Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 69, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38262947

RESUMEN

BACKGROUND: The early allopolyploid Brassica napus was a hybrid of two Brassica species, that had undergone a whole genome duplication event followed by genome restructuring, including deletions and small scale duplications. A large number of homologous genes appeared functional divergence during species domestication. Due to the high conservation of de novo glycerolipid biosynthesis, multiple homologues of glycerol-3-phosphate acyltransferases (GPATs) have been found in B. napus. Moreover, the functional variances among these homologous GPAT-encoding genes are unclear. RESULTS: In this study, four B. napus homologous genes encoding glycerol-3-phosphate acyltransferase 9 (BnaGPAT9) were characterized. Although a bioinformatics analysis indicated high protein sequence similarity, the homologues demonstrated tissue-specific expression patterns and functional divergence. Yeast genetic complementation assays revealed that BnaGPAT9-A1/C1 homologues but not BnaGPAT9-A10/C9 homologues encoded functional GPAT enzymes. Furthermore, a single nucleotide polymorphism of BnaGPAT9-C1 that occurred during the domestication process was associated with enzyme activity and contributed to the fatty acid composition. The seed-specific expression of BnGPAT9-C11124A increased the erucic acid content in the transformant seeds. CONCLUSIONS: This study revealed that BnaGPAT9 gene homologues evolved into functionally divergent forms with important roles in erucic acid biosynthesis.


Asunto(s)
Brassica napus , Ácidos Erucicos , Glicerol , Glicerol-3-Fosfato O-Aciltransferasa , Saccharomyces cerevisiae , Semillas , Fosfatos
2.
mBio ; 14(5): e0094823, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650625

RESUMEN

IMPORTANCE: Biofilms are the communal way of life that microbes adopt to increase survival. Key to our ability to systematically promote or ablate biofilm formation is a detailed understanding of the biofilm matrix macromolecules. Here, we identify the first two essential steps in the Bacillus subtilis biofilm matrix exopolysaccharide (EPS) synthesis pathway. Together, our studies and approaches provide the foundation for the sequential characterization of the steps in EPS biosynthesis, using prior steps to enable chemoenzymatic synthesis of the undecaprenyl diphosphate-linked glycan substrates.


Asunto(s)
Bacillus subtilis , Biopelículas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
PeerJ ; 11: e14973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214086

RESUMEN

De novo synthesis of thiamine (vitamin B1) in plants depends on the action of thiamine thiazole synthase, which synthesizes the thiazole ring, and is encoded by the THI1 gene. Here, we investigated the evolution and diversity of THI1 in Poaceae, where C4 and C3 photosynthetic plants co-evolved. An ancestral duplication of THI1 is observed in Panicoideae that remains in many modern monocots, including sugarcane. In addition to the two sugarcane copies (ScTHI1-1 and ScTHI1-2), we identified ScTHI1-2 alleles showing differences in their sequence, indicating divergence between ScTHI1-2a and ScTHI1-2b. Such variations are observed only in the Saccharum complex, corroborating the phylogeny. At least five THI1 genomic environments were found in Poaceae, two in sugarcane, M. sinensis, and S. bicolor. The THI1 promoter in Poaceae is highly conserved at 300 bp upstream of the start codon ATG and has cis-regulatory elements that putatively bind to transcription factors associated with development, growth, development and biological rhythms. An experiment set to compare gene expression levels in different tissues across the sugarcane R570 life cycle showed that ScTHI1-1 was expressed mainly in leaves regardless of age. Furthermore, ScTHI1 displayed relatively high expression levels in meristem and culm, which varied with the plant age. Finally, yeast complementation studies with THI4-defective strain demonstrate that only ScTHI1-1 and ScTHI1-2b isoforms can partially restore thiamine auxotrophy, albeit at a low frequency. Taken together, the present work supports the existence of multiple origins of THI1 harboring genomic regions in Poaceae with predicted functional redundancy. In addition, it questions the contribution of the levels of the thiazole ring in C4 photosynthetic plant tissues or potentially the relevance of the THI1 protein activity.


