RESUMEN
BACKGROUND: Postoperative pain is a prevalent symptom experienced by patients undergoing surgical procedures. This study aims to develop deep learning algorithms for predicting acute postoperative pain using both essential patient details and real-time vital sign data during surgery. METHODS: Through a retrospective observational approach, we utilized Graph Attention Networks (GAT) and graph Transformer Networks (GTN) deep learning algorithms to construct the DoseFormer model while incorporating an attention mechanism. This model employed patient information and intraoperative vital signs obtained during Video-assisted thoracoscopic surgery (VATS) surgery to anticipate postoperative pain. By categorizing the static and dynamic data, the DoseFormer model performed binary classification to predict the likelihood of postoperative acute pain. RESULTS: A total of 1758 patients were initially included, with 1552 patients after data cleaning. These patients were then divided into training set (n = 931) and testing set (n = 621). In the testing set, the DoseFormer model exhibited significantly higher AUROC (0.98) compared to classical machine learning algorithms. Furthermore, the DoseFormer model displayed a significantly higher F1 value (0.85) in comparison to other classical machine learning algorithms. Notably, the attending anesthesiologists' F1 values (attending: 0.49, fellow: 0.43, Resident: 0.16) were significantly lower than those of the DoseFormer model in predicting acute postoperative pain. CONCLUSIONS: Deep learning model can predict postoperative acute pain events based on patients' basic information and intraoperative vital signs.
Asunto(s)
Aprendizaje Profundo , Dolor Postoperatorio , Cirugía Torácica Asistida por Video , Humanos , Cirugía Torácica Asistida por Video/métodos , Cirugía Torácica Asistida por Video/efectos adversos , Dolor Postoperatorio/etiología , Dolor Postoperatorio/diagnóstico , Estudios Retrospectivos , Femenino , Masculino , Persona de Mediana Edad , Algoritmos , Anciano , Adulto , Dolor Agudo/diagnóstico , Dolor Agudo/etiologíaRESUMEN
Drug-resistant epilepsy is frequent, persistent, and brings a heavy economic burden to patients and their families. Traditional epilepsy detection methods ignore the causal relationship of seizures and focus on a single time or spatial dimension, and the effect varies greatly in different patients. Therefore, it is necessary to research accurate automatic detection technology of epilepsy in different patients. We propose a causal-spatio-temporal graph attention network (CSTGAT), which uses transfer entropy (TE) to construct a causal graph between multiple channels, combining graph attention network (GAT) and bi-directional long short-term memory (BiLSTM) to capture temporal dynamic correlation and spatial topological structure information. The accuracy, specificity, and sensitivity of the SWEZ dataset were 97.24%, 97.92%, and 98.11%. The accuracy of the private dataset reached 98.55%. The effectiveness of each module was proven through ablation experiments and the impact of different network construction methods was compared. The experimental results indicate that the causal relationship network constructed by TE could accurately capture the information flow of epileptic seizures, and GAT and BiLSTM could capture spatiotemporal dynamic correlations. This model accurately captures causal relationships and spatiotemporal correlations on two datasets, and it overcomes the variability of epileptic seizures in different patients, which may contribute to clinical surgical planning.
