Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.441
Filtrar
1.
RNA ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043438

RESUMEN

Ribosomal RNAs are transcribed as part of larger precursor molecules. In Escherichia coli, complementary RNA segments flank each rRNA and form long leader-trailer (LT) helices, which are crucial for subunit biogenesis in the cell. A previous study of 15 representative species suggested that most but not all prokaryotes contain LT helices. Here, we use a combination of in silico folding and covariation methods to identify and characterize LT helices in 4,464 bacterial and 260 archaeal organisms. Our results suggest that LT helices are present in all phyla, including Deinococcota, which had previously been suspected to lack LT helices. In very few organisms, our pipeline failed to detect LT helices for both 16S and 23S rRNA. However, a closer case-by-case look revealed that LT helices are indeed present but escaped initial detection. 3,618 secondary structure models, many well-supported by nucleotide covariation, were generated. These structures show a high degree of diversity. Yet, all exhibit extensive base-pairing between the leader and trailer strands, in line with a common and essential function.

2.
Angew Chem Int Ed Engl ; : e202412752, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043565

RESUMEN

We report the helix-sense-selective memory polymerization (HSMP) of achiral biphenylylacetylenes bearing carboxy and amino pendant groups in the presence of basic and acidic chiral guests in water, respectively. The HSMP proceeds in a highly helix-sense-selective manner driven by noncovalent chiral ionic interactions between the monomers and guests under kinetic control, producing the one-handed helical polymers with a static memory of helicity in one-pot during the polymerization in a very short time, accompanied by amplification of asymmetry. The carboxy-bound helicity-memorized polymer self-assembles into a cholesteric liquid crystal in concentrated water, in which a variety of basic achiral fluorophores further co-assembles to form supramolecular helical aggregates that exhibit an induced circularly polarized luminescence in a color tunable manner.

3.
ACS Infect Dis ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39054961

RESUMEN

Effective molecular strategies are needed to target pathogenic bacteria that thrive and proliferate within mammalian cells, a sanctuary inaccessible to many therapeutics. Herein, we present a class of cationic amphiphilic polyproline helices (CAPHs) with a rigid placement of the cationic moiety on the polyproline helix and assess the role of configuration of the unnatural proline residues making up the CAPHs. By shortening the distance between the guanidinium side chain and the proline backbone of the agents, a notable increase in cellular uptake and antibacterial activity was observed, whereas changing the configuration of the moieties on the pyrrolidine ring from cis to trans resulted in more modest increases. When the combination of these two activities was evaluated, the more rigid CAPHs were exceptionally effective at eradicating intracellular methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella infections within macrophages, significantly exceeding the clearance with the parent CAPH.

4.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39000573

RESUMEN

Mycobacteriophages are viruses that specifically infect bacterial species within the genera Mycobacterium and Mycolicibacterium. Over 2400 mycobacteriophages have been isolated on the host Mycolicibacterium smegmatis and sequenced. This wealth of genomic data indicates that mycobacteriophage genomes are diverse, mosaic, and contain numerous (35-60%) genes for which there is no predicted function based on sequence similarity to characterized orthologs, many of which are essential to lytic growth. To fully understand the molecular aspects of mycobacteriophage-host interactions, it is paramount to investigate the function of these genes and gene products. Here we show that the temperate mycobacteriophage, Alexphander, makes stable lysogens with a frequency of 2.8%. Alexphander gene 94 is essential for lytic infection and encodes a protein predicted to contain a C-terminal MerR family helix-turn-helix DNA-binding motif (HTH) and an N-terminal DinB/YfiT motif, a putative metal-binding motif found in stress-inducible gene products. Full-length and C-terminal gp94 constructs form high-order nucleoprotein complexes on 100-500 base pair double-stranded DNA fragments and full-length phage genomic DNA with little sequence discrimination for the DNA fragments tested. Maximum gene 94 mRNA levels are observed late in the lytic growth cycle, and gene 94 is transcribed in a message with neighboring genes 92 through 96. We hypothesize that gp94 is an essential DNA-binding protein for Alexphander during lytic growth. We proposed that gp94 forms multiprotein complexes on DNA through cooperative interactions involving its HTH DNA-binding motif at sites throughout the phage chromosome, facilitating essential DNA transactions required for lytic propagation.


