Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros












Intervalo de año de publicación
1.
Front Microbiol ; 15: 1417864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165572

RESUMEN

The gut microbiota is a complex and diverse community of microorganisms that colonizes the human gastrointestinal tract and influences various aspects of human health. These microbes are closely related to enteric infections. As a foreign entity for the host, commensal microbiota is restricted and regulated by the barrier and immune system in the gut and contributes to gut homeostasis. Commensals also effectively resist the colonization of pathogens and the overgrowth of indigenous pathobionts by utilizing a variety of mechanisms, while pathogens have developed strategies to subvert colonization resistance. Dysbiosis of the microbial community can lead to enteric infections. The microbiota acts as a pivotal mediator in establishing a harmonious mutualistic symbiosis with the host and shielding the host against pathogens. This review aims to provide a comprehensive overview of the mechanisms underlying host-microbiome and microbiome-pathogen interactions, highlighting the multi-faceted roles of the gut microbiota in preventing enteric infections. We also discuss the applications of manipulating the microbiota to treat infectious diseases in the gut.

2.
Mol Cell Biochem ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060829

RESUMEN

The intestinal microbiome constitutes a sophisticated and massive ecosystem pivotal for maintaining gastrointestinal equilibrium and mucosal immunity via diverse pathways. The gut microbiota is continuously reshaped by multiple environmental factors, thereby influencing overall wellbeing or predisposing individuals to disease state. Many observations reveal an altered microbiome composition in individuals with autoimmune conditions, coupled with shifts in metabolic profiles, which has spurred ongoing development of therapeutic interventions targeting the microbiome. This review delineates the microbial consortia of the intestine, their role in sustaining gastrointestinal stability, the association between the microbiome and immune-mediated pathologies, and therapeutic modalities focused on microbiome modulation. We emphasize the entire role of the intestinal microbiome in human health and recommend microbiome modulation as a viable strategy for disease prophylaxis and management. However, the application of gut microbiota modification for the treatment of immune-related diseases, such as fecal microbiota transplantation and probiotics, remain quite challenging. Therefore, more research is needed into the role and mechanisms of these therapeutics.

3.
Adv Protein Chem Struct Biol ; 141: 495-538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960484

RESUMEN

The gut microbial metalloenzymes play an important role in maintaining the balance between gut microbial ecosystem, human physiologically processes and immune system. The metals coordinated into active site contribute in various detoxification and defense strategies to avoid unfavourable environment and ensure bacterial survival in human gut. Metallo-ß-lactamase is a potent degrader of antibiotics present in periplasmic space of both commensals and pathogenic bacteria. The resistance to anti-microbial agents developed in this enzyme is one of the global threats for human health. The organophosphorus eliminator, organophosphorus hydrolases have evolved over a course of time to hydrolyze toxic organophosphorus compounds and decrease its effect on human health. Further, the redox stress responders namely superoxide dismutase and catalase are key metalloenzymes in reducing both endogenous and exogenous oxidative stress. They hold a great importance for pathogens as they contribute in pathogenesis in human gut along with reduction of oxidative stress. The in-silico study on these enzymes reveals the importance of point mutation for the evolution of these enzymes in order to enhance their enzyme activity and stability. Various mutation studies were conducted to investigate the catalytic activity of these enzymes. By using the "directed evolution" method, the enzymes involved in detoxification and defense system can be engineered to produce new variants with enhance catalytic features, which may be used to predict the severity due to multi-drug resistance and degradation pattern of organophosphorus compounds in human gut.


Asunto(s)
Microbioma Gastrointestinal , Metaloproteínas , Especies Reactivas de Oxígeno , Xenobióticos , Xenobióticos/metabolismo , Humanos , Metaloproteínas/metabolismo , Metaloproteínas/química , Metaloproteínas/genética , Especies Reactivas de Oxígeno/metabolismo
4.
Curr Biol ; 34(13): 2785-2800.e7, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38823381