RESUMEN
Background: Cancer survival prediction is vital in improving patients' prospects and recommending therapies. Understanding the molecular behavior of cancer can be enhanced through the integration of multi-omics data, including mRNA, miRNA, and DNA methylation data. In light of these multi-omics data, we proposed a graph attention network (GAT) model in this study to predict the survival of non-small cell lung cancer (NSCLC). Methods: The different omics data were obtained from The Cancer Genome Atlas (TCGA) and preprocessed and combined into a single dataset using the sample ID. We used the chi-square test to select the most significant features to be used in our model. We used the synthetic minority oversampling technique (SMOTE) to balance the dataset and the concordance index (C-index) to measure the performance of our model on different combinations of omics data. Results: Our model demonstrated superior performance, with the highest value of the C-index obtained when we used both mRNA and miRNA data. This demonstrates that the multi-omics approach could be effective in predicting survival. Further pathway analysis conducted with KEGG showed that our GAT model provided high weights to the features that are associated with the viral entry pathways, such as the Epstein-Barr virus and Influenza A pathways, which are involved in lung cancer development. From our findings, it can be observed that the proposed GAT model leads to a significantly improved prediction of survival by exploiting the strengths of multiple omics datasets and the findings from the enriched pathways. Our GAT model outperforms other state-of-the-art methods that are used for NSCLC prediction. Conclusions: In this study, we developed a new model for the survival prediction of NSCLC using the GAT based on multi-omics data. Our model showed outstanding predictive values, and the KEGG analysis of the selected significant features showed that they were implicated in pivotal biological processes underlying pathways such as Influenza A and the Epstein-Barr virus infection, which are linked to lung cancer progression.
RESUMEN
This research introduces the Variational Graph Attention Dynamics (VarGATDyn), addressing the complexities of dynamic graph representation learning, where existing models, tailored for static graphs, prove inadequate. VarGATDyn melds attention mechanisms with a Markovian assumption to surpass the challenges of maintaining temporal consistency and the extensive dataset requirements typical of RNN-based frameworks. It harnesses the strengths of the Variational Graph Auto-Encoder (VGAE) framework, Graph Attention Networks (GAT), and Gaussian Mixture Models (GMM) to adeptly navigate the temporal and structural intricacies of dynamic graphs. Through the strategic application of GMMs, the model handles multimodal patterns, thereby rectifying misalignments between prior and estimated posterior distributions. An innovative multiple-learning methodology bolsters the model's adaptability, leading to an encompassing and effective learning process. Empirical tests underscore VarGATDyn's dominance in dynamic link prediction across various datasets, highlighting its proficiency in capturing multimodal distributions and temporal dynamics.
RESUMEN
Protein-protein/peptide interactions play crucial roles in various biological processes. Exploring their interactions attracts wide attention. However, accurately predicting their binding sites remains a challenging task. Here, we develop an effective model GraphPBSP based on Graph Attention Network with Convolutional Neural Network and Multilayer Perceptron for protein-protein/peptide binding site prediction, which utilizes various feature types derived from protein sequence and structure including interface residue pairwise propensity developed by us and sequence embeddings obtained from a new pre-trained model ProstT5, alongside physicochemical properties and structural features. To our best knowledge, ProstT5 sequence embeddings and residue pairwise propensity are first introduced for protein-protein/peptide binding site prediction. Additionally, we propose a spatial neighbor-based feature statistic method for effectively considering key spatially neighboring information that significantly improves the model's prediction ability. For model training, a multi-scale objective function is constructed, which enhances the learning capability across samples of the same or different classes. On multiple protein-protein/peptide binding site test sets, GraphPBSP outperforms the currently available state-of-the-art methods with an excellent performance. Additionally, its performances on protein-DNA/RNA binding site test sets also demonstrate its good generalization ability. In conclusion, GraphPBSP is a promising method, which can offer valuable information for protein engineering and drug design.
RESUMEN
The gene regulatory network (GRN) plays a vital role in understanding the structure and dynamics of cellular systems, revealing complex regulatory relationships, and exploring disease mechanisms. Recently, deep learning (DL)-based methods have been proposed to infer GRNs from single-cell transcriptomic data and achieved impressive performance. However, these methods do not fully utilize graph topological information and high-order neighbor information from multiple receptive fields. To overcome those limitations, we propose a novel model based on multiview graph attention network, namely, scMGATGRN, to infer GRNs. scMGATGRN mainly consists of GAT, multiview, and view-level attention mechanism. GAT can extract essential features of the gene regulatory network. The multiview model can simultaneously utilize local feature information and high-order neighbor feature information of nodes in the gene regulatory network. The view-level attention mechanism dynamically adjusts the relative importance of node embedding representations and efficiently aggregates node embedding representations from two views. To verify the effectiveness of scMGATGRN, we compared its performance with 10 methods (five shallow learning algorithms and five state-of-the-art DL-based methods) on seven benchmark single-cell RNA sequencing (scRNA-seq) datasets from five cell lines (two in human and three in mouse) with four different kinds of ground-truth networks. The experimental results not only show that scMGATGRN outperforms competing methods but also demonstrate the potential of this model in inferring GRNs. The code and data of scMGATGRN are made freely available on GitHub (https://github.com/nathanyl/scMGATGRN).
