mutación del Sistema de Lectura , Mutagénesis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Conversión Génica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga de MutS/genética , Proteína 3 Homóloga de MutS/metabolismo , Homólogo 1 de la Proteína MutL
12.
Genetics ; 227(2)2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38565705

RESUMEN

The rate at which recombination events occur in a population is an indicator of its effective population size and the organism's reproduction mode. It determines the extent of linkage disequilibrium along the genome and, thereby, the efficacy of both purifying and positive selection. The population recombination rate can be inferred using models of genome evolution in populations. Classic methods based on the patterns of linkage disequilibrium provide the most accurate estimates, providing large sample sizes are used and the demography of the population is properly accounted for. Here, the capacity of approaches based on the sequentially Markov coalescent (SMC) to infer the genome-average recombination rate from as little as a single diploid genome is examined. SMC approaches provide highly accurate estimates even in the presence of changing population sizes, providing that (1) within genome heterogeneity is accounted for and (2) classic maximum-likelihood optimization algorithms are employed to fit the model. SMC-based estimates proved sensitive to gene conversion, leading to an overestimation of the recombination rate if conversion events are frequent. Conversely, methods based on the correlation of heterozygosity succeed in disentangling the rate of crossing over from that of gene conversion events, but only when the population size is constant and the recombination landscape homogeneous. These results call for a convergence of these two methods to obtain accurate and comparable estimates of recombination rates between populations.


Asunto(s)
Desequilibrio de Ligamiento , Cadenas de Markov , Modelos Genéticos , Recombinación Genética , Genoma , Algoritmos , Genética de Población/métodos , Conversión Génica , Animales , Humanos , Densidad de Población
13.
Mol Biol Evol ; 41(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38667829

RESUMEN

Different frequencies amongst codons that encode the same amino acid (i.e. synonymous codons) have been observed in multiple species. Studies focused on uncovering the forces that drive such codon usage showed that a combined effect of mutational biases and translational selection works to produce different frequencies of synonymous codons. However, only few have been able to measure and distinguish between these forces that may leave similar traces on the coding regions. Here, we have developed a codon model that allows the disentangling of mutation, selection on amino acids and synonymous codons, and GC-biased gene conversion (gBGC) which we employed on an extensive dataset of 415 chordates and 191 arthropods. We found that chordates need 15 more synonymous codon categories than arthropods to explain the empirical codon frequencies, which suggests that the extent of codon usage can vary greatly between animal phyla. Moreover, methylation at CpG sites seems to partially explain these patterns of codon usage in chordates but not in arthropods. Despite the differences between the two phyla, our findings demonstrate that in both, GC-rich codons are disfavored when mutations are GC-biased, and the opposite is true when mutations are AT-biased. This indicates that selection on the genomic coding regions might act primarily to stabilize its GC/AT content on a genome-wide level. Our study shows that the degree of synonymous codon usage varies considerably among animals, but is likely governed by a common underlying dynamic.


Asunto(s)
Artrópodos , Uso de Codones , Selección Genética , Animales , Artrópodos/genética , Cordados/genética , Mutación , Evolución Molecular , Codón , Modelos Genéticos , Composición de Base , Conversión Génica
14.
Dev Dyn ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647085

RESUMEN

Homology in vertebrate body plans is traditionally ascribed to the high-level conservation of regulatory components within the genetic programs governing them, particularly during the "phylotypic stage." However, advancements in embryology and molecular phylogeny have unveiled the dynamic nature of gene repertoires responsible for early development. Notably, the Nodal and Lefty genes, members of the transforming growth factor-beta superfamily producing intercellular signaling molecules and crucial for left-right (L-R) symmetry breaking, exhibit distinctive features within their gene repertoires. These features encompass among-species gene repertoire variations resulting from gene gain and loss, as well as gene conversion. Despite their significance, these features have been largely unexplored in a phylogenetic context, but accumulating genome-wide sequence information is allowing the scrutiny of these features. It has exposed hidden paralogy between Nodal1 and Nodal2 genes resulting from differential gene loss in amniotes. In parallel, the tandem cluster of Lefty1 and Lefty2 genes, which was thought to be confined to mammals, is observed in sharks and rays, with an unexpected phylogenetic pattern. This article provides a comprehensive review of the current understanding of the origins of these vertebrate gene repertoires and proposes a revised nomenclature based on the elucidated history of vertebrate genome evolution.