Asunto(s)
Poaceae , Saccharum , Poaceae/metabolismo , Saccharum/genética , Tiamina , Factores de Transcripción/genética , Hojas de la Planta/metabolismo
4.
J Bacteriol ; 205(2): e0046822, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36719218

RESUMEN

To accelerate genetic studies on the Lyme disease pathogen Borrelia burgdorferi, we developed an enhanced CRISPR interference (CRISPRi) approach for isopropyl-ß-d-thiogalactopyranoside (IPTG)-inducible repression of specific B. burgdorferi genes. The entire system is encoded on a compact 11-kb shuttle vector plasmid that allows for inducible expression of both the sgRNA module and a nontoxic codon-optimized dCas9 protein. We validated this CRISPRi system by targeting the genes encoding OspA and OspB, abundant surface lipoproteins coexpressed by a single operon, and FlaB, the major subunit forming the periplasmic flagella. As in other systems, single guide RNAs (sgRNAs) complementary to the nontemplate strand were consistently effective in gene repression, with 4- to 994-fold reductions in targeted transcript levels and concomitant reductions of protein levels. Furthermore, we showed that ospAB knockdowns could be selectively complemented in trans for OspA expression via the insertion of CRISPRi-resistant, synonymously or nonsynonymously mutated protospacer adjacent motif (PAM*) ospA alleles into a unique site within the CRISPRi plasmid. Together, this establishes CRISPRi PAM* as a robust new genetic tool to simplify the study of B. burgdorferi genes, bypassing the need for gene disruptions by allelic exchange and avoiding rare codon toxicity from the heterologous expression of dCas9. IMPORTANCE Borrelia burgdorferi, the spirochetal bacterium causing Lyme disease, is a tick-borne pathogen of global importance. Here, we expand the genetic toolbox for studying B. burgdorferi physiology and pathogenesis by establishing a single plasmid-based, fully inducible, and nontoxic CRISPR interference (CRISPRi) system for transcriptional silencing of B. burgdorferi genes and operons. We also show that alleles of CRISPRi-targeted genes with mutated protospacer-adjacent motif (PAM*) sites are CRISPRi resistant and can be used for simultaneous in trans gene complementation. The CRISPRi PAM* system will streamline the study of essential Borrelia proteins and accelerate investigations into their structure-function relationships.


Asunto(s)
Borrelia burgdorferi , Antígenos de Superficie/genética , Proteínas de la Membrana Bacteriana Externa/genética , Vacunas Bacterianas , Borrelia burgdorferi/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Codón , Operón
5.
Mol Biol Rep ; 49(10): 9585-9592, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36002658

RESUMEN

BACKGROUND: Genetic improvement of soybean oil content depends on in-depth study of the glycerolipid biosynthesis pathway. The first acylation reaction catalysed by glycerol-3-phosphate acyltransferase (GPAT) is the rate-limiting step of triacylglycerol biosynthesis. However, the genes encoding GPATs in soybean remain unknown. METHODS: We used a novel yeast genetic complementation system and seed-specific heterologous expression to identify GmGPAT activity and molecular function in glycerolipid biosynthesis. RESULTS: Sixteen GmGPAT genes were cloned by reverse transcription-PCR for screening in yeast genetic complementation. The results showed that GmGPAT9-2 could restore the conditional lethal double knockout mutant strain ZAFU1, and GmGPAT1-1 exhibited low acyltransferase activity in serial dilution assays. In addition, the spatiotemporal expression pattern of GmGPAT9-2 exhibited tissue specificity in leaves, flowers and seeds at different developmental stages. Furthermore, both the proportion of arachidic acid and erucic acid were significantly elevated in Arabidopsis thaliana transgenic lines containing the seed-specific GmGPAT9-2 compared wild type, but the oil content was not affected. CONCLUSION: Together, our results provide reference data for future engineering of triacylglycerol biosynthesis and fatty acid composition improvement through GPATs in soybean.