Asunto(s)
Redes Reguladoras de Genes , Análisis de la Célula Individual , Transcriptoma , Análisis de la Célula Individual/métodos , Humanos , Biología Computacional/métodos , Algoritmos , Aprendizaje Profundo , Perfilación de la Expresión Génica/métodos , RatonesRESUMEN
The syntactic information of a dependency tree is an essential feature in relation extraction studies. Traditional dependency-based relation extraction methods can be categorized into hard pruning methods, which aim to remove unnecessary information, and soft pruning methods, which aim to utilize all lexical information. However, hard pruning has the potential to overlook important lexical information, while soft pruning can weaken the syntactic information between entities. As a result, recent studies in relation extraction have been shifting from dependency-based methods to pre-trained language model (LM) based methods. Nonetheless, LM-based methods increasingly demand larger language models and additional data. This trend leads to higher resource consumption, longer training times, and increased computational costs, yet often results in only marginal performance improvements. To address this problem, we propose a relation extraction model based on an entity-centric dependency tree: a dependency tree that is reconstructed by considering entities as root nodes. Using the entity-centric dependency tree, the proposed method can capture the syntactic information of an input sentence without losing lexical information. Additionally, we propose a novel model that utilizes entity-centric dependency trees in conjunction with language models, enabling efficient relation extraction without the need for additional data or larger models. In experiments with representative sentence-level relation extraction datasets such as TACRED, Re-TACRED, and SemEval 2010 Task 8, the proposed method achieves F1-scores of 74.9%, 91.2%, and 90.5%, respectively, which are state-of-the-art performances.
RESUMEN
The human microbiome plays a key role in drug development and precision medicine, but understanding its complex interactions with drugs remains a challenge. Identifying microbe-drug associations not only enhances our understanding of their mechanisms but also aids in drug discovery and repurposing. Traditional experiments are expensive and time-consuming, making computational methods for predicting microbe-drug associations a new trend. Currently, computational methods specifically designed for this task are still scarce. Therefore, to address the shortcomings of traditional experimental methods in predicting potential microbe-drug associations, this paper proposes a new prediction model named GCNATMDA. The model combines two deep learning models, Graph Convolutional Network and Graph Attention Network, and aims to reveal potential relationships between microbes and drugs by learning related features. Thus improve the efficiency and accuracy of prediction. We first integrated the microbe-drug association matrix from the existing dataset, and then combined the calculated microbe-drug characteristic matrix as the model input. The GCN module is used to dig deeper into the potential characterization of microbes and drugs, while the GAT module further learns the more complex interactions between them and generates the corresponding score matrix. The experimental results show that the GCNATMDA model achieves 96.59% and 93.01% in AUC and AUPR evaluation indexes, respectively, which is significantly better than the existing prediction models. In addition, the reliability of the prediction results is verified by a series of experiments.