Asunto(s)
Proteínas de Unión al ADN , Micobacteriófagos , Mycobacterium smegmatis , Proteínas Virales , Micobacteriófagos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mycobacterium smegmatis/virología , Mycobacterium smegmatis/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/química , Lisogenia/genética , Genoma Viral , ADN Viral/genética
5.
Adv Exp Med Biol ; 1459: 97-113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017841

RESUMEN

Helix-loop-helix (HLH) transcription factors (TFs) play a key role in various cellular differentiation and function through the regulation of enhancer activity. E2A, a member of the mammalian E-protein family (class I HLH protein), is well known to play an important role in hematopoiesis, especially in adaptive lymphocyte development. E2A instructs B- and T-cell lineage development through the regulation of enhancer activity for B- or T-cell signature gene expression, including Rag1 and Rag2 (Rag1/2) genes. In this chapter, we mainly focus on the function of E2A in B-cell development and on the roles of E2A in establishing the enhancer landscape through the recruitment of EP300/KAT3B, chromatin remodeling complex, mediator, cohesion, and TET proteins. Finally, we demonstrate how E2A orchestrates the assembly of the Rag1/2 gene super-enhancer (SE) formation by changing the chromatin conformation across the Rag gene locus.


Asunto(s)
Linfocitos B , Proteínas de Homeodominio , Humanos , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Elementos de Facilitación Genéticos/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ensamble y Desensamble de Cromatina , Diferenciación Celular/genética , Cromatina/metabolismo , Cromatina/genética , Proteína p300 Asociada a E1A/metabolismo , Proteína p300 Asociada a E1A/genética , Proteínas de Unión al ADN , Proteínas Nucleares
6.
Front Cell Dev Biol ; 12: 1406966, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994454

RESUMEN

Septins are a family of membrane-associated cytoskeletal guanine-nucleotide binding proteins that play crucial roles in various cellular processes, such as cell division, phagocytosis, and organelle fission. Despite their importance, the evolutionary origins and ancestral function of septins remain unclear. In opisthokonts, septins form five distinct groups of orthologs, with subunits from multiple groups assembling into heteropolymers, thus supporting their diverse molecular functions. Recent studies have revealed that septins are also conserved in algae and protists, indicating an ancient origin from the last eukaryotic common ancestor. However, the phylogenetic relationships among septins across eukaryotes remained unclear. Here, we expanded the list of non-opisthokont septins, including previously unrecognized septins from glaucophyte algae. Constructing a rooted phylogenetic tree of 254 total septins, we observed a bifurcation between the major non-opisthokont and opisthokont septin clades. Within the non-opisthokont septins, we identified three major subclades: Group 6 representing chlorophyte green algae (6A mostly for species with single septins, 6B for species with multiple septins), Group 7 representing algae in chlorophytes, heterokonts, haptophytes, chrysophytes, and rhodophytes, and Group 8 representing ciliates. Glaucophyte and some ciliate septins formed orphan lineages in-between all other septins and the outgroup. Combining ancestral-sequence reconstruction and AlphaFold predictions, we tracked the structural evolution of septins across eukaryotes. In the GTPase domain, we identified a conserved GAP-like arginine finger within the G-interface of at least one septin in most algal and ciliate species. This residue is required for homodimerization of the single Chlamydomonas septin, and its loss coincided with septin duplication events in various lineages. The loss of the arginine finger is often accompanied by the emergence of the α0 helix, a known NC-interface interaction motif, potentially signifying the diversification of septin-septin interaction mechanisms from homo-dimerization to hetero-oligomerization. Lastly, we found amphipathic helices in all septin groups, suggesting that membrane binding is an ancestral trait. Coiled-coil domains were also broadly distributed, while transmembrane domains were found in some septins in Group 6A and 7. In summary, this study advances our understanding of septin distribution and phylogenetic groupings, shedding light on their ancestral features, potential function, and early evolution.

7.
Heliyon ; 10(12): e33373, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022109

RESUMEN

This study assesses the nutritional composition and safety of lab-produced snail flour derived from Helix aspersa aspersa, an herbivorous pulmonated gastropod mollusc that occupies various trophic levels in food chains. Our analysis focused on key nutritional aspects, including moisture, ash, protein, and fat contents. Contaminant analysis on the powder showed levels below detectable limits for PAHs, PCBs, PBDEs. The heavy metal concentration was found to be either on par with or lower than values reported in existing literature, indicating the safety of these snail powders for human consumption. Our results revealed a notable presence of polyunsaturated fatty acids and essential amino acids and strongly support the idea that snail powders can serve as sustainable protein sources in both human and animal diets.