RESUMEN

Host-microbe interactions influence intestinal stem cell (ISC) activity to modulate epithelial turnover and composition. Here, we investigated the functional impacts of viral infection on intestinal homeostasis and the mechanisms by which viral infection alters ISC activity. We report that Drosophila A virus (DAV) infection disrupts intestinal homeostasis in Drosophila by inducing sustained ISC proliferation, resulting in intestinal dysplasia, loss of gut barrier function, and reduced lifespan. We found that additional viruses common in laboratory-reared Drosophila also promote ISC proliferation. The mechanism of DAV-induced ISC proliferation involves progenitor-autonomous epidermal growth factor receptor (EGFR) signaling, c-Jun N-terminal kinase (JNK) activity in enterocytes, and requires Sting-dependent nuclear factor κB (NF-κB) (Relish) activity. We further demonstrate that activating Sting-Relish signaling is sufficient to induce ISC proliferation, promote intestinal dysplasia, and reduce lifespan in the absence of infection. Our results reveal that viral infection can significantly disrupt intestinal physiology, highlight a novel role for Sting-Relish signaling, and support a role for viral infection in aging.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Homeostasis , Intestinos , Proteínas de la Membrana , FN-kappa B , Transducción de Señal , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , FN-kappa B/metabolismo , Drosophila melanogaster/virología , Drosophila melanogaster/fisiología , Intestinos/virología , Células Madre/virología , Células Madre/metabolismo , Proliferación Celular , Factores de Transcripción
5.
Gut Microbes ; 16(1): 2353399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757687

RESUMEN

Intestinal stem cells (ISCs) play a pivotal role in gut physiology by governing intestinal epithelium renewal through the precise regulation of proliferation and differentiation. The gut microbiota interacts closely with the epithelium through myriad of actions, including immune and metabolic interactions, which translate into tight connections between microbial activity and ISC function. Given the diverse functions of the gut microbiota in affecting the metabolism of macronutrients and micronutrients, dietary nutrients exert pronounced effects on host-microbiota interactions and, consequently, the ISC fate. Therefore, understanding the intricate host-microbiota interaction in regulating ISC homeostasis is imperative for improving gut health. Here, we review recent advances in understanding host-microbiota immune and metabolic interactions that shape ISC function, such as the role of pattern-recognition receptors and microbial metabolites, including lactate and indole metabolites. Additionally, the diverse regulatory effects of the microbiota on dietary nutrients, including proteins, carbohydrates, vitamins, and minerals (e.g. iron and zinc), are thoroughly explored in relation to their impact on ISCs. Thus, we highlight the multifaceted mechanisms governing host-microbiota interactions in ISC homeostasis. Insights gained from this review provide strategies for the development of dietary or microbiota-based interventions to foster gut health.


Asunto(s)
Microbioma Gastrointestinal , Homeostasis , Interacciones Microbiota-Huesped , Mucosa Intestinal , Células Madre , Humanos , Microbioma Gastrointestinal/fisiología , Células Madre/metabolismo , Animales , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Bacterias/metabolismo , Bacterias/clasificación
6.
Clin Transl Immunology ; 13(5): e1508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707998

RESUMEN

Objectives: The caecum bridges the small and large intestine and plays a front-line role in discriminating gastrointestinal antigens. Although dysregulated in acute and chronic conditions, the tissue is often overlooked immunologically. Methods: To address this issue, we applied single-cell transcriptomic-V(D)J sequencing to FACS-isolated CD45+ caecal patch/lamina propria leukocytes from a healthy (5-year-old) female rhesus macaque ex vivo and coupled these data to VDJ deep sequencing reads from haematopoietic tissues. Results: We found caecal NK cells and ILC3s to co-exist with a spectrum of effector T cells partially derived from SOX4 + recent thymic emigrants. Tolerogenic Vγ8Vδ1-T cells, plastic CD4+ T helper cells and GZMK + EOMES + and TMIGD2 + tissue-resident memory CD8+ T cells were present and differed metabolically. An IL13 + GATA3 + Th2 subset expressing eicosanoid pathway enzymes was accompanied by IL1RL1 + GATA3 + regulatory T cells and a minor proportion of IgE+ plasma cells (PCs), illustrating tightly regulated type 2 immunity devoid of ILC2s. In terms of B lymphocyte lineages, caecal patch antigen-presenting memory B cells sat alongside germinal centre cells undergoing somatic hypermutation and differentiation into IGF1 + PCs. Prototypic gene expression signatures decreased across PC clusters, and notably, expanded IgA clonotypes could be traced in VDJ deep sequencing reads from additional compartments, including the bone marrow, supporting that these cells contribute a steady stream of systemic antibodies. Conclusions: The data advance our understanding of caecal immunological function, revealing processes involved in barrier maintenance and molecular networks relevant to disease.