Asunto(s)
Arabidopsis , Glycine max , Aciltransferasas/genética , Aciltransferasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Glicerol/metabolismo , Fosfatos , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Semillas/metabolismo , Aceite de Soja/análisis , Aceite de Soja/metabolismo , Glycine max/genética , Glycine max/metabolismo , Triglicéridos/metabolismo
6.
Int J Mol Sci ; 23(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628522

RESUMEN

The sole currently approved malaria vaccine targets the circumsporozoite protein-the protein that densely coats the surface of sporozoites, the parasite stage deposited in the skin of the mammalian host by infected mosquitoes. However, this vaccine only confers moderate protection against clinical diseases in children, impelling a continuous search for novel candidates. In this work, we studied the importance of the membrane-associated erythrocyte binding-like protein (MAEBL) for infection by Plasmodium sporozoites. Using transgenic parasites and live imaging in mice, we show that the absence of MAEBL reduces Plasmodium berghei hemolymph sporozoite infectivity to mice. Moreover, we found that maebl knockout (maebl-) sporozoites display reduced adhesion, including to cultured hepatocytes, which could contribute to the defects in multiple biological processes, such as in gliding motility, hepatocyte wounding, and invasion. The maebl- defective phenotypes in mosquito salivary gland and liver infection were reverted by genetic complementation. Using a parasite line expressing a C-terminal myc-tagged MAEBL, we found that MAEBL levels peak in midgut and hemolymph parasites but drop after sporozoite entry into the salivary glands, where the labeling was found to be heterogeneous among sporozoites. MAEBL was found associated, not only with micronemes, but also with the surface of mature sporozoites. Overall, our data provide further insight into the role of MAEBL in sporozoite infectivity and may contribute to the design of future immune interventions.


Asunto(s)
Plasmodium berghei , Proteínas Protozoarias , Receptores de Superficie Celular , Animales , Culicidae , Eritrocitos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Plasmodium berghei/genética , Plasmodium berghei/patogenicidad , Proteínas Protozoarias/metabolismo , Receptores de Superficie Celular/metabolismo , Esporozoítos/metabolismo
7.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36613877

RESUMEN

Human PANK1, PANK2, and PANK3 genes encode several pantothenate kinase isoforms that catalyze the phosphorylation of vitamin B5 (pantothenic acid) to phosphopantothenate, a critical step in the biosynthesis of the major cellular cofactor, Coenzyme A (CoA). Mutations in the PANK2 gene, which encodes the mitochondrial pantothenate kinase (PanK) isoform, have been linked to pantothenate-kinase associated neurodegeneration (PKAN), a debilitating and often fatal progressive neurodegeneration of children and young adults. While the biochemical properties of these enzymes have been well-characterized in vitro, their expression in a model organism such as yeast in order to probe their function under cellular conditions have never been achieved. Here we used three yeast mutants carrying missense mutations in the yeast PanK gene, CAB1, which are associated with defective growth at high temperature and iron, mitochondrial dysfunction, increased iron content, and oxidative stress, to assess the cellular function of human PANK genes and functional conservation of the CoA-controlled processes between humans and yeast. Overexpression of human PANK1 and PANK3 in these mutants restored normal cellular activity whereas complementation with PANK2 was partial and could only be achieved with an isoform, PanK2mtmΔ, lacking the mitochondrial transit peptide. These data, which demonstrate functional conservation of PanK activity between humans and yeast, set the stage for the use of yeast as a model system to investigate the impact of PKAN-associated mutations on the metabolic pathways altered in this disease.


Asunto(s)
Estrés Oxidativo , Neurodegeneración Asociada a Pantotenato Quinasa , Saccharomyces cerevisiae , Humanos , Homeostasis , Hierro/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Estrés Oxidativo/genética , Neurodegeneración Asociada a Pantotenato Quinasa/metabolismo , Ácido Pantoténico , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Biosci Biotechnol Biochem ; 86(1): 104-108, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34718407

RESUMEN

The histone variant H2A.Z is deposited into chromatin by specific machinery and is required for genome functions. Using a linker-mediated complex strategy combined with yeast genetic complementation, we demonstrate evolutionary conservation of H2A.Z together with its chromatin incorporation and functions. This approach is applicable to the evolutionary analyses of proteins that form complexes with interactors.


