Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 655: 124036, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38522491

RESUMEN

Due to its inherent membrane structure, a nanostructure enveloped by an active cell membrane possesses distinctive characteristics such as prolonged presence in the bloodstream, precise identification capabilities, and evasion of immune responses. This research involved the production of biomimetic nanoparticles, specifically hollow gold nanoparticles (HGNPs) loaded with methotrexate (MTX), which were further coated with cancer cell membrane. These nanoparticles were then adorned with AS1411 aptamer to serve as a targeting agent (Apt-CCM-HG@MTX). The nanoplatform demonstrated precise targeting towards cancer cells due to its dual-targeting characteristic (AS1411 aptamer and C26 cancer cell membrane), exhibiting uniformity in distribution. It also displayed a desirable response to photothermal stimulation, controlled release of drugs, and exceptional properties for fluorescence imaging. The system was composed of spherical HGNPs measuring 51.33 ± 5.70 nm in diameter, which were effectively loaded with MTX using a physical absorption method. The encapsulation efficiency achieved was recorded at 79.54 %, while the loading efficiency reached 38.21 %. The targeted formulation demonstrated a noteworthy mortality of approximately 45 % in the nucleolin positive cell line, C26, as determined by in vitro cytotoxicity assays. As a result of the functionalization process applied to the homologous binding adhesion molecules found in cancer cell membranes and targeting ability of AS1411 aptamer, Apt-CCM-HG@MTX demonstrated a substantial enhancement in targeting tumors and facilitating cellular uptake during in vivo experiments. Furthermore, under NIR radiation the photothermal effect exhibited by Apt-CCM-HG@MTX in the tumor area was notably robust due to the distinctive attributes of HGNPs. The conclusions obtained from this study have the potential to assist in adopting a bioinspired strategy that will significantly improve the effective management of MTX and therapy for individuals with colorectal cancer.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias Colorrectales , Nanopartículas del Metal , Nanopartículas , Oligodesoxirribonucleótidos , Humanos , Oro , Nanopartículas/química , Membrana Celular , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Colorrectales/tratamiento farmacológico , Línea Celular Tumoral
2.
ACS Sens ; 9(1): 73-80, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38100727

RESUMEN

Understanding the uptake, distribution, and stability of gold nanoparticles (NPs) in cells is of fundamental importance in nanoparticle sensors and therapeutic development. Single nanoparticle imaging with surface-enhanced Raman spectroscopy (SERS) measurements in cells is complicated by aggregation-dependent SERS signals, particle inhomogeneity, and limited single-particle brightness. In this work, we assess the single-particle SERS signals of various gold nanoparticle shapes and the role of silica encapsulation on SERS signals to develop a quantitative probe for single-particle level Raman imaging in living cells. We observe that silica-encapsulated gap-enhanced Raman tags (GERTs) provide an optimized probe that can be quantifiable per voxel in SERS maps of cells. This approach is validated by single-particle inductively coupled mass spectrometry (spICP-MS) measurements of NPs in cell lysate post-imaging. spICP-MS also provides a means of measuring the tag stability. This analytical approach can be used not only to quantitatively assess nanoparticle uptake on the cellular level (as in previous digital SERS methods) but also to reliably image the subcellular distribution and to assess the stability of NPs in cells.


Asunto(s)
Nanopartículas del Metal , Espectrometría Raman , Espectrometría Raman/métodos , Oro/química , Nanopartículas del Metal/química , Diagnóstico por Imagen , Dióxido de Silicio/química
3.
Eur J Pharm Biopharm ; 187: 76-86, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37100090