7.
Microbiol Resour Announc ; 13(6): e0012724, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38682773

RESUMEN

Chromobacterium subtsugae exhibits toxicity to Drosophila melanogaster, providing a new infection model to study host homeostasis. Previous studies using pathogen models have proven to be a useful tool to understand host physiology. Here, we report on the whole-genome sequences of these microbes obtained from short and long reads.

8.
ISME Commun ; 4(1): ycad019, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38415201

RESUMEN

The human milk (HM) microbiota, a highly diverse microbial ecosystem, is thought to contribute to the health benefits associated with breast-feeding, notably through its impact on infant gut microbiota. Our objective was to further explore the role of HM bacteria on gut homeostasis through a "disassembly/reassembly" strategy. HM strains covering the diversity of HM cultivable microbiota were first characterized individually and then assembled in synthetic bacterial communities (SynComs) using two human cellular models, peripheral blood mononuclear cells and a quadricellular model mimicking intestinal epithelium. Selected HM bacteria displayed a large range of immunomodulatory properties and had variable effects on epithelial barrier, allowing their classification in functional groups. This multispecies characterization of HM bacteria showed no clear association between taxonomy and HM bacteria impacts on epithelial immune and barrier functions, revealing the entirety and complexity of HM bacteria potential. More importantly, the assembly of HM strains into two SynComs of similar taxonomic composition but with strains exhibiting distinct individual properties, resulted in contrasting impacts on the epithelium. These impacts of SynComs partially diverged from the predicted ones based on individual bacteria. Overall, our results indicate that the functional properties of the HM bacterial community rather than the taxonomic composition itself could play a crucial role in intestinal homeostasis of infants.

9.
Food Chem ; 446: 138739, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412807

RESUMEN

Nowadays, due to the rise of fast-food consumption, the metabolic diseases are increasing as a result of high-sugar and high-fat diets. Therefore, there is an urgent need for natural, healthy and side-effect-free diets in daily life. Whole grain supplementation can enhance satiety and regulate energy metabolism, effects that have been attributed to polyphenol content. Dietary polyphenols interact with gut microbiota to produce intermediate metabolites that can regulate appetite while also enhancing prebiotic effects. This review considers how interactions between gut metabolites and dietary polyphenols might regulate appetite by acting on the gut-brain axis. In addition, further advances in the study of dietary polyphenols and gut microbial metabolites on energy metabolism and gut homeostasis are summarized. This review contributes to a better understanding of how dietary polyphenols regulate appetite via the gut-brain axis, thereby providing nutritional references for citizens' dietary preferences.


Asunto(s)
Apetito , Microbioma Gastrointestinal , Eje Cerebro-Intestino , Polifenoles/metabolismo , Microbioma Gastrointestinal/fisiología , Homeostasis
10.
Front Microbiol ; 15: 1351295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38282971

RESUMEN

Introduction: Acute lung injury (ALI) is a serious respiratory disease characterized by progressive respiratory failure with high morbidity and mortality. It is becoming increasingly important to develop functional foods from polyphenol-rich medicinal and dietary plants in order to prevent or alleviate ALI by regulating intestinal microflora. Rosa roxburghii Tratt polyphenol (RRTP) has significant preventive and therapeutic effects on lipopolysaccharide-induced ALI mice, but its regulatory effects on gut homeostasis in ALI mice remains unclear. Methods: This study aims to systematically evaluate the ameliorative effects of RRTP from the perspective of "lung-gut axis" on ALI mice by intestine histopathological assessment, oxidative stress indicators detection and short-chain fatty acids (SCFAs) production, and then explore the modulatory mechanisms of RRTP on intestinal homeostasis by metabolomics and gut microbiomics of cecal contents. Results: The results showed that RRTP can synergistically exert anti-ALI efficacy by significantly ameliorating intestinal tissue damage, inhibiting oxidative stress, increasing SCFAs in cecal contents, regulating the composition and structure of intestinal flora, increasing Akkermansia muciniphila and modulating disordered intestinal endogenous metabolites. Discussion: This study demonstrated that RRTP has significant advantages in adjuvant therapy of ALI, and systematically clarified its comprehensive improvement mechanism from a new perspective of "lung-gut axis", which provides a breakthrough for the food and healthcare industries to develop products from botanical functional herbs and foods to prevent or alleviate ALI by regulating intestinal flora.