Asunto(s)
Histonas
9.
G3 (Bethesda) ; 11(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34544122

RESUMEN

CRISPR/Cas-induced genome editing is a powerful tool for genetic engineering, however, targeting constraints limit which loci are editable with this method. Since the length of a DNA sequence impacts the likelihood it overlaps a unique target site, precision editing of small genomic features with CRISPR/Cas remains an obstacle. We introduce a two-step genome editing strategy that virtually eliminates CRISPR/Cas targeting constraints and facilitates precision genome editing of elements as short as a single base-pair at virtually any locus in any organism that supports CRISPR/Cas-induced genome editing. Our two-step approach first replaces the locus of interest with an "AddTag" sequence, which is subsequently replaced with any engineered sequence, and thus circumvents the need for direct overlap with a unique CRISPR/Cas target site. In this study, we demonstrate the feasibility of our approach by editing transcription factor binding sites within Candida albicans that could not be targeted directly using the traditional gene-editing approach. We also demonstrate the utility of the AddTag approach for combinatorial genome editing and gene complementation analysis, and we present a software package that automates the design of AddTag editing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ingeniería Genética , Genómica , Programas Informáticos
10.
Plant Direct ; 5(8): e335, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34386691

RESUMEN

Understanding protein structure and function relationships in cellulose synthase (CesA), including divergent isomers, is an important goal. Here, we report results from mutant complementation assays that tested the ability of sequence variants of AtCesA7, a secondary wall CesA of Arabidopsis thaliana, to rescue the collapsed vessels, short stems, and low cellulose content of the irx3-1 AtCesA7 null mutant. We tested a catalytic null mutation and seven missense or small domain changes in and near the AtCesA7 FTVTSK motif, which lies near the catalytic domain and may, analogously to bacterial CesA, exist within a substrate "gating loop." A low-to-high gradient of rescue occurred, and even inactive AtCesA7 had a small positive effect on stem cellulose content but not stem elongation. Overall, secondary wall cellulose content and stem length were moderately correlated, but the results were consistent with threshold amounts of cellulose supporting particular developmental processes. Vibrational sum frequency generation microscopy allowed tissue-specific analysis of cellulose content in stem xylem and interfascicular fibers, revealing subtle differences between selected genotypes that correlated with the extent of rescue of the collapsing xylem phenotype. Similar tests on PpCesA5 from the moss Physcomitrium (formerly Physcomitrella) patens helped us to synergize the AtCesA7 results with prior results on AtCesA1 and PpCesA5. The cumulative results show that the FTVTxK region is important for the function of an angiosperm secondary wall CesA as well as widely divergent primary wall CesAs, while differences in complementation results between isomers may reflect functional differences that can be explored in further work.

11.
Mol Genet Genomics ; 296(6): 1263-1278, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34453201

RESUMEN

Nascent ribosomal 60S subunits undergo the last maturation steps in the cytoplasm. The last one involves removing the anti-association factor eIF6 from the 60S ribosomal surface by the joint action of the Elongation Factor-like 1 (EFL1) GTPase and the SBDS protein. Herein, we studied the evolutionary relationship of the EFL1 and EF-2 protein families and the functional conservation within EFL1 orthologues. Phylogenetic analysis demonstrated that the EFL1 proteins are exclusive of eukaryotes and share an evolutionary origin with the EF-2 and EF-G protein families. EFL1 proteins originated by gene duplication from the EF-2 proteins and specialized in ribosome maturation while the latter retained their function in translation. Some organisms have more than one EFL1 protein resulting from alternative splicing, while others are encoded in different genes originated by gene duplication. However, the function of these alternative EFL1 proteins is still unknown. We performed GTPase activity and complementation assays to study the functional conservation of EFL1 homologs alone and together with their SBDS counterparts. None of the orthologues or cross-species combinations could replace the function of the corresponding yeast EFL1•SBDS binomial. The complementation of SBDS interspecies chimeras indicates that domain 2 is vital for its function together with EFL1 and the 60S subunit. The results suggest a functional species-specificity and possible co-evolution between EFL1, SBDS, and the 60S ribosomal subunit. These findings set the basis for further studies directed to understand the molecular evolution of these proteins and their impact on ribosome biogenesis and disease.