15.
Front Microbiol ; 15: 1333194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481790

RESUMEN

Double-strand breaks (DSBs) are the most dangerous injuries for a genome. When unrepaired, death quickly ensues. In most bacterial systems, DSBs are repaired through homologous recombination. Nearly one-quarter of bacterial species harbor a second system, allowing direct ligation of broken ends, known as Non-Homologous End Joining (NHEJ). The relative role of both systems in DSBs repair in bacteria has been explored only in a few cases. To evaluate this in the bacterium Rhizobium etli, we used a modified version of the symbiotic plasmid (264 kb), containing a single copy of the nifH gene. In this plasmid, we inserted an integrative plasmid harboring a modified nifH gene fragment containing an I-SceI site. DSBs were easily inflicted in vivo by conjugating a small, replicative plasmid that expresses the I-SceI nuclease into the appropriate strains. Repair of a DSB may be achieved through homologous recombination (either between adjacent or distant repeats) or NHEJ. Characterization of the derivatives that repaired DSB in different configurations, revealed that in most cases (74%), homologous recombination was the prevalent mechanism responsible for repair, with a relatively minor contribution of NHEJ (23%). Inactivation of the I-SceI gene was detected in 3% of the cases. Sequence analysis of repaired derivatives showed the operation of NHEJ. To enhance the number of derivatives repaired through NHEJ, we repeated these experiments in a recA mutant background. Derivatives showing NHEJ were readily obtained when the DSB occurred on a small, artificial plasmid in a recA mutant. However, attempts to deliver a DSB on the symbiotic plasmid in a recA background failed, due to the accumulation of mutations that inactivated the I-SceI gene. This result, coupled with the absence of derivatives that lost the nonessential symbiotic plasmid, may be due to an unusual stability of the symbiotic plasmid, possibly caused by the presence of multiple toxin-antitoxin modules.

16.
J Mol Evol ; 92(2): 138-152, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38491221

RESUMEN

The proportions of A:T and G:C nucleotide pairs are often unequal and can vary greatly between animal species and along chromosomes. The causes and consequences of this variation are incompletely understood. The recent release of high-quality genome sequences from the Darwin Tree of Life and other large-scale genome projects provides an opportunity for GC heterogeneity to be compared across a large number of insect species. Here we analyse GC content along chromosomes, and within protein-coding genes and codons, of 150 insect species from four holometabolous orders: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We find that protein-coding sequences have higher GC content than the genome average, and that Lepidoptera generally have higher GC content than the other three insect orders examined. GC content is higher in small chromosomes in most Lepidoptera species, but this pattern is less consistent in other orders. GC content also increases towards subtelomeric regions within protein-coding genes in Diptera, Coleoptera and Lepidoptera. Two species of Diptera, Bombylius major and B. discolor, have very atypical genomes with ubiquitous increase in AT content, especially at third codon positions. Despite dramatic AT-biased codon usage, we find no evidence that this has driven divergent protein evolution. We argue that the GC landscape of Lepidoptera, Diptera and Coleoptera genomes is influenced by GC-biased gene conversion, strongest in Lepidoptera, with some outlier taxa affected drastically by counteracting processes.


Asunto(s)
Genoma de los Insectos , Insectos , Animales , Composición de Base , Filogenia , Genoma de los Insectos/genética , Codón/genética , Insectos/genética , Evolución Molecular
17.
Genome Biol Evol ; 16(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38311843

RESUMEN

The neutral and nearly neutral theories, introduced more than 50 yr ago, have raised and still raise passionate discussion regarding the forces governing molecular evolution and their relative importance. The debate, initially focused on the amount of within-species polymorphism and constancy of the substitution rate, has spread, matured, and now underlies a wide range of topics and questions. The neutralist/selectionist controversy has structured the field and influences the way molecular evolutionary scientists conceive their research.


