Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(30): 38956-38967, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39018469

RESUMEN

This work reports the production of biocompatible thin layers for biomedical applications based on a graphene-like material (GL), a graphene-related material (GRM) obtained from carbon black. GL was combined in a hybrid fashion with polydopamine (pDA), a mussel-inspired water-resistant wet adhesive bonding obtained by the oxidative polymerization of dopamine (DA), and polyvinyl pyrrolidinone (PVP), a nontoxic synthetic polymer with intrinsic adhesion properties, to obtain a tighter adhesion of the thin layer to the substrate (silicone slices). Matrix-assisted pulsed laser evaporation (MAPLE) was used to coat PDMS slices with thin films of GL-pDA and GL-PVP directly from their frozen suspensions in water. The results indicate that the relevant chemical-physical characteristics of both thin films (evidenced by FTIR and AFM) were maintained after MAPLE deposition and that the films exhibit uniformity also at the nanometric level. After deposition, the GL-pDA and GL-PVP films underwent a biological survey toward murine fibroblasts (NIH3T3), human keratinocytes (HaCAT), and human cervical adenocarcinoma epithelial-like (HeLa) cells to assess the feasibility of this approach. Results indicate that both the GL-pDA and GL-PVP films did not perturb the biological parameters evaluated, including cytoskeleton alterations. Both hybrid films enhanced the effects of GL on cellular vitality across all cell lines. Specifically, the GL-pDA film exhibited a more stable effect over time (up to 72 h), whereas the GL-PVP film behaved similarly to the GL film in NIH3T3 and HeLa cell lines after long-term exposure. These promising results make the GL-pDA and GL-PVP films potential candidates for the manufacture of coated flexible devices for biomedical applications.


Asunto(s)
Materiales Biocompatibles Revestidos , Grafito , Indoles , Polímeros , Ratones , Animales , Humanos , Indoles/química , Células 3T3 NIH , Grafito/química , Polímeros/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Rayos Láser , Células HeLa , Células HaCaT
2.
Nanomaterials (Basel) ; 13(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37110977

RESUMEN

A way to obtain graphene-based materials on a large-scale level is by means of chemical methods for the oxidation of graphite to obtain graphene oxide (GO), in combination with thermal, laser, chemical and electrochemical reduction methods to produce reduced graphene oxide (rGO). Among these methods, thermal and laser-based reduction processes are attractive, due to their fast and low-cost characteristics. In this study, first a modified Hummer's method was applied to obtain graphite oxide (GrO)/graphene oxide. Subsequently, an electrical furnace, a fusion instrument, a tubular reactor, a heating plate, and a microwave oven were used for the thermal reduction, and UV and CO2 lasers were used for the photothermal and/or photochemical reduction. The chemical and structural characterizations of the fabricated rGO samples were performed by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy measurements. The analysis and comparison of the results revealed that the strongest feature of the thermal reduction methods is the production of high specific surface area, fundamental for volumetric energy applications such as hydrogen storage, whereas in the case of the laser reduction methods, a highly localized reduction is achieved, ideal for microsupercapacitors in flexible electronics.

3.
NanoImpact ; 29: 100452, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36717017

RESUMEN

Graphene and its derivatives are attractive materials envisaged to enable a wealth of novel applications in many fields including energy, electronics, composite materials or health. A comprehensive understanding of the potential adverse effects of graphene-related materials (GRM) in humans is a prerequisite to the safe use of these promising materials. Here, we exploited gene expression profiling to identify transcriptional responses and toxicity pathways induced by graphene oxide (GO) and graphene nanoplatelets (GNP) in human macrophages. Primary human monocyte-derived macrophages (MDM) and a human macrophage cell line, i.e. differentiated THP-1 cells, were exposed to 5 or 20 µg/mL GO and GNP for 6 and 24 h to capture early and more persistent acute responses at realistic or slightly overdose concentrations. GO and GNP induced time-, dose- and macrophage type-specific differential expression of a substantial number of genes with some overlap between the two GRM types (up to 384 genes (9.6%) or 447 genes (20.4%) in THP-1 or MDM, respectively) but also a high number of genes exclusively deregulated from each material type. Furthermore, GRM responses on gene expression were highly different from those induced by inflammogenic material crystalline quartz (maximum of 64 (2.3%) or 318 (11.3%) common genes for MDM treated with 20 µg/mL GO and GNP, respectively). Further bioinformatics analysis revealed that GNP predominantly activated genes controlling inflammatory and apoptotic pathways whereas GO showed only limited inflammatory responses. Interestingly, both GRM affected the expression of genes related to antigen processing and presentation and in addition, GO activated pathways of neutrophil activation, degranulation and immunity in MDM. Overall, this study provides an extensive resource of potential toxicity mechanisms for future safety assessment of GRM in more advanced model systems to verify if the observed changes in gene expression in human macrophages could lead to long-term consequences on human health.