Asunto(s)
Factor 2 de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/genética , Proteínas/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo , Empalme Alternativo/genética , Secuencia de Aminoácidos/genética , Eucariontes/genética , Evolución Molecular , Duplicación de Gen/genética , Humanos , Factor 2 de Elongación Peptídica/genética , Filogenia , Alineación de Secuencia
12.
Front Plant Sci ; 12: 663870, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936154

RESUMEN

Botrytis cinerea is a necrotrophic plant pathogenic fungus with a wide host range. Its natural populations are phenotypically and genetically very diverse. A survey of B. cinerea isolates causing gray mold in the vineyards of Castilla y León, Spain, was carried out and as a result eight non-pathogenic natural variants were identified. Phenotypically these isolates belong to two groups. The first group consists of seven isolates displaying a characteristic mycelial morphotype, which do not sporulate and is unable to produce sclerotia. The second group includes one isolate, which sporulates profusely and does not produce sclerotia. All of them are unresponsive to light. Crosses between a representative mycelial non-pathogenic isolate and a highly aggressive field isolate revealed that the phenotypic differences regarding pathogenicity, sporulation and production of sclerotia cosegregated in the progeny and are determined by a single genetic locus. By applying a bulked segregant analysis strategy based on the comparison of the two parental genomes the locus was mapped to a 110 kb region in chromosome 4. Subcloning and transformation experiments revealed that the polymorphism is an SNP affecting gene Bcin04g03490 in the reference genome of B. cinerea. Genetic complementation analysis and sequencing of the Bcin04g03490 alleles demonstrated that the mutations in the mycelial isolates are allelic and informed about the nature of the alterations causing the phenotypes observed. Integration of the allele of the pathogenic isolate into the non-pathogenic isolate fully restored the ability to infect, to sporulate and to produce sclerotia. Therefore, it is concluded that a major effect gene controlling differentiation and developmental processes as well as pathogenicity has been identified in B. cinerea. It encodes a protein with a GAL4-like Zn(II)2Cys6 binuclear cluster DNA binding domain and an acetyltransferase domain, suggesting a role in regulation of gene expression through a mechanism involving acetylation of specific substrates.

13.
JIMD Rep ; 54(1): 61-67, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32685352

RESUMEN

Lysosomal disorders are diseases that involve mutations in genes responsible for the coding of lysosomal enzymes, transport proteins, activator proteins and protein processing enzymes. These defects lead to the storage of specific metabolites within lysosomes resulting in a great variety of clinical features depending on the tissues with the storage, the storage products and the extent of the storage. The methods for rapidly diagnosing patients started in the late 1960's when the enzyme defects were identified eliminating the need for tissue biopsies. The first requests for diagnostic help in this laboratory came in 1973. In that year, patients with Krabbe disease and Niemann-Pick type A were diagnosed. Since that time samples from about 62 000 individuals have been received for diagnostic studies, and 4900 diagnoses have been made. The largest number of diagnosed individuals had metachromatic leukodystrophy and Krabbe disease because of our research interest in leukodystrophies. A number of new disorders were identified and the primary defects in other disorders were clarified. With new methods for diagnosis, including newborn screening, molecular analysis, microarrays, there is still a need for biochemical confirmation before treatment is considered. With new treatments, including gene therapy, stem cell transplantation, enzyme replacement used alone or in combination becoming more available, the need for rapid, accurate diagnosis is critical.