8.
Methods Mol Biol ; 2821: 9-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38997477

RESUMEN

B-cell epitope prediction is key to developing peptide-based vaccines and immunodiagnostics along with antibodies for prophylactic, therapeutic and/or diagnostic use. This entails estimating paratope binding affinity for variable-length peptidic sequences subject to constraints on both paratope accessibility and antigen conformational flexibility, as described herein for the HAPTIC2/HEPTAD User Toolkit (HUT). HUT comprises the Heuristic Affinity Prediction Tool for Immune Complexes 2 (HAPTIC2), the HAPTIC2-like Epitope Prediction Tool for Antigen with Disulfide (HEPTAD) and the HAPTIC2/HEPTAD Input Preprocessor (HIP). HIP enables tagging of residues (e.g., in hydrophobic blobs, ordered regions and glycosylation motifs) for exclusion from downstream analyses by HAPTIC2 and HEPTAD. HAPTIC2 estimates paratope binding affinity for disulfide-free disordered peptidic antigens (by analogy between flexible-ligand docking and protein folding), from terms attributed to compaction (in view of sequence length, charge and temperature-dependent polyproline-II helical propensity), collapse (disfavored by residue bulkiness) and contact (with glycine and proline regarded as polar residues that hydrogen bond with paratopes). HEPTAD analyzes antigen sequences that each contain two cysteine residues for which the impact of disulfide pairing is estimated as a correction to the free-energy penalty of compaction. All of HUT is freely accessible online ( https://freeshell.de/~badong/hut.htm ).


Asunto(s)
Epítopos de Linfocito B , Péptidos , Programas Informáticos , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/química , Péptidos/química , Péptidos/inmunología , Humanos , Mapeo Epitopo/métodos , Unión Proteica , Biología Computacional/métodos
9.
Subcell Biochem ; 104: 139-179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963487

RESUMEN

Lipoprotein lipase (LPL) is a critical enzyme in humans that provides fuel to peripheral tissues. LPL hydrolyzes triglycerides from the cores of lipoproteins that are circulating in plasma and interacts with receptors to mediate lipoprotein uptake, thus directing lipid distribution via catalytic and non-catalytic functions. Functional losses in LPL or any of its myriad of regulators alter lipid homeostasis and potentially affect the risk of developing cardiovascular disease-either increasing or decreasing the risk depending on the mutated protein. The extensive LPL regulatory network tunes LPL activity to allocate fatty acids according to the energetic needs of the organism and thus is nutritionally responsive and tissue dependent. Multiple pharmaceuticals in development manipulate or mimic these regulators, demonstrating their translational importance. Another facet of LPL biology is that the oligomeric state of the enzyme is also central to its regulation. Recent structural studies have solidified the idea that LPL is regulated not only by interactions with other binding partners but also by self-associations. Here, we review the complexities of the protein-protein and protein-lipid interactions that govern LPL structure and function.


Asunto(s)
Lipoproteína Lipasa , Lipoproteína Lipasa/metabolismo , Lipoproteína Lipasa/química , Lipoproteína Lipasa/genética , Humanos , Animales , Unión Proteica , Triglicéridos/metabolismo , Metabolismo de los Lípidos
10.
Protein J ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980534

RESUMEN

Spectroscopic studies on domains and peptides of large proteins are complicated because of the tendency of short peptides to form oligomers in aquatic buffers, but conjugation of a peptide with a carrier protein may be helpful. In this study we approved that a fragment of SK30 peptide from phospholipase A2 domain of VP1 Parvovirus B19 capsid protein (residues: 144-159; 164; 171-183; sequence: SAVDSAARIHDFRYSQLAKLGINPYTHWTVADEELLKNIK) turns from random coil to alpha helix in the acidic medium only in case if it had been conjugated with BSA (through additional N-terminal Cys residue, turning it into CSK31 peptide, and SMCC linker) according to CD-spectroscopy results. In contrast, unconjugated SK30 peptide does not undergo such shift because it forms stable oligomers connected by intermolecular antiparallel beta sheet, according to IR-spectroscopy, CD-spectroscopy, blue native gel electrophoresis and centrifugal ultrafiltration, as, probably, the whole isolated phospholipase domain of VP1 protein does. However, being a part of the long VP1 capsid protein, phospholipase domain may change its fold during the acidification of the medium in the endolysosome by the way of the formation of contacts between protonated His153 and Asp175, promoting the shift from random coil to alpha helix in its N-terminal part. This study opens up a perspective of vaccine development, since rabbit polyclonal antibodies against the conjugate of CSK31 peptide with BSA, in which the structure of the second alpha helix from the phospholipase A2 domain should be reproduced, can bind epitopes of the complete recombinant unique part of VP1 Parvovirus B19 capsid (residues: 1-227).