RESUMEN

Mesenchymal stem cell membrane (MSCM)-coated biomimetic doxorubicin-loaded hollow gold nanoparticles were fabricated and decorated with MUC1 aptamer in order to provide smart theranostic platform. The prepared targeted nanoscale biomimetic platform was extensively characterized and evaluated in terms of selective delivery of DOX and CT-scan imaging. The fabricated system illustrated spherical morphology with 118 nm in diameter. Doxorubicin was loaded into the hollow gold nanoparticles through physical absorption technique with encapsulation efficiency and loading content of 77%±10 and 31%±4, respectively. The in vitro release profile demonstrated that the designed platform could respond to acidic environment, pH 5.5 and release 50% of the encapsulated doxorubicin during 48 h, while 14% of the encapsulated doxorubicin was released in physiological condition, pH 7.4 up to 48 h. The in vitro cytotoxicity experiments on 4T1 as MUC1 positive cell line illustrated that the targeted formulation could significantly increase mortality at 0.468 and 0.23 µg/ml of equivalent DOX concentration compared to non-targeted formulation while this cytotoxicity was not observed in CHO as MUC1 negative cell line. Furthermore, in vivo experiments showed high tumor accumulation of the targeted formulation even 24 h after intravenous injection which induced effective tumor growth suppression against 4T1 tumor bearing mice. On the other hand, existence of hollow gold in this platform provided CT scan imaging capability of the tumor tissue in 4T1 tumor bearing mice up to 24 h post-administration. The obtained results indicated that the designed paradigm are promising and safe theranostic system for fighting against metastatic breast cancer.


Asunto(s)
Células Madre Mesenquimatosas , Nanopartículas del Metal , Nanopartículas , Neoplasias , Animales , Ratones , Oro/química , Medicina de Precisión , Línea Celular Tumoral , Nanopartículas/química , Doxorrubicina , Oligonucleótidos , Nanomedicina Teranóstica/métodos , Sistemas de Liberación de Medicamentos
4.
Environ Technol ; : 1-13, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37043616

RESUMEN

A series of cerium-based high-entropy oxide catalysts (the ratio of CeO2 and HEO is 1:1) was prepared by a solid-state reaction method, which exploit their unique structural and performance advantages. The Ce-HEO-T samples can achieve 100% toluene conversion rate above 328°C when they were used as catalysts directly. Subsequently, the Ce-HEO-500 exhibited the lowest temperature for toluene oxidation was used as a support to deposit different amounts of Au for a further performance improvement. Among all of prepared samples, Au/Ce-HEO-500 with a moderate content of Au (0.5 wt%) exhibited the lowest temperature for complete combustion of toluene (260°C), which decreased nearly 70°C compared with Ce-HEO-500 support. Moreover, it also showed excellent stability for 60 h with 98% toluene conversion rate. Most importantly, under the condition of 5 vol.% H2O vapour, the toluene conversion rate remained unchanged and even increased slightly compared with that in dry air, exhibiting excellent water resistance. Combined with the characterizations of XRD, SEM, TEM, BET, Raman, H2-TPR and XPS, it was found that the high dispersion of active Au NPs, the special high-entropy structure and the synergistic effect between Au and Ce, Co, Cu are the key factors when improving the catalytic performance in the Au/Ce-HEO-500 catalyst.

5.
Saudi Pharm J ; 30(9): 1215-1242, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36249941

RESUMEN

The progress in the innovative nanocrystal synthesis process by using environmentally benign and low-priced nontoxic chemicals, solvents, and renewable sources remains a challenging task for researchers worldwide. The majority of the existing synthesis techniques engage in the potentially dangerous, for either human health or the environment. Current investigation has been centered on green synthesis processes to create novel nanomaterials, which are eco-friendly as well as safer for sustainable marketable feasibility. The current work provides the green synthesis method for gold nanoparticle (GNPs) synthesis using Commiphora myrrh (C.myrrh) extract. This simple method includes 6 ml of HAuCl4·3H2O treated with 4 ml C.myrrh extract having pH 4.5 after 80 min at 25 °C temperature. In this novel method, green synthesized GNPs characterized by UV-Vis, X_ray diffraction spectroscopy (XRD), zeta potential, fourier transform infrared (FT_IR), high_resolution transmission electron microscopy (HR_TEM), energy dispersive X_ray spectroscopy (EDXA), and dynamic light scattering (DLS). During the development successful antioxidant assay, the DPPH assay was applied. The cell toxicity of green synthesized GNPs was evaluated following an MTT assay against HCT-116 (colon cancer) and MCF-7 (breast cancer). Besides molecular docking in the δ-elemene for inhibitor to VEGFR-2 domain revealed more negative docking score (-3.976) which is an excellent binding affinity to the C.myrrh@GNP. The synthesized GNPs showed antidiabetic, antibiotic, and antibacterial properties and anti_inflammatory inhibition against inhibiting COX-1, and COX-2 enzymes. In addition, molecular docking by Lindestrene (-3.806) and Furanoeudesma-1,3-dien (-3.912) against COX1 and COX2 respectively showed strong binding affinity. The molecular docking study evidenced the anti-inflammatory and cell toxicity study.