11.
Food Chem ; 438: 137994, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37984001

RESUMEN

Foods rich in carbohydrates or fats undergo the Maillard reaction during frying, which promotes the color, flavor and sensory characteristics formation. In the meanwhile, Maillard reaction intermediates and advanced glycation end products (AGEs) have a negative impact on food sensory quality and gut homeostasis. This negative effect can be influenced by food composition and other processing factors. Whole grain products are rich in polyphenols, which can capture carbonyl compounds in Maillard reaction, and reduce the production of AGEs during frying. This review summarizes the Maillard reaction production intermediates and AGEs formation mechanism in fried food and analyzes the factors affecting the sensory formation of food. In the meanwhile, the effects of Maillard reaction intermediates and AGEs on gut homeostasis were summarized. Overall, the innovative processing methods about the Maillard reaction are summarized to optimize the sensory properties of fried foods while minimizing the formation of AGEs.


Asunto(s)
Productos Finales de Glicación Avanzada , Reacción de Maillard , Alimentos , Polifenoles , Homeostasis
12.
Front Microbiol ; 14: 1270158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029123

RESUMEN

Colorectal cancer (CRC) is a common malignant digestive tract tumor in colorectal regions. Considerable evidence now shows that the gut microbiota have essential roles in CRC occurrence and development. Most Gram-negative bacteria release outer membrane vesicles (OMVs) via outer membrane blistering, which contain specific cargoes which interact with host cells via intercellular communications, host immune regulation, and gut microbiota homeostasis. Studies have also shown that OMVs selectively cluster near tumor cells, thus cancer treatment strategies based on OMVs have attracted considerable research attention. However, little is known about the possible impact of gut microbiota OMVs in CRC pathophysiology. Therefore, in this review, we summarize the research progress on molecular composition and function of OMV, and review the microbial dysbiosis in CRC. We then focus on the potential role of gut microbiota OMVs in CRC. Finally, we examine the clinical potential of OMVs in CRC treatment, and their main advantages and challenges in tumor therapy.

13.
Front Microbiol ; 14: 1289102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965556

RESUMEN

Hypoxia represent a condition in which an adequate amount of oxygen supply is missing in the body, and it could be caused by a variety of diseases, including gastrointestinal disorders. This review is focused on the role of hypoxia in the maintenance of the gut homeostasis and related treatment of gastrointestinal disorders. The effects of hypoxia on the gut microbiome and its role on the intestinal barrier functionality are also covered, together with the potential role of hypoxia in the development of gastrointestinal disorders, including inflammatory bowel disease and irritable bowel syndrome. Finally, we discussed the potential of hypoxia-targeted interventions as a novel therapeutic approach for gastrointestinal disorders. In this review, we highlighted the importance of hypoxia in the maintenance of the gut homeostasis and the potential implications for the treatment of gastrointestinal disorders.

14.
Pharmacol Res ; 197: 106976, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38032293

RESUMEN

The extent of gut inflammation depends largely on the gut barrier's integrity and enteric neuroimmune interactions. However, the factors and molecular mechanisms that regulate inflammation-related changes in the enteric nervous system (ENS) remain largely unexplored. Eph/ephrin signaling is critical for inflammatory response, neuronal activation, and synaptic plasticity in the brain, but its presence and function in the ENS have been largely unknown to date. This review discusses the critical role of Eph/ephrin in regulating gut homeostasis, inflammation, neuroimmune interactions, and pain pathways. Targeting the Eph/ephrin system offers innovative treatments for gut inflammation disorders, offering hope for enhanced patient prognosis, pain management, and overall quality of life.