11.
J Biol Chem ; : 107606, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059491

RESUMEN

Transcription factors are challenging to target with small molecule inhibitors due to their structural plasticity and lack of catalytic sites. Notable exceptions include naturally ligand-regulated transcription factors, including our prior work with the HIF-2 transcription factor, showing that small molecule binding within an internal pocket of the HIF-2α PAS-B domain can disrupt its interactions with its dimerization partner, ARNT. Here, we explore the feasibility of targeting small molecules to the analogous ARNT PAS-B domain itself, potentially opening a promising route to modulate several ARNT-mediated signaling pathways. Using solution NMR fragment screening, we previously identified several compounds that bind ARNT PAS-B and, in certain cases, antagonize ARNT association with the TACC3 transcriptional coactivator. However, these ligands have only modest binding affinities, complicating characterization of their binding sites. We address this challenge by combining NMR, MD simulations, and ensemble docking to identify ligand-binding 'hotspots' on and within the ARNT PAS-B domain. Our data indicate that the two ARNT/TACC3 inhibitors, KG-548 and KG-655, bind to a ß-sheet surface implicated in both HIF-2 dimerization and coactivator recruitment. Furthermore, while KG-548 binds exclusively to the ß-sheet surface, KG-655 can additionally bind within a water-accessible internal cavity in ARNT PAS-B. Finally, KG-279, while not a coactivator inhibitor, exemplifies ligands that preferentially bind only to the internal cavity. All three ligands promoted ARNT PAS-B homodimerization, albeit to varying degrees. Taken together, our findings provide a comprehensive overview of ARNT PAS-B ligand-binding sites and may guide the development of more potent coactivator inhibitors for cellular and functional studies.

12.
Biol Pharm Bull ; 47(7): 1338-1344, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39048355

RESUMEN

The initiation of DNA replication is tightly controlled by the licensing system that loads replicative DNA helicases onto replication origins to form pre-replicative complexes (pre-RCs) once per cell cycle. Cdc10-dependent transcript 1 (Cdt1) plays an essential role in the licensing reaction by recruiting mini-chromosome maintenance (MCM) complexes, which are eukaryotic replicative DNA helicases, to their origins via direct protein-protein interactions. Cdt1 interacts with other pre-RC components, the origin recognition complex, and the cell division cycle 6 (Cdc6) protein; however, the molecular mechanism by which Cdt1 functions in the MCM complex loading process has not been fully elucidated. Here, we analyzed the protein-protein interactions of recombinant Cdt1 and observed that Cdt1 self-associates via the central region of the molecule, which is inhibited by the endogenous licensing inhibitor, geminin. Mutation of two ß-strands of the winged-helix domain in the central region of Cdt1 attenuated its self-association but could still interact with other pre-RC components and DNA similarly to wild-type Cdt1. Moreover, the Cdt1 mutant showed decreased licensing activity in Xenopus egg extracts. Together, these results suggest that the self-association of Cdt1 is crucial for licensing.


Asunto(s)
Proteínas de Ciclo Celular , Geminina , Animales , Geminina/metabolismo , Geminina/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Replicación del ADN , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis , Dominios Proteicos , Xenopus , Humanos , Proteínas de Unión al ADN
13.
Methods Enzymol ; 698: 221-245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38886033

RESUMEN

The oligo-benzamide scaffold is a rigid organic framework that can hold 2-3 functional groups as O-alkyl substituents on its benzamide units, mirroring their natural arrangement in an α-helix. Oligo-benzamides demonstrated outstanding α-helix mimicry and can be readily synthesized by following high yielding and iterative reaction steps in both solution-phase and solid-phase. A number of oligo-benzamides have been designed to emulate α-helical peptide segments in biologically active proteins and showed strong protein binding, in turn effectively disrupting protein-protein interactions in vitro and in vivo. In this chapter, the design of oligo-benzamides for mimicking α-helices, efficient synthetic routes for producing them, and their biomedical studies showing remarkable potency in inhibiting protein functions are discussed.