6.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35808084

RESUMEN

Nanoparticles (NPs) have a tremendous potential in medicinal applications, and recent studies have pushed the boundaries in nanotherapy, including in osteoarthritis treatments. The aim of this study was to develop new poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) surfaces decorated with hyaluronic acid (HA) to enhance targeted drug specificity to the osteoarthritic knee joint. HA was selected since it binds to specific receptors expressed in many cells, such as the cluster determinant 44 (CD44), a major receptor of chondrocytes, and because of its function in the synovial fluid (SF), such as maintenance of high fluid viscosity. The PLGA polymer was grafted to sodium hyaluronate using dimethoxy-PEG (PLGA-HA) and compared with control PLGA NPs (not grafted). NPs were characterized by 1H-NMR and IR spectroscopy. Then, near-infrared (NIR) dye and gold (20 nm) were encapsulated in the formulated NPs and used to access NPs' performance in in vitro, in vivo, and ex vivo experiments. To test the NPs' CD44 receptor specificity, an antibody assay was performed. All NPs presented a size in the range viable for cell-uptake, no cytotoxicity to chondrocytes was registered. Although all the NPs had a high capacity to be absorbed by the cells, PLGA-HA NPs showed significantly higher affinity towards the chondrocytic C28/I2 cell line. In conclusion, PLGA NPs grafted to sodium hyaluronate showed increased binding to cartilage cells and tissue and enhanced accumulation at the target site. Thus, this study presents a safe drug-delivery system with improved receptor specificity, which may represent an advantageous alternative to current nanotherapies.

7.
Anal Chim Acta ; 1206: 339556, 2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35473859

RESUMEN

A gold nanostructured electrochemical sensor based on modified GC electrode for thiols' detection is described and characterized. This sensor is a suitable device for the measurement of the oxidative potential (OP) of the atmospheric particulate matter (PM), considered a global indicator of adverse health effects of PM, as an alternative to the classic spectrophotometric methods. The operating principle is the determination of the OP, through the measurement of the consumption of DTT content. The DTT-based chemical reactivity is indeed a quantitative acellular probe for assessment of the capacity of the atmospheric PM to catalyze reactive oxygen species generation which contributes to the induction of oxidative stress in living organisms and in turn to the outcome of adverse health effects. To make the sensors, glassy carbon electrodes, traditional (GC) and screen printed (SPE) electrodes, have been electrochemically modified with well-shaped rounded gold nanoparticles (AuNPs) by using a deposition method that allows obtaining a stable and efficient modified surface in a very simple and reproducible modality. The chemical and morphological characterization of the nano-hybrid material has been performed by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy coupled with electron dispersive spectroscopy analysis (SEM/EDS). The electrochemical properties have been evaluated by cyclic voltammetry (CV) and chrono-amperometry (CA) in phosphate buffer at neutral pH as requested in DTT assay for OP measurements. The electroanalytical performances of the sensor in DTT detection are strongly encouraging showing low LODs (0.750 µM and 1.5 µM), high sensitivity (0.0622 µA cm-2 µM-1 and 0.0281 µA cm-2 µM-1), wide linear and dynamic ranges extending over 2-4 orders of magnitude and high selectivity. FIA preliminary results obtained on measuring the DTT rate consumption in six PM aqueous extracts samples showed a good correlation with measurements obtained in parallel on the same set of samples by using the classic spectrophotometric method based on the Ellman's reactive use. These results confirm the high selectivity of the method and its suitability for application to be applied in PM oxidative potential measurements.