Asunto(s)
Encéfalo , Calidad de Vida , Humanos , Efrinas , Homeostasis , Inflamación
15.
Anim Nutr ; 15: 99-113, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38023380

RESUMEN

Selenium nanoparticles (SeNPs) are proposed as a safer and more effective selenium delivery system than sodium selenite (Na2SeO3). Here, we investigated the effects of replacing dietary Na2SeO3 with SeNPs synthesized by Lactobacillus casei ATCC 393 on the growth performance and gut health of early-weaned piglets. Seventy-two piglets (Duroc × Landrace × Large Yorkshire) weaned at 21 d of age were divided into the control group (basal diet containing 0.3 mg Se/kg from Na2SeO3) and SeNPs group (basal diet containing 0.3 mg Se/kg from SeNPs) during a 14-d feeding period. The results revealed that SeNPs supplementation increased the average daily gain (P = 0.022) and average daily feed intake (P = 0.033), reduced (P = 0.056) the diarrhea incidence, and improved (P = 0.013) the feed conversion ratio compared with Na2SeO3. Additionally, SeNPs increased jejunal microvilli height (P = 0.006) and alleviated the intestinal barrier dysfunction by upregulating (P < 0.05) the expression levels of mucin 2 and tight junction proteins, increasing (P < 0.05) Se availability, and maintaining mitochondrial structure and function, thereby improving antioxidant capacity and immunity. Furthermore, metabolomics showed that SeNPs can regulate lipid metabolism and participate in the synthesis, secretion and action of parathyroid hormone, proximal tubule bicarbonate reclamation and tricarboxylic acid cycle. Moreover, SeNPs increased (P < 0.05) the abundance of Holdemanella and the levels of acetate and propionate. Correlation analysis suggested that Holdemanella was closely associated with the regulatory effects of SeNPs on early-weaned piglets through participating in lipid metabolism. Overall, replacing dietary Na2SeO3 with biogenic SeNPs could be a potential nutritional intervention strategy to prevent early-weaning syndrome in piglets.

16.
Artículo en Inglés | MEDLINE | ID: mdl-37611884

RESUMEN

In photoperiod-sensitive wild animals, the secretion of melatonin (MT) is modulated by external photoperiod, and MT affects inflammation and the ageing process. The beneficial effects of MT in delaying the progress of ageing have been reported in laboratory mice and rats. However, little is known about MT in wild mammals. In the current study, we investigated energy metabolism, microbial community structure and colon homeostasis in ageing Mongolian gerbils (Meriones unguiculatus) through exogenous supplementation of MT to test the hypothesis that MT has beneficial effects on gut homeostasis in ageing gerbils. Exogenous MT supplementation had no effect on energy metabolism in Mongolian gerbils but reduced the levels of circulating tumor necrosis factor-α (TNF-α), immune globulin G (IgG) and corticosterone (CORT). The increase in the level of inflammation in ageing animals was related to changes in the structure and diversity of the gut microbiota. At the genus level, the relative abundance of Prevotella, Treponema, Corynebacterium, and Sphingomonas was increased in ageing animals and decreased significantly by the treatment of MT. Christensenella and Lactobacillus were attenuated in ageing animals, and tended to be enhanced by MT treatment. Functions related to glycosphingolipid biosynthesis-ganglio series and lipopolysaccharide biosynthesis (metabolisms of cofactors, vitamins and glycan) were increased in ageing animals and decreased significantly by the treatment of MT. Our data suggest that a supplement of MT could improve colon homeostasis through changing the composition of gut microbiota and reducing inflammation in ageing gerbils.


Asunto(s)
Melatonina , Ratones , Animales , Ratas , Gerbillinae , Melatonina/farmacología , Inflamación/tratamiento farmacológico , Metabolismo Energético , Colon , Envejecimiento
17.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552798

RESUMEN

Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.