Asunto(s)
Grafito , Nanoestructuras , Humanos , Grafito/química , Nanoestructuras/química , Macrófagos , Perfilación de la Expresión Génica
4.
Molecules ; 27(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36431940

RESUMEN

The chemical reduction efficiencies of graphene oxide (GO) are critically important in achieving graphene-like properties in reduced graphene oxide (rGO). In this study, we assessed GO lateral size and its degree of oxidation effect on its chemical reduction efficiency in both suspension and film and the electrical conductivity of the corresponding rGO films. We show that while GO-reduction efficiency increases with the GO size of lower oxidation in suspension, the trend is opposite for film. FESEM, XRD, and Raman analyses reveal that the GO reduction efficiency in film is affected not only by GO size and degree of oxidation but also by its interlayer spacing (restacking) and the efficiency is tunable based on the use of mixed GO. Moreover, we show that the electrical conductivity of rGO films depends linearly on the C/O and Raman ID/IG ratio of rGO and not the lateral size of GO. In this study, an optimal chemical reduction was achieved using premixed large and small GO (L/SGO) at a ratio of 3:1 (w/w). Consequently, the highest electrical conductivity of 85,283 S/m was achieved out of all rGO films reported so far. We hope that our findings may help to pave the way for a simple and scalable method to fabricate tunable, electrically conductive rGO films for electronic applications.


Asunto(s)
Grafito , Grafito/química , Conductividad Eléctrica , Oxidación-Reducción , Electrónica
5.
Nanomaterials (Basel) ; 12(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296853

RESUMEN

In this study, matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit graphene-like materials (GL), a new class of biocompatible graphene-related materials (GRMs) obtained from a controlled top-down demolition of a carbon black, on silicone slices to test their potential use as functional coating on invasive medical devices as indwelling urinary catheters. Results indicate that the relevant chemical-physical features of the deposit (controlled by FTIR and AFM) were maintained after MAPLE deposition. After deposition, GL films underwent a biological survey toward target cellular lines (murine fibroblast NIH3T3, human keratinocytes HaCAT and the human cervical adenocarcinoma epithelial-like HeLa). Results indicate that the GL films did not lead to any perturbations in the different biological parameters evaluated. The presented results and the possibility to further functionalize the GL or combine them with other functional materials in a hybrid fashion to assure a tighter adhesion onto the substrate for use in harsh conditions open the door to practical applications of these new-concept medical devices (drug delivery, next generation flexible devices, multifunctional coatings) paving the way to the prevention of nosocomial infections driven by catheterization through antibiotics-free approaches.

6.
Polymers (Basel) ; 14(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36236113

RESUMEN

The polyelectrolyte (PE)-based water dispersion of graphene-related materials (GRMs) represents an interesting intermediate for the development of advanced materials by sustainable processes. Although the proof of concept has been demonstrated, there is a lack of knowledge for what concerns the effects of parameters typical of PEs such as functionalization, molecular weight, and charge density. In this work, we evaluate the effects of such parameters on the quality and long-term stability of reduced graphite oxide (rGO) dispersion in aqueous media prepared by ultrasound sonication in the presence of different PEs. Four PEs were evaluated: polyacrylic acid (PAA), branched poly(ethylenimine) (BPEI), sodium carboxymethyl cellulose (CMC), and poly(sodium 4-styrenesulfonic acid) (PSS). The prepared dispersions were thoroughly characterized by means of UV-visible spectroscopy, thermogravimetric analysis, dynamic light scattering, and Raman spectroscopy. The highest concentrations of rGO were achieved by BPEI with a molecular weight of 25,000 and 270,000 Da (33 and 26 µg/mL, respectively). For other PEs, the rGO concentration was found to be independent of the molecular weight. The PAA-based dispersions displayed the best through-time stability while yielding homogeneous dispersion with a smaller average size and narrower size distribution.