14.
Front Genet ; 11: 601380, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33414809

RESUMEN

Acinetobacter baumannii is classified as a top priority pathogen by the World Health Organization (WHO) because of its widespread resistance to all classes of antibiotics. This makes the need for understanding the mechanisms of resistance and virulence critical. Therefore, tools that allow genetic manipulations are vital to unravel the mechanisms of multidrug resistance (MDR) and virulence in A. baumannii. A host of current strategies are available for genetic manipulations of A. baumannii laboratory-strains, including ATCC® 17978TM and ATCC® 19606T, but depending on susceptibility profiles, these strategies may not be sufficient when targeting strains newly obtained from clinic, primarily due to the latter's high resistance to antibiotics that are commonly used for selection during genetic manipulations. This review highlights the most recent methods for genetic manipulation of A. baumannii including CRISPR based approaches, transposon mutagenesis, homologous recombination strategies, reporter systems and complementation techniques with the spotlight on those that can be applied to MDR clinical isolates.

15.
Plants People Planet ; 2(6): 663-677, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34268482

RESUMEN

Pinto bean (Phaseolus vulgaris) is one of the leading market classes of dry beans that is most affected by postharvest seed coat darkening. The process of seed darkening poses a challenge for bean producers and vendors as they encounter significant losses in crop value due to decreased consumer preference for darker beans. Here, we identified a novel allele of the P gene, Psd , responsible for the slow darkening seed coat in pintos, and identified trait-specific sequence polymorphisms which are utilized for the development of new gene-specific molecular markers for breeding. These tools can be deployed to help tackle this economically important issue for bean producers. SUMMARY: Postharvest seed coat darkening in pinto bean is an undesirable trait that reduces the market value of the stored crop. Regular darkening (RD) pintos darken faster after harvest and accumulate higher level of proanthocyanidins (PAs) compared to slow darkening (SD) cultivars. Although the markers cosegregating with the SD trait have been known for some time, the SLOW DARKENING (Sd) gene identity had not been proven.Here, we identified Psd as a candidate for controlling the trait. Genetic complementation, transcript abundance, metabolite analysis, and inheritance study confirmed that Psd is the Sd gene. Psd is another allele of the P (Pigment) gene, whose loss-of-function alleles result in a white seed coat. Psd encodes a bHLH transcription factor with two transcript variants but only one is involved in PA biosynthesis. An additional glutamate residue in the activation domain, and/or an arginine to histidine substitution in the bHLH domain of the Psd-1 transcript in the SD cultivar is likely responsible for the reduced activity of this allele compared to the allele in a RD cultivar, leading to reduced PA accumulation.Overall, we demonstrate that a novel allele of P, Psd , is responsible for the SD phenotype, and describe the development of new, gene-specific, markers that could be utilized in breeding to resolve an economically important issue for bean producers.

16.
Virus Res ; 267: 41-48, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31077765

RESUMEN

Viruses can spread collectively using different types of structures such as extracellular vesicles, virion aggregates, polyploid capsids, occlusion bodies, and even cells that accumulate virions at their surface, such as bacteria and dendritic cells. Despite the mounting evidence for collective spread, its implications for viral fitness and diversity remain poorly understood. It has been postulated that, by increasing the cellular multiplicity of infection, collective spread could enable mutually beneficial interactions among different viral genetic variants. One such interaction is genetic complementation, whereby deleterious mutations carried by different genomes are compensated. Here, we used simulations to evaluate whether complementation is likely to increase the fitness of viruses spreading collectively. We show that complementation among co-spreading viruses initially buffers the deleterious effects of mutations, but has no positive effect on mean population fitness over the long term, and even promotes error catastrophe at high mutation rates. Additionally, we found that collective spread increases the risk of invasion by social cheaters such as defective interfering particles. We also show that mutation accumulation depends on the type of collective infectious units considered. Co-spreading viral genomes produced in the same cell (e.g. extracellular vesicles, polyploid capsids, occlusion bodies) should exhibit higher genetic relatedness than groups formed extracellularly by viruses released from different cells (aggregates, binding to bacterial or dendritic cell surfaces), and we found that increased relatedness limits the adverse effects of complementation as well cheater invasion risk. Finally, we found that the costs of complementation can be offset by recombination. Based on our results, we suggest that alternative factors promoting collective spread should be considered.