Asunto(s)
Benzamidas , Benzamidas/química , Benzamidas/farmacología , Humanos , Péptidos/química , Conformación Proteica en Hélice alfa , Unión Proteica , Animales
14.
Eur Biophys J ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849514

RESUMEN

Alamethicin, a peptide consisted of 20 amino acid residues, has been known to function as an antibiotic. The peptides self-associate in biological membranes, form an ion channel, and then induce cell death by leaking intracellular contents through a transmembrane pore of an ion channel. We investigated conformation and its thermal stability of alamethicin-A6 and -U6 in ethanol using proton nuclear magnetic resonance (NMR) spectroscopy; alamethicin-A6 and -U6 have the amino acid sequences of UPUAUAQUVUGLUPVUUQQO and UPUAUUQUVUGLUPVUUQQO, respectively, where U and O represent α-aminoisobutyric acid and phenylalaninol, respectively. As indicated by the under bars in the sequences, only the residue 6 differs between the alamethicins. We show that the alamethicins in ethanol form helix conformation in the region of the residues 2-11 and a non-regular conformation in the regions of the N- and C-termini, and that the helices are maintained up to 66 °C at least. Conformations in the region of the residues 12-18 of the alamethicins, however, are not well identified due to the lack of NMR data. In addition, we demonstrate that the amide proton chemical shift temperature coefficients' method, which is known as an indicator for intramolecular hydrogen bonds in peptides and proteins in aqueous solutions, can be also applied to the alamethicins in ethanol. Further, we show that the conformation around the C-terminus of alamethicin-A6 is restrained by intramolecular hydrogen bonds, whereas that of alamethicin-U6 is either restrained or unrestrained by intramolecular hydrogen bonds; the alamethicin-U6 molecules having the restrained and unrestrained conformations coexist in ethanol. We discuss the two types of conformations using a model chain consisting of particles linked by rigid bonds called as the free jointed chain.

15.
Genes (Basel) ; 15(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38927623

RESUMEN

HELIX syndrome (Hypohidrosis-Electrolyte disturbances-hypoLacrimia-Ichthyosis-Xerostomia) (MIM#617671) (ORPHA:528105), described in 2017, is due to an abnormal claudin 10 b protein, secondary to pathogenic CLDN10 variants. So far, only ten families have been described. We aim to describe the phenotype in the first Spanish family identified, highlight the skin anomalies as an important clue, and expand the genotypic spectrum. Two adult brothers from consanguineous parents with suspected ectodermal dysplasia (ED) since early childhood were re-evaluated. A comprehensive phenotypic exam and an aCGH + SNP4 × 180 K microarray followed by Sanger sequencing of the CLDN10 gene were performed. They presented hypohidrosis, xerosis, mild ichthyosis, plantar keratosis, palm hyperlinearity, alacrima, and xerostomia. In adulthood, they also developed a salt-losing nephropathy with hypokalemia and hypermagnesemia. The molecular study in both patients revealed a novel pathogenic homozygous deletion of 8 nucleotides in exon 2 of the CLDN10 gene [CLDN10 (NM_0006984.4): c.322_329delGGCTCCGA, p.Gly108fs*] leading to a premature truncation of the protein. Both parents were heterozygous carriers. Hypohidrosis, ichthyosis, and plantar keratosis associated with alacrima and xerostomia should raise suspicion for HELIX syndrome, which also includes nephropathy and electrolyte disturbances in adults. Given the potential for ED misdiagnosis in infancy, it is important to include the CLDN10 gene in a specific genodermatosis next-generation sequencing (NGS) panel to provide early diagnosis, accurate management, and genetic counseling.