7.
J Hazard Mater ; 435: 129053, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35650742

RESUMEN

Graphene-related materials (GRMs) are subject to intensive investigations and considerable progress has been made in recent years in terms of safety assessment. However, limited information is available concerning the hazard potential of GRM-containing products such as graphene-reinforced composites. In the present study, we conducted a comprehensive investigation of the potential biological effects of particles released through an abrasion process from reduced graphene oxide (rGO)-reinforced composites of polyamide 6 (PA6), a widely used engineered thermoplastic polymer, in comparison to as-produced rGO. First, a panel of well-established in vitro models, representative of the immune system and possible target organs such as the lungs, the gut, and the skin, was applied. Limited responses to PA6-rGO exposure were found in the different in vitro models. Only as-produced rGO induced substantial adverse effects, in particular in macrophages. Since inhalation of airborne materials is a key occupational concern, we then sought to test whether the in vitro responses noted for these materials would translate into adverse effects in vivo. To this end, the response at 1, 7 and 28 days after a single pulmonary exposure was evaluated in mice. In agreement with the in vitro data, PA6-rGO induced a modest and transient pulmonary inflammation, resolved by day 28. In contrast, rGO induced a longer-lasting, albeit moderate inflammation that did not lead to tissue remodeling within 28 days. Taken together, the present study suggests a negligible impact on human health under acute exposure conditions of GRM fillers such as rGO when released from composites at doses expected at the workplace.


Asunto(s)
Grafito , Animales , Grafito/toxicidad , Ratones , Plásticos
8.
Materials (Basel) ; 15(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35161115

RESUMEN

Graphene-related materials (GRMs) such as graphene quantum dots (GQDs), graphene oxide (GO), reduced graphene oxide (rGO), graphene nanoribbons (GNRs), and so forth have recently emerged as photovoltaic (PV) materials due to their nanodimensional structure and outstanding properties such as high electrical and thermal conductivity, large specific surface, and unique combination of mechanical strength and flexibility. They can be a crucial part of transparent electrodes, hole/electron transport materials, and active layers in organic solar cells (OSCs). Besides their role in charge extraction and transport, GRMs act as device protectors against environmental degradation through their compact bidimensional structure and offer good durability. This review briefly presents the synthesis methods of GRMs and describes the current progress in GRM-based OSCs. PV parameters (short circuit current, open circuit voltage, power conversion efficiency, and fill factor) are summarized and comparatively discussed for the different structures. The efficiency recently surpassed 15% for an OSC incorporating polymer-modified graphene as a transparent electrode. The long-term stability of OSCs incorporating GRMs is also discussed. Finally, conclusions and the outlook for future investigation into GRM-based devices for PVs are presented.

9.
ACS Appl Mater Interfaces ; 14(1): 191-200, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34933561

RESUMEN

At present, the most powerful new drugs for COVID-19 are antibody proteins. In addition, there are some star small molecule drugs. However, there are few studies on nanomaterials. Here, we study the intact graphene (IG), defective graphene (DG), and graphene oxide (GO) interacting with COVID-19 protein. We find that they show progressive inhibition of COVID-19 protein. By using molecular dynamics simulations, we study the interactions between SARS-CoV-2 3CL Mpro and graphene-related materials (GRMs): IG, DG, and GO. The results show that Mpro can be absorbed onto the surfaces of investigated materials. DG and GO interacted with Mpro more intensely, causing the decisive part of Mpro to become more flexible. Further analysis shows that compared to IG and GO, DG can inactivate Mpro and inhibit its expression effectively by destroying the active pocket of Mpro. Our work not only provides detailed and reliable theoretical guidance for the application of GRMs in treating with SARS-CoV-2 but also helps in developing new graphene-based anti-COVID-19 materials.


Asunto(s)
Proteasas 3C de Coronavirus/química , Grafito/química , Simulación de Dinámica Molecular , SARS-CoV-2/metabolismo , Adsorción , Sitios de Unión , COVID-19/patología , COVID-19/virología , Dominio Catalítico , Proteasas 3C de Coronavirus/metabolismo , Grafito/metabolismo , Humanos , Ligandos , SARS-CoV-2/aislamiento & purificación
10.
ACS Appl Mater Interfaces ; 13(49): 59206-59220, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34851623