Asunto(s)
Aptitud Genética , Variación Genética , Virión/genética , Virión/patogenicidad , Virus Defectuosos/genética , Evolución Molecular , Genoma Viral , Modelos Teóricos , Mutación , Replicación Viral/genética
17.
Curr Biol ; 28(20): 3212-3219.e4, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30318351

RESUMEN

In addition to the conventional release of free, individual virions, virus dispersal can involve multi-virion assemblies that collectively infect cells. However, the implications of collective infection for viral fitness remain largely unexplored. Using vesicular stomatitis virus, here, we compare the fitness of free versus saliva-aggregated viral particles. We find that aggregation has a positive effect on early progeny production, conferring a fitness advantage relative to equal numbers of free particles in most cell types. The advantage of aggregation resides, at least partially, in increasing the cellular multiplicity of infection. In mouse embryonic fibroblasts, the per capita, short-term viral progeny production peaked for a dose of ca. three infectious particles per cell. This reveals an Allee effect restricting early viral proliferation at the cellular level, which should select for dispersal in groups. We find that genetic complementation between deleterious mutants is probably not the mechanism underlying the fitness advantage of collective infection. Instead, this advantage is cell type dependent and correlates with cellular permissivity to the virus, as well as with the ability of host cells to mount an antiviral innate immune response.


Asunto(s)
Saliva/virología , Selección Genética , Vesiculovirus/fisiología , Replicación Viral/fisiología , Células A549 , Animales , Chlorocebus aethiops , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Células Vero , Vesiculovirus/genética
18.
Artículo en Inglés | MEDLINE | ID: mdl-30619780

RESUMEN

Chlamydia trachomatis is the leading cause of preventable blindness and the most common bacterial sexually transmitted infection. Different strains are associated with ocular or urogenital infections, and a proposed mechanism that may explain this tissue tropism is the active tryptophan biosynthesis pathway encoded by the genomic trpRBA operon in urogenital strains. Here we describe genetic complementation studies that are essential to confirm the role of tryptophan synthase in the context of an ocular C. trachomatis genomic background. Ocular strain A2497 was transformed with the (urogenital) pSW2::GFP shuttle vector showing that there is no strain tropism barrier to this plasmid vector; moreover, transformation had no detrimental effect on the growth kinetics of A2497, which is important given the low transformation efficiency of C. trachomatis. A derivative of the pSW2::GFP vector was used to deliver the active tryptophan biosynthesis genes from a urogenital strain of C. trachomatis (Soton D1) to A2497 with the aim of complementing the truncated trpA gene common to most ocular strains. After confirmation of intact TrpA protein expression in the transformed A2497, the resulting transformants were cultivated in tryptophan-depleted medium with and without indole or tryptophan, showing that complementation of the truncated trpA gene by the intact and functional urogenital trpRBA operon was sufficient to bestow an indole rescuable phenotype upon A2497. This study proves that pSW2::GFP derived vectors do not conform to the cross-strain transformation barrier reported for other chlamydia shuttle vectors, suggesting these as a universal vector for transformation of all C. trachomatis strains. This vector promiscuity enabled us to test the indole rescue hypothesis by transforming ocular strain A2497 with the functional urogenital trpRBA operon, which complemented the non-functional tryptophan synthase. These data confirm that the trpRBA operon is necessary and sufficient for chlamydia to survive in tryptophan-limited environments such as the female urogenital tract.


Asunto(s)
Chlamydia trachomatis/enzimología , Chlamydia trachomatis/crecimiento & desarrollo , Indoles/metabolismo , Operón , Transformación Genética , Triptófano Sintasa/genética , Triptófano Sintasa/metabolismo , Vías Biosintéticas/genética , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/genética , Chlamydia trachomatis/aislamiento & purificación , Medios de Cultivo/química , Prueba de Complementación Genética , Vectores Genéticos , Fenotipo , Plásmidos
19.
BMC Plant Biol ; 17(1): 259, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29268717