Asunto(s)
Oro , Nanopartículas del Metal , Carbono/química , Ditiotreitol , Técnicas Electroquímicas/métodos , Electrodos , Oro/química , Nanopartículas del Metal/química , Estrés Oxidativo , Fosfatos
8.
Int J Nanomedicine ; 16: 7319-7337, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754187

RESUMEN

INTRODUCTION: Viola betonicifolia is a rich source of numerous secondary metabolites, such as alkaloids, flavonoids, tannins, phenolic compounds, saponins, triterpenoids, and so on, that are biologically active towards different potential biomedical applications. To broaden the potential use of Viola betonicifolia in the realm of bionanotechnology, we investigated the plant's ability to synthesize gold nanoparticles (Au NPs) in a green and efficient manner for the very first time. METHODS: The gold nanoparticles (VB-Au NPs) were synthesized using the leaves extract of Viola betonicifolia, in which plant's secondary metabolites function as both reducing and capping agents. The VB-Au NPs were successfully characterized with spectroscopic techniques. The antimicrobial properties of the VB-Au NPs were further explored against bacterial and mycological species. Additionally, their antioxidant, cytotoxic, and cytobiocompatibility properties were examined in vitro against linoleic acid peroxidation, MCF-7 cancer cells, and human mesenchymal stem cells (hMSCs), respectively. RESULTS: Results demonstrated that VB-Au NPs presented excellent antibacterial, antifungal, and biofilm inhibition performance against all the tested microbial species compared to plant leaves extract and commercially purchased chemically synthesized gold NPs (CH-Au NPs). Moreover, they also exhibited significant antioxidant potential, comparable to the external standard. The VB-Au NPs displayed good cytobiocompatibility with hMSCs and demonstrated excellent cytotoxic potential against MCF-7 cancer cells compared to CH-Au NPs. The current work presents a green method for synthesizing VB-Au NPs with enhanced antioxidant, antimicrobial, cytotoxic and biofilm inhibition efficacy compared to CH-Au NPs might be attributed to the synergistic effect of the nanoparticle's physical properties and the adsorbed biologically active phytomolecules from the plant leaves extract on their surface. CONCLUSION: Thus, our study establishes a novel ecologically acceptable route for nanomaterials' fabrication with increased and/or extra medicinal functions derived from their herbal origins.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Viola , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Oro , Tecnología Química Verde , Humanos , Extractos Vegetales/farmacología , Hojas de la Planta
9.
ACS Appl Mater Interfaces ; 12(27): 30750-30760, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32539331

RESUMEN

Electrically conductive materials can stimulate stem cells through electric shock and thereby contribute to the regulation of cell proliferation and differentiation. Recently, polymer-metal complexes composed of polyaniline and gold nanoparticles have emerged as novel candidates for use in regenerative medicine. By mixing two different materials, such composites maximize the benefits while alleviating the disadvantages of using either material alone. Based on their excellent conductivity, these complexes can be applied to nerve regeneration using stem cells. In this study, we investigated a method for producing hybrid nanocomposites by complexing gold nanoparticles to polyaniline and tested the resultant composites in a model of nerve regeneration. We manipulated the shape, size, and electrical conductivity of the hybrid composites by compounding the component materials at various ratios. The most efficient nanocomposite was named conductive reinforced nanocomposites (CRNc's). When the CRNc was delivered directly to cells, no cytotoxicity was observed. After the intracellular delivery of the CRNc, the stem cells were electrically stimulated using an electroporator. As a result of performing mRNA-sequencing (Seq) analysis after electrical stimulation (ES) of the CRNc-internalized cells, it was confirmed that the CRNc-internalized cells have a pattern similar to that of the positive group-induced neuron cells. In particular, microtubule-associated protein 2 is more than twice that of the control group (negative control), and the nerve fiber protein is strongly expressed as in the positive control group. In addition, we verified that neural differentiation progressed by monitoring the growth of neurites from stem cells. Together, these findings show that the CRNc can be used to induce the formation of neuron-like cells by applying ES to stem cells.