Asunto(s)
Aprendizaje Profundo , Humanos , Microbiota , Biología Computacional/métodos , Redes Neurales de la Computación , Descubrimiento de Drogas/métodos , Preparaciones FarmacéuticasRESUMEN
The precise forecasting of air quality is of great significance as an integral component of early warning systems. This remains a formidable challenge owing to the limited information of emission source and the considerable uncertainties inherent in dynamic processes. To improve the accuracy of air quality forecasting, this work proposes a new spatiotemporal hybrid deep learning model based on variational mode decomposition (VMD), graph attention networks (GAT) and bi-directional long short-term memory (BiLSTM), referred to as VMD-GAT-BiLSTM, for air quality forecasting. The proposed model initially employ a VMD to decompose original PM2.5 data into a series of relatively stable sub-sequences, thus reducing the influence of unknown factors on model prediction capabilities. For each sub-sequence, a GAT is then designed to explore deep spatial relationships among different monitoring stations. Next, a BiLSTM is utilized to learn the temporal features of each decomposed sub-sequence. Finally, the forecasting results of each decomposed sub-sequence are aggregated and summed as the final air quality prediction results. Experiment results on the collected Beijing air quality dataset show that the proposed model presents superior performance to other used methods on both short-term and long-term air quality forecasting tasks.
RESUMEN
Entity alignment is a crucial task in knowledge graphs, aiming to match corresponding entities from different knowledge graphs. Due to the scarcity of pre-aligned entities in real-world scenarios, research focused on unsupervised entity alignment has become more popular. However, current unsupervised entity alignment methods suffer from a lack of informative entity guidance, hindering their ability to accurately predict challenging entities with similar names and structures. To solve these problems, we present an unsupervised multi-view contrastive learning framework with an attention-based reranking strategy for entity alignment, named AR-Align. In AR-Align, two kinds of data augmentation methods are employed to provide a complementary view for neighborhood and attribute, respectively. Next, a multi-view contrastive learning method is introduced to reduce the semantic gap between different views of the augmented entities. Moreover, an attention-based reranking strategy is proposed to rerank the hard entities through calculating their weighted sum of embedding similarities on different structures. Experimental results indicate that AR-Align outperforms most both supervised and unsupervised state-of-the-art methods on three benchmark datasets.
Asunto(s)
Aprendizaje Automático no Supervisado , Atención , Semántica , Redes Neurales de la Computación , Algoritmos , HumanosRESUMEN
BACKGROUND: Conducting traditional wet experiments to guide drug development is an expensive, time-consuming and risky process. Analyzing drug function and repositioning plays a key role in identifying new therapeutic potential of approved drugs and discovering therapeutic approaches for untreated diseases. Exploring drug-disease associations has far-reaching implications for identifying disease pathogenesis and treatment. However, reliable detection of drug-disease relationships via traditional methods is costly and slow. Therefore, investigations into computational methods for predicting drug-disease associations are currently needed. RESULTS: This paper presents a novel drug-disease association prediction method, RAFGAE. First, RAFGAE integrates known associations between diseases and drugs into a bipartite network. Second, RAFGAE designs the Re_GAT framework, which includes multilayer graph attention networks (GATs) and two residual networks. The multilayer GATs are utilized for learning the node embeddings, which is achieved by aggregating information from multihop neighbors. The two residual networks are used to alleviate the deep network oversmoothing problem, and an attention mechanism is introduced to combine the node embeddings from different attention layers. Third, two graph autoencoders (GAEs) with collaborative training are constructed to simulate label propagation to predict potential associations. On this basis, free multiscale adversarial training (FMAT) is introduced. FMAT enhances node feature quality through small gradient adversarial perturbation iterations, improving the prediction performance. Finally, tenfold cross-validations on two benchmark datasets show that RAFGAE outperforms current methods. In addition, case studies have confirmed that RAFGAE can detect novel drug-disease associations. CONCLUSIONS: The comprehensive experimental results validate the utility and accuracy of RAFGAE. We believe that this method may serve as an excellent predictor for identifying unobserved disease-drug associations.
