Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ISA Trans ; 141: 223-240, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37423885

RESUMEN

This study investigates the tracking control problem of helical microrobots (HMRs) in complicated blood environments. The integrated relative motion model of HMRs is established by resorting to the dual quaternion method, which can describe the coupling effect between the rotational and translational motions. Subsequently, an original apparent weight compensator (AWC) is designed to alleviate the adverse effects of the HMR sinking and drifting owing to its own weight and buoyancy. An adaptive sliding mode control based on the developed AWC (AWC-ASMC) is constructed to guarantee the fast convergence of the relative motion tracking errors in the presence of model uncertainties and unknown perturbations. The chattering phenomenon of the classical SMC is significantly reduced using the developed control strategy. Furthermore, the stability of the closed-loop system under the constructed control framework is demonstrated by the Lyapunov theory. Finally, numerical simulations are performed to demonstrate the validity and superiority of the developed control scheme.

2.
ACS Appl Mater Interfaces ; 15(21): 25942-25951, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204337

RESUMEN

Faced with complex and diverse tasks, researchers seek to introduce stimuli-responsive materials into the field of microrobots. Magnetic helical microrobots based on shape-memory polymers demonstrate excellent locomotion capability and programmable shape transformations. However, the stimulation method of shape changes is still dependent on the rising of ambient temperature and lacks the ability to address individuals among multiple microrobots. In this paper, magnetic helical microrobots were prepared based on polylactic acid and Fe3O4 nanoparticles, which demonstrated controlled locomotion under rotating magnetic fields and programmable shape changes in their length, diameter, and chirality. The transition temperature of shape recoveries was adjusted to a range above 37 °C. At 46 °C, helical microrobots had a fast shape change with a recovery ratio of 72% in a minute. The photothermal effect of Fe3O4 nanoparticles under near-infrared laser can actuate the shape recovery rapidly, with a recovery ratio of 77% in 15 s and 90% in a minute. The stimulation strategy also allows addressing among multiple microrobots, or even within a single microrobot, selectively stimulating one or a part to change its shape. Combined with the magnetic field, laser-addressed shape changes were used for precise deployment and individual control of microrobots. Multiple microrobots can be enriched at the targeted point, heating the ambient temperature over 46 °C. The shape changes of internal parts of microrobots help them to grasp and assemble objects. Such microrobots have great potential in biomedicine and micromanipulation.

3.
Front Robot AI ; 9: 1063987, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523446

RESUMEN

While the potential of using helical microrobots for biomedical applications, such as cargo transport, drug delivery, and micromanipulation, had been demonstrated, the viability to use them for practical applications is hindered by the cost, speed, and repeatability of current fabrication techniques. Hence, this paper introduces a simple, low-cost, high-throughput manufacturing process for single nickel layer helical microrobots with consistent dimensions. Photolithography and electron-beam (e-beam) evaporation were used to fabricate 2D parallelogram patterns that were sequentially rolled up into helical microstructures through the swelling effect of a photoresist sacrificial layer. Helical parameters were controlled by adjusting the geometric parameters of parallelogram patterns. To validate the fabrication process and characterize the microrobots' mobility, we characterized the structures and surface morphology of the microrobots using a scanning electron microscope and tested their steerability using feedback control, respectively. Finally, we conducted a benchmark comparison to demonstrate that the fabrication method can produce helical microrobots with swimming properties comparable to previously reported microrobots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...