18.
FEBS Open Bio ; 13(8): 1415-1433, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37423235

RESUMEN

Ulcerative colitis (UC) is a recurrent inflammatory disease related to gut microbiota disorder. Metabolites and their sensors play an important role in the communication between gut microbes and their host. Our previous study revealed that G protein-coupled receptor 35 (GPR35) is a key guardian of kynurenic acid (KA) and a core element of the defense responses against gut damage. However, the mechanism remains unknown. In this study, a DSS-induced rat colitis model was established and 16S rRNA sequencing was applied to explore the influence of GPR35-mediated KA sensing on gut microbiota homeostasis. Our results demonstrated that GPR35-mediated KA sensing is a necessary component in maintaining gut barrier integrity against DSS-induced damage. Furthermore, we provide compelling evidence suggesting that GPR35-mediated KA sensing plays a crucial role in maintaining gut microbiota homeostasis, which contributes to alleviation of DSS-induced colitis. In addition, five classes (Actinobacteria, Beta-/Gamma-proteobacteria, Erysipelotrichi, and Coriobacteriia) and six genera (Corynebacterium, Allobaculum, Parabacteroides, Sutterella, Shigella, and Xenorhabdus) were identified as the marked bacterial taxa that characterized the progression and outcome of colitis and are regulated by GPR35-mediated KA sensing. Our findings highlight that GPR35-mediated KA sensing is an essential defense mechanism against disorder of gut microbiota in UC. The results provide insights into the key role of specific metabolites and their monitor in maintaining gut homeostasis.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Ratas , Animales , Colitis Ulcerosa/microbiología , Ácido Quinurénico , ARN Ribosómico 16S/genética , Colitis/inducido químicamente , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Bacterias/metabolismo
19.
Nutrients ; 15(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37242159

RESUMEN

Background and objective: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic inflammatory disorder characterized by aberrant immune responses and compromised barrier function in the gastrointestinal tract. IBD is associated with altered gut microbiota and their metabolites in the colon. Butyrate, a gut microbial metabolite, plays a crucial role in regulating immune function, epithelial barrier function, and intestinal homeostasis. In this review, we aim to present an overview of butyrate synthesis and metabolism and the mechanism of action of butyrate in maintaining intestinal homeostasis and to discuss the therapeutic implications of butyrate in IBD. Methods: We searched the literature up to March 2023 through PubMed, Web of Science, and other sources using search terms such as butyrate, inflammation, IBD, Crohn's disease, and ulcerative colitis. Clinical studies in patients and preclinical studies in rodent models of IBD were included in the summary of the therapeutic implications of butyrate. Results: Research in the last two decades has shown the beneficial effects of butyrate on gut immune function and epithelial barrier function. Most of the preclinical and clinical studies have shown the positive effect of butyrate oral supplements in reducing inflammation and maintaining remission in colitis animal models and IBD patients. However, butyrate enema showed mixed effects. Butyrogenic diets, including germinated barley foodstuff and oat bran, are found to increase fecal butyrate concentrations and reduce the disease activity index in both animal models and IBD patients. Conclusions: The current literature suggests that butyrate is a potential add-on therapy to reduce inflammation and maintain IBD remission. Further clinical studies are needed to determine if butyrate administration alone is an effective therapeutic treatment for IBD.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Animales , Butiratos/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Inflamación
20.
Gut Microbes ; 15(1): 2208503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37129195

RESUMEN

The gut epithelia of virtually all animals harbor complex microbial communities that play an important role in maintaining immune and cellular homeostasis. Gut microbiota have evolutionarily adapted to the host gut environment, serving as key regulators of intestinal stem cells to promote a healthy gut barrier and modulate epithelial self-renewal. Disruption of these populations has been associated with inflammatory disorders or cancerous lesions of the intestine. However, the molecular mechanisms controlling gut-microbe interactions are only partially understood due to the high diversity and biologically dynamic nature of these microorganisms. This article reviews the current knowledge on Drosophila gut microbiota and its role in signaling pathways that are crucial for the induction of distinct homeostatic and immune responses. Thanks to the genetic tractability of Drosophila and its cultivable and simple microbiota, this association model offers new efficient tools for investigating the crosstalk between a host and its microbiota while providing a framework for a better understanding of the ecological and evolutionary roles of the microbiome.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Drosophila , Epitelio , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...