Asunto(s)
Compuestos de Anilina/química , Oro/química , Nanopartículas del Metal/química , Nanocompuestos/química , Estimulación Eléctrica , Humanos
10.
Biochim Biophys Acta Gen Subj ; 1864(1): 129435, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31526869

RESUMEN

BACKGROUND: Gold nanoparticles (AuNPs) with unique physicochemical properties have received a great deal of interest in the field of biological, chemical and biomedical implementations. Despite the widespread use of AuNPs in chemical and biological sensing, catalysis, imaging and diagnosis, and more recently in therapy, no comprehensive summary has been provided to explain how AuNPs could aid in developing improved sensing and catalysts systems as well as medical settings. SCOPE OF REVIEW: The chemistry of Au-based nanosystems was followed by reviewing different applications of Au nanomaterials in biological and chemical sensing, catalysis, imaging and diagnosis by a number of approaches, and finally synergistic combination therapy of different cancers. Afterwards, the clinical impacts of AuNPs, future application of AuNPs, and opportunities and challenges of AuNPs application were also discussed. MAJOR CONCLUSIONS: AuNPs show exclusive colloidal stability and are considered as ideal candidates for colorimetric detection, catalysis, imaging, and photothermal transducers, because their physicochemical properties can be tuned by adjusting their structural dimensions achieved by the different manufacturing methods. GENERAL SIGNIFICANCE: This review provides some details about using AuNPs in sensing and catalysis applications as well as promising theranostic nanoplatforms for cancer imaging and diagnosis, and sensitive, non-invasive, and synergistic methods for cancer treatment in an almost comprehensive manner.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal/uso terapéutico , Imagen Molecular/métodos , Nanoestructuras/uso terapéutico , Catálisis , Colorimetría , Oro/química , Oro/uso terapéutico , Humanos , Nanopartículas del Metal/química , Nanoestructuras/química
11.
Biosens Bioelectron ; 141: 111439, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31247453

RESUMEN

Carcinoembryonic antigen (CEA) is an important oncomarker for the detection of breast cancer. For ultra-sensitive sensing of CEA with great specificity and accuracy, an innovative and reliable electrochemical immunosensor was developed using various nano-hybrids. A glassy carbon electrode (GC) was modified with thiolated graphene oxide (T-GO) to elevate the active surface area of the electrode. The streptavidin-coated gold nanoparticles (AuNPs) were used to increase the conductivity of the sensing area as well as the loading capacity of the biotinylated monoclonal antibody (mAb). A sandwich-on approach was developed to reach a low limit of detection (LOD). The biotinylated mAb, streptavidin coated silver nanoparticles (AgNPs) and horseradish peroxidase (HRP), altogether, formed the signaling probe of the proposed immunosensor. The electrochemical signal was significantly enhanced in the presence of hydroquinone (HQ) and hydrogen peroxide (H2O2). Under the optimized conditions, the proposed immunosensor presented an excellent performance in a linear range of 100 fg/mL to 5 pg/mL with a low detection limit of 75 fg/mL. The engineered immunosensor displayed excellent specificity for the detection of CEA even in the real human serum, upon which it is proposed for the early detection and monitoring of CEA in the clinic.