RESUMEN

BACKGROUND: Strigolactones (SLs) play important roles in controlling root growth, shoot branching, and plant-symbionts interaction. Despite the importance, the components of SL biosynthesis and signaling have not been unequivocally explored in soybean. RESULTS: Here we identified the putative components of SL synthetic enzymes and signaling proteins in soybean genome. Soybean genome contains conserved MORE AXILLARY BRANCHING (MAX) orthologs, GmMAX1s, GmMAX2s, GmMAX3s, and GmMAX4s. The tissue expression patterns are coincident with SL synthesis in roots and signaling in other tissues under normal conditions. GmMAX1a, GmMAX2a, GmMAX3b, and GmMAX4a expression in their Arabidopsis orthologs' mutants not only restored most characteristic phenotypes, such as shoot branching and shoot height, leaf shape, primary root length, and root hair growth, but also restored the significantly changed hormone contents, such as reduced JA and ABA contents in all mutant leaves, but increased auxin levels in atmax1, atmax3 and atmax4 mutants. Overexpression of these GmMAXs also altered the hormone contents in wild-type Arabidopsis. GmMAX3b was further characterized in soybean nodulation with overexpression and knockdown transgenic hairy roots. GmMAX3b overexpression (GmMAX3b-OE) lines exhibited increased nodule number while GmMAX3b knockdown (GmMAX3b-KD) decreased the nodule number in transgenic hairy roots. The expression levels of several key nodulation genes were also altered in GmMAX3b transgenic hairy roots. GmMAX3b overexpression hairy roots had reduced ABA, but increased JA levels, with no significantly changed auxin content, while the contrast changes were observed in GmMAX3b-KD lines. Global gene expression in GmMAX3b-OE or GmMAX3b-KD hairy roots also revealed that altered expression of GmMAX3b in soybean hairy roots changed several subsets of genes involved in hormone biosynthesis and signaling and transcriptional regulation of nodulation processes. CONCLUSIONS: This study not only revealed the conservation of SL biosynthesis and signaling in soybean, but also showed possible interactions between SL and other hormone synthesis and signaling during controlling plant development and soybean nodulation. GmMAX3b-mediated SL biosynthesis and signaling may be involved in soybean nodulation by affecting both root hair formation and its interaction with rhizobia.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Dioxigenasas/genética , Glycine max/fisiología , Lactonas/metabolismo , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dioxigenasas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal , Glycine max/genética
20.
Proteins ; 85(7): 1222-1237, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28276654

RESUMEN

Activated sludge is produced during the treatment of sewage and industrial wastewaters. Its diverse chemical composition allows growth of a large collection of microbial phylotypes with very different physiologic and metabolic profiles. Thus, activated sludge is considered as an excellent environment to discover novel enzymes through functional metagenomics, especially activities related with degradation of environmental pollutants. Metagenomic DNA was isolated and purified from an activated sludge sample. Metagenomic libraries were subsequently constructed in Escherichia coli. Using tributyrin hydrolysis, a screening by functional analysis was conducted and a clone that showed esterase activity was isolated. Blastx analysis of the sequence of the cloned DNA revealed, among others, an ORF that encodes a putative thioesterase with 47-64% identity to GenBank CDS reported genes, similar to those in the hotdog fold thioesterase superfamily. On the basis of its amino acid similarity and its homology-modelled structure we deduced that this gene encodes an enzyme (ThYest_ar) that belongs to family TE13, with a preference for aryl-CoA substrates and a novel catalytic residue constellation. Plasmid retransformation in E. coli confirmed the clone's phenotype, and functional complementation of a paaI E. coli mutant showed preference for phenylacetate over chlorobenzene as a carbon source. This work suggests a role for TE13 family thioesterases in swimming and degradation approaches for phenyl acetic acid. Proteins 2017; 85:1222-1237. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Metagenoma , Fenilacetatos/química , Aguas del Alcantarillado/microbiología , Tioléster Hidrolasas/genética , Secuencia de Aminoácidos , Biodegradación Ambiental , Clorobencenos/química , Clorobencenos/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Biblioteca de Genes , Prueba de Complementación Genética , Humanos , Cinética , Metagenómica , Sistemas de Lectura Abierta , Fenilacetatos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por Sustrato , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...