RESUMEN

Free-standing nanopapers based on graphene and its related materials have been widely studied and proposed for flexible heat spreader applications. Given that these materials are typically brittle, this work reports the exploitation of polycaprolactone (PCL) as a polymer binder to enhance resistance and flexibility of nanopapers based on graphite nanoplates (GNP), while maintaining a high thermal conductivity. Properties of nanopapers appear to correlate with the excellent PCL adhesion and strong nucleation of the surface of GNP flakes. Furthermore, different crystalline populations were observed for PCL within the nanopaper and were investigated in detail via differential scanning calorimetry advanced techniques and X-ray diffraction. These demonstrated the coexistence of conventional unoriented PCL crystals, oriented PCL crystals obtained as a consequence of the strong nucleation effect, and highly stable PCL fractions explained by the formation of crystalline pre-freezing layers, the latter having melting temperatures well above the equilibrium melting temperature for pristine PCL. This peculiar crystallization behavior of PCL, reported in this paper for the first time for a tridimensional structure, has a direct impact on material properties. Indeed, the presence of high thermal stability crystals, strongly bound to GNP flakes, coexisting with the highly flexible amorphous fraction, delivers an ideal solution for the strengthening and toughening of GNP nanopapers. Thermomechanical properties of PCL/GNP nanopapers, investigated both on a heating ramp and by creep tests at high temperatures, demonstrated superior stiffness well above the conventional melting temperature of PCL. At the same time, a thermal conductivity > 150 W/m·K was obtained for PCL/GNP nanopapers, representing a viable alternative to traditional metals in terms of heat dissipation, while affording flexibility and light weight, unmatched by conventional thermally conductive metals or ceramics. Besides the obtained performance, the formation of polymer crystals that are stable above the equilibrium melting temperature constitutes a novel approach in the self-assembly of highly ordered nanostructures based on graphene and related materials.

11.
Materials (Basel) ; 14(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924114

RESUMEN

Research activity on ceramic/graphene composites and hybrids has increased dramatically in the last decade. In this review, we provide an overview of recent contributions involving ceramics, graphene, and graphene-related materials (GRM, i.e., graphene oxide, reduced graphene oxide, and graphene nanoplatelets) with a primary focus on applications. We have adopted a broad scope of the term ceramics, therefore including some applications of GRM with certain metal oxides and cement-based matrices in the review. Applications of ceramic/graphene hybrids and composites cover many different areas, in particular, energy production and storage (batteries, supercapacitors, solar and fuel cells), energy harvesting, sensors and biosensors, electromagnetic interference shielding, biomaterials, thermal management (heat dissipation and heat conduction functions), engineering components, catalysts, etc. A section on ceramic/GRM composites processed by additive manufacturing methods is included due to their industrial potential and waste reduction capability. All these applications of ceramic/graphene composites and hybrids are listed and mentioned in the present review, ending with the authors' outlook of those that seem most promising, based on the research efforts carried out in this field.

12.
ACS Appl Mater Interfaces ; 13(13): 15509-15517, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33764755

RESUMEN

Thermally conductive nanopapers fabricated from graphene and related materials are currently showing great potential in thermal management applications. However, thermal contacts between conductive plates represent the bottleneck for thermal conductivity of nanopapers prepared in the absence of a high temperature step for graphitization. In this work, the problem of ineffective thermal contacts is addressed by the use of bifunctional polyaromatic molecules designed to drive self-assembly of graphite nanoplates (GnP) and establish thermal bridges between them. To preserve the high conductivity associated to a defect-free sp2 structure, non-covalent functionalization with bispyrene compounds, synthesized on purpose with variable tethering chain length, was exploited. Pyrene terminal groups granted for a strong π-π interaction with graphene surface, as demonstrated by UV-Vis, fluorescence, and Raman spectroscopies. Bispyrene molecular junctions between GnP were found to control GnP organization and orientation within the nanopaper, delivering significant enhancement in both in-plane and cross-plane thermal diffusivities. Finally, nanopapers were validated as heat spreader devices for electronic components, evidencing comparable or better thermal dissipation performance than conventional Cu foil, while delivering over 90% weight reduction.

13.
Nanomaterials (Basel) ; 10(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143017

RESUMEN

Different types of graphene-related materials (GRM) are industrially available and have been exploited for thermal conductivity enhancement in polymers. These include materials with very different features, in terms of thickness, lateral size and composition, especially concerning the oxygen to carbon ratio and the possible presence of surface functionalization. Due to the variability of GRM properties, the differences in polymer nanocomposites preparation methods and the microstructures obtained, a large scatter of thermal conductivity performance is found in literature. However, detailed correlations between GRM-based nanocomposites features, including nanoplatelets thickness and size, defectiveness, composition and dispersion, with their thermal conductivity remain mostly undefined. In the present paper, the thermal conductivity of GRM-based polymer nanocomposites, prepared by melt polymerization of cyclic polybutylene terephtalate oligomers and exploiting 13 different GRM grades, was investigated. The selected GRM, covering a wide range of specific surface area, size and defectiveness, secure a sound basis for the understanding of the effect of GRM properties on the thermal conductivity of their relevant polymer nanocomposites. Indeed, the obtained thermal conductivity appeares to depend on the interplay between the above GRM feature. In particular, the combination of low GRM defectiveness and high filler percolation density was found to maximize the thermal conductivity of nanocomposites.