Asunto(s)
Técnicas Biosensibles/métodos , Antígeno Carcinoembrionario/sangre , Oro/química , Nanopartículas del Metal/química , Plata/química , Anticuerpos Inmovilizados/química , Técnicas Electroquímicas/métodos , Grafito/química , Humanos , Inmunoensayo/métodos , Límite de Detección , Nanopartículas del Metal/ultraestructura
12.
Int J Mol Sci ; 19(9)2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177647

RESUMEN

A facile bottom-up "green" synthetic route of gold nanoparticles (Au NPs) is described, using a leaf extract of the Malvaceae plant Corchorus olitorius as a reducing and stabilizing agent. The size and shape of the obtained nanoparticles were modulated by varying the amounts of the metal salt and the broth extract in the reaction medium. Only one hour was required for the complete conversion to Au NPs, suggesting that the reaction rate was higher or comparable to those of nanoparticles synthesized by chemical methods. The obtained nanoparticles were characterized by UV⁻visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and thermal gravimetric analysis (TGA). While infrared spectroscopy was employed to characterize the various functional groups in the organic layer that stabilized the particles, TEM images were used to optimize the conditions for NPs growth. A low concentration of the C. olitorius extract yielded mixed triangular and hexagonal shapes; in contrast, quasi-spherical shapes of Au NPs with an average size of 37⁻50 nm were obtained at a higher extract broth concentration. The Au NPs displayed Surface Plasmon Resonance (SPR) bands at 535 nm. An in vitro cytotoxic assay of the biocompatible Au NPs revealed a strong cytotoxic activity in three human cancer cell lines, namely, colon carcinoma HCT-116, hepatocellular carcinoma HepG-2, and breast adenocarcinoma MCF-7. In-silico bioactivity, drug-likeness, and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) predictions were conducted in order to examine the pharmacokinetic behavior of the compounds present in the C. olitorius extract.


Asunto(s)
Corchorus/química , Oro/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Supervivencia Celular/efectos de los fármacos , Tecnología Química Verde , Células HCT116 , Células Hep G2 , Humanos , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Espectroscopía Infrarroja por Transformada de Fourier , Resonancia por Plasmón de Superficie
13.
Ultrason Sonochem ; 44: 24-35, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29680608

RESUMEN

In this study, bio-ultrasound-assisted synthesized gold nanoparticles using Gracilaria canaliculata algae have been immobilized on a polymeric support and used as a glassy probe chemosensor for detection and rapid removal of Hg2+ ions. The function of the suggested chemosensor has been explained based on gold-amalgam formation and its catalytic role on the reaction of sodium borohydride and rhodamine B (RhB) with fluorescent and colorimetric sensing function. The catalyzed reduction of RhB by the gold amalgam led to a distinguished color change from red and yellow florescence to colorless by converting the amount of Hg2+ deposited on Au-NPs. The detection limit of the colorimetric and fluorescence assays for Hg2+ was 2.21 nM and 1.10 nM respectively. By exposing the mentioned colorless solution to air for at least 2 h, unexpectedly it was observed that the color and fluorescence of RhB were restored. Have the benefit of the above phenomenon a recyclable and portable glass-based sensor has been provided by immobilizing the Au-NPs and RB on the glass slide using electrospinning. Moreover, the introduced combinatorial membrane has facilitated the detection and removal of Hg2+ ions in various Hg (II)-contaminated real water samples with efficiency of up to 99%.


Asunto(s)
Amalgama Dental/química , Técnicas Electroquímicas/métodos , Oro/química , Mercurio/análisis , Nanopartículas del Metal/química , Sondas Moleculares/química , Nanofibras , Sonicación , Borohidruros/química , Catálisis , Gracilaria/metabolismo , Límite de Detección , Mercurio/aislamiento & purificación , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Rodaminas/química , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química , Contaminantes Químicos del Agua/análisis , Difracción de Rayos X
14.
Nanomaterials (Basel) ; 7(6)2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28587297