Asunto(s)
Reposicionamiento de Medicamentos , Reposicionamiento de Medicamentos/métodos , Humanos , Biología Computacional/métodos , Algoritmos , Redes Neurales de la ComputaciónRESUMEN
BACKGROUND: Thermostability is a fundamental property of proteins to maintain their biological functions. Predicting protein stability changes upon mutation is important for our understanding protein structure-function relationship, and is also of great interest in protein engineering and pharmaceutical design. RESULTS: Here we present mutDDG-SSM, a deep learning-based framework that uses the geometric representations encoded in protein structure to predict the mutation-induced protein stability changes. mutDDG-SSM consists of two parts: a graph attention network-based protein structural feature extractor that is trained with a self-supervised learning scheme using large-scale high-resolution protein structures, and an eXtreme Gradient Boosting model-based stability change predictor with an advantage of alleviating overfitting problem. The performance of mutDDG-SSM was tested on several widely-used independent datasets. Then, myoglobin and p53 were used as case studies to illustrate the effectiveness of the model in predicting protein stability changes upon mutations. Our results show that mutDDG-SSM achieved high performance in estimating the effects of mutations on protein stability. In addition, mutDDG-SSM exhibited good unbiasedness, where the prediction accuracy on the inverse mutations is as well as that on the direct mutations. CONCLUSION: Meaningful features can be extracted from our pre-trained model to build downstream tasks and our model may serve as a valuable tool for protein engineering and drug design.
Asunto(s)
Mutación , Estabilidad Proteica , Proteínas , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Mioglobina/química , Mioglobina/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Biología Computacional/métodos , Aprendizaje Profundo , Aprendizaje Automático Supervisado , Bases de Datos de Proteínas , Conformación ProteicaRESUMEN
The interaction between microbes and drugs encompasses the sourcing of pharmaceutical compounds, microbial drug degradation, the development of drug resistance genes, and the impact of microbial communities on host drug metabolism and immune modulation. These interactions significantly impact drug efficacy and the evolution of drug resistance. In this study, we propose a novel predictive model, termed GCGACNN. We first collected microbe, disease, and drug association data from multiple databases and the relevant literature to construct three association matrices and generate similarity feature matrices using Gaussian similarity functions. These association and similarity feature matrices were then input into a multi-layer Graph Neural Network for feature extraction, followed by a two-dimensional Convolutional Neural Network for feature fusion, ultimately establishing an effective predictive framework. Experimental results demonstrate that GCGACNN outperforms existing methods in predictive performance.
Asunto(s)
Redes Neurales de la Computación , Humanos , Preparaciones Farmacéuticas/metabolismo , Algoritmos , Bosques AleatoriosRESUMEN
Emotional recognition is highly important in the field of brain-computer interfaces (BCIs). However, due to the individual variability in electroencephalogram (EEG) signals and the challenges in obtaining accurate emotional labels, traditional methods have shown poor performance in cross-subject emotion recognition. In this study, we propose a cross-subject EEG emotion recognition method based on a semi-supervised fine-tuning self-supervised graph attention network (SFT-SGAT). First, we model multi-channel EEG signals by constructing a graph structure that dynamically captures the spatiotemporal topological features of EEG signals. Second, we employ a self-supervised graph attention neural network to facilitate model training, mitigating the impact of signal noise on the model. Finally, a semi-supervised approach is used to fine-tune the model, enhancing its generalization ability in cross-subject classification. By combining supervised and unsupervised learning techniques, the SFT-SGAT maximizes the utility of limited labeled data in EEG emotion recognition tasks, thereby enhancing the model's performance. Experiments based on leave-one-subject-out cross-validation demonstrate that SFT-SGAT achieves state-of-the-art cross-subject emotion recognition performance on the SEED and SEED-IV datasets, with accuracies of 92.04% and 82.76%, respectively. Furthermore, experiments conducted on a self-collected dataset comprising ten healthy subjects and eight patients with disorders of consciousness (DOCs) revealed that the SFT-SGAT attains high classification performance in healthy subjects (maximum accuracy of 95.84%) and was successfully applied to DOC patients, with four patients achieving emotion recognition accuracies exceeding 60%. The experiments demonstrate the effectiveness of the proposed SFT-SGAT model in cross-subject EEG emotion recognition and its potential for assessing levels of consciousness in patients with DOC.