Asunto(s)
Evolución Biológica , Evolución Molecular , Polimorfismo Genético
18.
J Evol Biol ; 37(4): 383-400, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38367009

RESUMEN

Population genetic inference of selection on the nucleotide sequence level often proceeds by comparison to a reference sequence evolving only under mutation and population demography. Among the few candidates for such a reference sequence is the 5' part of short introns (5SI) in Drosophila. In addition to mutation and population demography, however, there is evidence for a weak force favouring GC bases, likely due to GC-biased gene conversion (gBGC), and for the effect of linked selection. Here, we use polymorphism and divergence data of Drosophila melanogaster to detect and describe the forces affecting the evolution of the 5SI. We separately analyse mutation classes, compare them between chromosomes, and relate them to recombination rate frequencies. GC-conservative mutations seem to be mainly influenced by mutation and drift, with linked selection mostly causing differences between the central and the peripheral (i.e., telomeric and centromeric) regions of the chromosome arms. Comparing GC-conservative mutation patterns between autosomes and the X chromosome showed differences in mutation rates, rather than linked selection, in the central chromosomal regions after accounting for differences in effective population sizes. On the other hand, GC-changing mutations show asymmetric site frequency spectra, indicating the presence of gBGC, varying among mutation classes and in intensity along chromosomes, but approximately equal in strength in autosomes and the X chromosome.


Asunto(s)
Drosophila melanogaster , Conversión Génica , Animales , Drosophila melanogaster/genética , Intrones , Evolución Molecular , Mutación , Drosophila/genética , Cromosoma X/genética , Selección Genética
19.
Plant J ; 118(1): 255-262, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402589

RESUMEN

Precise genetic modification can be achieved via a sequence homology-mediated process known as gene targeting (GT). Whilst established for genome engineering purposes, the application of GT in plants still suffers from a low efficiency for which an explanation is currently lacking. Recently reported reduced rates of GT in A. thaliana deficient in polymerase theta (Polθ), a core component of theta-mediated end joining (TMEJ) of DNA breaks, have led to the suggestion of a direct involvement of this enzyme in the homology-directed process. Here, by monitoring homology-driven gene conversion in plants with CRISPR reagent and donor sequences pre-integrated at random sites in the genome (in planta GT), we demonstrate that Polθ action is not required for GT, but instead suppresses the process, likely by promoting the repair of the DNA break by end-joining. This finding indicates that lack of donor integration explains the previously established reduced GT rates seen upon transformation of Polθ-deficient plants. Our study additionally provides insight into ectopic gene targeting (EGT), recombination events between donor and target that do not map to the target locus. EGT, which occurs at similar frequencies as "true" GT during transformation, was rare in our in planta GT experiments arguing that EGT predominantly results from target locus recombination with nonintegrated T-DNA molecules. By describing mechanistic features of GT our study provides directions for the improvement of precise genetic modification of plants.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Marcación de Gen/métodos , Edición Génica , Plantas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Reparación del ADN por Unión de Extremidades/genética
20.
Genetics ; 226(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38242701

RESUMEN

For at least the past 5 decades, population genetics, as a field, has worked to describe the precise balance of forces that shape patterns of variation in genomes. The problem is challenging because modeling the interactions between evolutionary processes is difficult, and different processes can impact genetic variation in similar ways. In this paper, we describe how diversity and divergence between closely related species change with time, using correlations between landscapes of genetic variation as a tool to understand the interplay between evolutionary processes. We find strong correlations between landscapes of diversity and divergence in a well-sampled set of great ape genomes, and explore how various processes such as incomplete lineage sorting, mutation rate variation, GC-biased gene conversion and selection contribute to these correlations. Through highly realistic, chromosome-scale, forward-in-time simulations, we show that the landscapes of diversity and divergence in the great apes are too well correlated to be explained via strictly neutral processes alone. Our best fitting simulation includes both deleterious and beneficial mutations in functional portions of the genome, in which 9% of fixations within those regions is driven by positive selection. This study provides a framework for modeling genetic variation in closely related species, an approach which can shed light on the complex balance of forces that have shaped genetic variation.


Asunto(s)
Variación Genética , Hominidae , Animales , Selección Genética , Hominidae/genética , Mutación , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...