RESUMEN

A new and promising biosurfactant extracted from corn steep liquor has been used for the green synthesis of gold and silver nanoparticles (NPs) in a one-step procedure induced by temperature. Most of the biosurfactants proposed in the literature are produced by pathogenic microorganisms; whereas the biosurfactant used in the current work was extracted from a liquid stream, fermented spontaneously by lactic acid bacteria, which are "generally recognized as safe" (GRAS) microorganisms. The reduction of a gold precursor in the presence of a biosurfactant gives rise to a mixture of nanospheres and nanoplates with distinct optical features. Moreover, the growth of nanoplates can be promoted by increasing the reaction temperature to 60 °C. In the case of silver, the biosurfactant just induces the formation of pseudo-spherical NPs. The biosurfactant plays a key role in the reduction of the metal precursor, as well as in the stabilization of the resulting NPs. Furthermore, the antimicrobial activity of the resulting silver colloids has been analyzed against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The biosurfactant stabilized NPs slightly increased the inhibition of E. coli in comparison with citrate stabilized Ag NPs. The use of this biosurfactant extracted from corn steep liquor for the synthesis of metal NPs contributes to enhancing the application of green technologies and increasing the utilization of clean, non-toxic and environmentally safe production processes. Therefore, it can help to reduce environmental impact, minimize waste and increase energy efficiency in the field of nanomaterials.

15.
Nano Lett ; 16(6): 3843-9, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27176093

RESUMEN

Acoustic vibrations of assemblies of gold nanoparticles were investigated using ultralow frequency micro-Raman scattering and finite element simulations. When exciting the assemblies resonantly with the surface plasmon resonance of electromagnetically coupled nanoparticles, Raman spectra present an ultralow frequency band whose frequency lies below the lowest Raman active Lamb mode of single nanoparticles that was observed. This feature was ascribed to a Raman vibration mode of gold nanoparticle "supermolecules", that is, nanoparticles mechanically coupled by surrounding polymer molecules. Its measured frequency is inversely proportional to the nanoparticle diameter and sensitive to the elastic properties of the interstitial polymer. The latter dependence as well as finite element simulations suggest that this mode corresponds to the out-of-phase semirigid translation (l = 1 Lamb mode) of each nanoparticle of a dimer inside the matrix, activated by the mechanical coupling between the nanoparticles. These observations were permitted only thanks to the resonant excitation with the coupling plasmon excitation, leading to an enhancement up to 10(4) of the scattering by these vibrations. This enhanced ultralow frequency Raman scattering thus opens a new route to probe the local elastic properties of the surrounding medium.

16.
Biosens Bioelectron ; 53: 58-64, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24121209

RESUMEN

Despite recent progress in localized surface plasmon resonance (LSPR) based bio-sensing, it remains challenging to achieve sensitive and high throughput LSPR detection with facilities available in common laboratories. Here we developed a wall-less LSPR array chip for facile, label-free and high throughput detection of biomolecules using a normal microplate reader. The wall-less LSPR array chip was fabricated by immobilizing plasmonic nanoparticles (NPs) on a hydrophilic-hydrophobic patterned glass slide, enabling high throughput detection. The wall-less configuration simplifies chip fabrication and sample processing, and enables miniaturization to significantly reduce sample and reagent consumption. A double-gold NPs enhanced system comprising of 13-nm-gold NPs conjugated to aptamer modified 39-nm-gold NPs on glass substrate was adopted to constitute competitive replacement assay for signal amplification in small molecule (i.e. ATP) detection. Upon enhancement, the detection sensitivity of ATP was augmented by 5 orders of magnitude from 0.01 µM to 100 µM measured by the laboratory microplate reader. The wall-less LSPR sensor chip can be widely applied for miniaturized and high throughput detection of a variety of targets in biomedical applications and environmental monitoring using facilities available in common laboratories.


Asunto(s)
Adenosina Trifosfato/aislamiento & purificación , Aptámeros de Nucleótidos/química , Técnicas Biosensibles , Adenosina Trifosfato/química , Humanos , Nanopartículas/química , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...