RESUMEN
In drug discovery, precisely identifying drug-target interactions is crucial for finding new drugs and understanding drug mechanisms. Evolving drug/target heterogeneous data presents challenges in obtaining multimodal representation in drug-target prediction(DTI). To deal with this, we propose 'ERT-GFAN', a multimodal drug-target interaction prediction model inspired by molecular biology. Firstly, it integrates bio-inspired principles to obtain structure feature of drugs and targets using Extended Connectivity Fingerprints(ECFP). Simultaneously, the knowledge graph embedding model RotatE is employed to discover the interaction feature of drug-target pairs. Subsequently, Transformer is utilized to refine the contextual neighborhood features from the obtained structure feature and interaction features, and multi-modal high-dimensional fusion features of the three-modal information constructed. Finally, the final DTI prediction results are outputted by integrating the multimodal fusion features into a graphical high-dimensional fusion feature attention network (GFAN) using our innovative multimodal high-dimensional fusion feature attention. This multimodal approach offers a comprehensive understanding of drug-target interactions, addressing challenges in complex knowledge graphs. By combining structure feature, interaction feature, and contextual neighborhood features, 'ERT-GFAN' excels in predicting DTI. Empirical evaluations on three datasets demonstrate our method's superior performance, with AUC of 0.9739, 0.9862, and 0.9667, AUPR of 0.9598, 0.9789, and 0.9750, and Mean Reciprocal Rank(MRR) of 0.7386, 0.7035, and 0.7133. Ablation studies show over a 5% improvement in predictive performance compared to baseline unimodal and bimodal models. These results, along with detailed case studies, highlight the efficacy and robustness of our approach.
Asunto(s)
Descubrimiento de Drogas , Humanos , Descubrimiento de Drogas/métodos , Biología Computacional/métodosRESUMEN
The Internet of Things (IoT) permeates various sectors, including healthcare, smart cities, and agriculture, alongside critical infrastructure management. However, its susceptibility to malware due to limited processing power and security protocols poses significant challenges. Traditional antimalware solutions fall short in combating evolving threats. To address this, the research work developed a feature selection-based classification model. At first stage, a preprocessing stage enhances dataset quality through data smoothing and consistency improvement. Feature selection via the Zebra Optimization Algorithm (ZOA) reduces dimensionality, while a classification phase integrates the Graph Attention Network (GAN), specifically the Dual-channel GAN (DGAN). DGAN incorporates Node Attention Networks and Semantic Attention Networks to capture intricate IoT device interactions and detect anomalous behaviors like botnet activity. The model's accuracy is further boosted by leveraging both structural and semantic data with the Sooty Tern Optimization Algorithm (STOA) for hyperparameter tuning. The proposed STOA-DGAN model achieves an impressive 99.87% accuracy in botnet activity classification, showcasing robustness and reliability compared to existing approaches.
RESUMEN
Spatial transcriptomics data play a crucial role in cancer research, providing a nuanced understanding of the spatial organization of gene expression within tumor tissues. Unraveling the spatial dynamics of gene expression can unveil key insights into tumor heterogeneity and aid in identifying potential therapeutic targets. However, in many large-scale cancer studies, spatial transcriptomics data are limited, with bulk RNA-seq and corresponding Whole Slide Image (WSI) data being more common (e.g. TCGA project). To address this gap, there is a critical need to develop methodologies that can estimate gene expression at near-cell (spot) level resolution from existing WSI and bulk RNA-seq data. This approach is essential for reanalyzing expansive cohort studies and uncovering novel biomarkers that have been overlooked in the initial assessments. In this study, we present STGAT (Spatial Transcriptomics Graph Attention Network), a novel approach leveraging Graph Attention Networks (GAT) to discern spatial dependencies among spots. Trained on spatial transcriptomics data, STGAT is designed to estimate gene expression profiles at spot-level resolution and predict whether each spot represents tumor or non-tumor tissue, especially in patient samples where only WSI and bulk RNA-seq data are available. Comprehensive tests on two breast cancer spatial transcriptomics datasets demonstrated that STGAT outperformed existing methods in accurately predicting gene expression. Further analyses using the TCGA breast cancer dataset revealed that gene expression estimated from tumor-only spots (predicted by STGAT) provides more accurate molecular signatures for breast cancer sub-type and tumor stage prediction, and also leading to improved patient survival and disease-free analysis. Availability: Code is available at https://github.com/compbiolabucf/STGAT.