14.
Nanomaterials (Basel) ; 10(8)2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32727143

RESUMEN

Graphene-like (GL) layers, a new graphene-related material (GRM), possess peculiar chemical, colloidal, optical and transport properties. Considering the very recent promising application of GL layers in biomedical and bioelectronic fields, it is of utmost importance to investigate the toxicological profile of these nanomaterials. This study represents an important first report of a complete in vivo toxicity assessment of GL layers on embryonic zebrafish (Danio rerio). Our results show that GL layers do not lead to any perturbations in the different biological parameters evaluated, indicating their good biocompatibility on a vertebrate model. The new insight into the biosafety of GL layers will expand their applications in nanomedicine.

15.
Mikrochim Acta ; 186(1): 49, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30610391

RESUMEN

This review (with 131 references) summarizes the progress made in the past years in the field of nanomaterial based sensing of serotonin (5-HT). An introduction summarizes the significant role of 5-HT as a biomarker for several major diseases, methods for its determination and the various kinds of nanomaterials for use in electrochemical sensing process relies principally on a precise choice of electrodes. The next main section covers nanomaterial based methods for sensing 5-HT, with subsections on electrodes modified with carbon nanotubes, graphene related materials, gold nanomaterials, and by other nanomaterials. A concluding section discusses future perspectives and current challenges of 5-HT determination. Graphical abstract Conceptual design of electrochemical sensing process of the biomarker serotonin by using nanomaterials and the role of 5-HTas biomarker in the body from preclinical to clincal.


Asunto(s)
Técnicas Electroquímicas/métodos , Nanoestructuras/química , Serotonina/análisis , Animales , Biomarcadores/análisis , Técnicas Electroquímicas/tendencias , Electrodos/tendencias , Humanos
16.
Light Sci Appl ; 7: 18005, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30839517

RESUMEN

We used nonlinear laser scanning optical microscopy to study atomically thin transition metal dichalcogenides (TMDs) and revealed, with unprecedented resolution, the orientational distribution of armchair directions and their degree of organization in the two-dimensional (2D) crystal lattice. In particular, we carried out polarization-resolved second-harmonic generation (PSHG) imaging for monolayer WS2 and obtained, with high-precision, the orientation of the main crystallographic axis (armchair orientation) for each individual 120 × 120 nm2 pixel of the 2D crystal area. Such nanoscale resolution was realized by fitting the experimental PSHG images, obtained with sub-micron precision, to a new generalized theoretical model that accounts for the nonlinear optical properties of TMDs. This enabled us to distinguish between different crystallographic domains, locate boundaries and reveal fine structure. As a consequence, we can calculate the mean orientational average of armchair angle distributions in specific regions of interest and define the corresponding standard deviation as a figure-of-merit for the 2D crystal quality.

17.
Int J Nanomedicine ; 11: 1927-45, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27226713

RESUMEN

Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Grafito/química , Grafito/toxicidad , Tecnología Química Verde , Ingeniería de Tejidos/métodos , Materiales Biocompatibles , Grafito/síntesis química , Humanos , Nanomedicina/métodos , Nanoestructuras/química
18.
Angew Chem Int Ed Engl ; 55(18): 5506-11, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27010606

RESUMEN

Hexagonal boron nitride (hBN) nanosheets are emerging as promising 2D materials for different types of applications. However, biodegradation of hBN materials is poorly explored owing to their high chemical inertness and strong oxidation resistance. The assessment of oxidation/biodegradation of hBN is important in developing biomedical tools. Herein, we report the first study on the biodegradability of hBN nanosheets comparing the enzymatic catalysis of two different peroxidases, horseradish peroxidase (HRP) and human myeloperoxidase (MPO), with the photo-Fenton (P.F.) reaction. The results show that degradation of hBN nanosheets is different to that of graphene and graphene oxide, since partial oxidation was found using MPO after 35 h, while HRP failed to degrade hBN up to 60 days. Nearly complete oxidation/degradation was occurred by P.F. reaction in 100 h. These results are helpful in designing advanced conjugates for biomedical uses of hBN.


Asunto(s)
Compuestos de Boro/química , Grafito/química , Nanoestructuras/química , Peroxidasa/química , Catálisis , Peroxidasa de Rábano Silvestre/química , Humanos , Peróxido de Hidrógeno/química , Hierro/química , Modelos Moleculares , Nanoestructuras/ultraestructura , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...