Asunto(s)
Perfilación de la Expresión Génica , RNA-Seq , Transcriptoma , Humanos , RNA-Seq/métodos , Perfilación de la Expresión Génica/métodos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Biología Computacional/métodos , Femenino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismoRESUMEN
Although hypervalent iodine(III) reagents have become staples in organic chemistry, the exploration of their isoelectronic counterparts, namely hypervalent bromine(III) and chlorine(III) reagents, has been relatively limited, partly due to challenges in synthesizing and stabilizing these compounds. In this study, we conduct a thorough examination of both homolytic and heterolytic bond dissociation energies (BDEs) critical for assessing the chemical stability and functional group transfer capability of cyclic hypervalent halogen compounds using density functional theory (DFT) analysis. A moderate linear correlation was observed between the homolytic BDEs across different halogen centers, while a strong linear correlation was noted among the heterolytic BDEs across these centers. Furthermore, we developed a predictive model for both homolytic and heterolytic BDEs of cyclic hypervalent halogen compounds using machine learning algorithms. The results of this study could aid in estimating the chemical stability and functional group transfer capabilities of hypervalent bromine(III) and chlorine(III) reagents, thereby facilitating their development.
RESUMEN
Introduction: Synergistic medication, a crucial therapeutic strategy in cancer treatment, involves combining multiple drugs to enhance therapeutic effectiveness and mitigate side effects. Current research predominantly employs deep learning models for extracting features from cell line and cancer drug structure data. However, these methods often overlook the intricate nonlinear relationships within the data, neglecting the distribution characteristics and weighted probability densities of gene expression data in multi-dimensional space. It also fails to fully exploit the structural information of cancer drugs and the potential interactions between drug molecules. Methods: To overcome these challenges, we introduce an innovative end-to-end learning model specifically tailored for cancer drugs, named Dual Kernel Density and Positional Encoding (DKPE) for Graph Synergy Representation Network (DKPEGraphSYN). This model is engineered to refine the prediction of drug combination synergy effects in cancer. DKPE-GraphSYN utilizes Dual Kernel Density Estimation and Positional Encoding techniques to effectively capture the weighted probability density and spatial distribution information of gene expression, while exploring the interactions and potential relationships between cancer drug molecules via a graph neural network. Results: Experimental results show that our prediction model achieves significant performance enhancements in forecasting drug synergy effects on a comprehensive cancer drug and cell line synergy dataset, achieving an AUPR of 0.969 and an AUC of 0.976. Discussion: These results confirm our model's superior accuracy in predicting cancer drug combinations, providing a supportive method for clinical medication strategy in cancer.
RESUMEN
In recent years, with the in-depth study of circRNA, scholars have begun to discover a synergistic relationship between circRNA and microorganisms. Traditional wet lab experiments in biology require expensive financial, material, and human resources to investigate the relationship between circRNA and diseases. Therefore, we propose a new predictive model for inferring the association between circRNA and diseases, called HAGACDA. Specifically, we first aggregate the unique features of circRNA and diseases themselves through singular value decomposition, Pearson similarity, and the biological information characteristics of circRNA and diseases. Utilizing the competitive relationships between miRNA and other microorganisms, we construct a circRNA-miRNA-disease multi-source heterogeneous network. Subsequently, we use a relational graph attention network to aggregate features based on the structural connections between different nodes. To address the inherent limitations in capturing high-order patterns in edge sets, we integrate a hypergraph attention network to extract features of circRNA and diseases. Finally, association prediction scores for node pairs are obtained through a multilayer perceptron. We conducted a comprehensive analysis of the model, including comparative experiments and case studies. Experimental results demonstrate that our model accurately predicts the association between circRNA and diseases.