Asunto(s)
Claudinas , Humanos , Masculino , Claudinas/genética , Adulto , Ictiosis/genética , Ictiosis/patología , Hipohidrosis/genética , Displasia Ectodérmica/genética , Displasia Ectodérmica/patología , Linaje , Fenotipo
16.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38928089

RESUMEN

SARS-CoV-2 S-protein-mediated fusion is thought to involve the interaction of the membrane-distal or N-terminal heptad repeat (NHR) ("HR1") of the cleaved S2 segment of the protein and the membrane-proximal or C-terminal heptad repeat (CHR) ("HR2") regions of the protein. We examined the fusion inhibitory activity of a PEGylated HR2-derived peptide and its palmitoylated derivative using a pseudovirus infection assay. The latter peptide caused a 76% reduction in fusion activity at 10 µM. Our results suggest that small variations in peptide derivatization and differences in the membrane composition of pseudovirus preparations may affect the inhibitory potency of HR2-derived peptides. We suggest that future studies on the inhibition of infectivity of SARS-CoV-2 in both in vitro and in vivo systems consider the need for higher concentrations of peptide inhibitors.


Asunto(s)
Péptidos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Péptidos/farmacología , Péptidos/química , Ácido Palmítico/farmacología , Ácido Palmítico/química , Internalización del Virus/efectos de los fármacos , COVID-19/virología , COVID-19/metabolismo , Antivirales/farmacología , Antivirales/química
17.
Nano Lett ; 24(27): 8296-8302, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38920284

RESUMEN

Chirality is inherent to a broad range of systems, including solid-state and wave physics. The precession (chiral motion) of the magnetic moments in magnetic materials, forming spin waves, has various properties and many applications in magnetism and spintronics. We show that an optical analogue of spin waves can be generated in arrays of plasmonic nanohelices. Such optical waves arise from the interaction between twisted helix eigenmodes carrying spin and orbital angular momenta. We demonstrate that these optical spin waves are reflected at the interface between successive domains of enantiomeric nanohelices, forming a heterochiral lattice regardless of the wave propagation direction within the lattice. Optical spin waves may be applied in techniques involving photon spin, ranging from data processing and storage to quantum optics.

18.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38928112

RESUMEN

The Davydov model was conjectured to describe how an amide I excitation created during ATP hydrolysis in myosin might be significant in providing energy to drive myosin's chemomechanical cycle. The free energy surfaces of the myosin relay helix peptide dissolved in 2,2,2-trifluoroethanol (TFE), determined by metadynamics simulations, demonstrate local minima differing in free energy by only ~2 kT, corresponding to broken and stabilized hydrogen bonds, respectively. Experimental pump-probe and 2D infrared spectroscopy were performed on the peptide dissolved in TFE. The relative heights of two peaks seen in the pump-probe data and the corresponding relative volumes of diagonal peaks seen in the 2D-IR spectra at time delays between 0.5 ps and 1 ps differ noticeably from what is seen at earlier or later time delays or in the linear spectrum, indicating that a vibrational excitation may influence the conformational state of this helix. Thus, it is possible that the presence of an amide I excitation may be a direct factor in the conformational state taken on by the myosin relay helix following ATP hydrolysis in myosin.


Asunto(s)
Simulación de Dinámica Molecular , Miosinas , Miosinas/química , Miosinas/metabolismo , Espectrofotometría Infrarroja/métodos , Péptidos/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Enlace de Hidrógeno , Hidrólisis , Conformación Proteica en Hélice alfa
19.
Environ Sci Pollut Res Int ; 31(31): 43591-43615, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38935280

RESUMEN

The steel industry, crucial to the global economy, grapples with critical sustainable challenges, including high energy consumption, greenhouse gas emissions, and non-renewable resource utilization, making sustainability imperative for upholding its economic role without compromising the planet or societal well-being. This study proposes a framework aimed at advancing sustainability in the steel industry through the articulation of the triple helix sectors (university, industry, and government). Based on the integrative review scientific method, systematic selection, interpretation, and synthesis of information from various sources were carried out to map a technical-scientific scenario of sustainability in the steel industry. This scenario informed benchmarking which, in light of the scientific theory and the authors' expertise, enabled the proposition of customized actions aimed at the triple helix actors. The main theoretical-scientific contribution lies in deepening and expanding the knowledge that connects sustainability to the steel industry, thus reinforcing the basis for future research and empirical studies. As for the managerial-applied contribution, this work can guide universities in developing sustainable projects and establishing industrial partnerships; steel companies benefit from the best practices and technologies, while also achieving regulatory compliance; and governments can promote public policies that boost sustainability in the steel sector.


Asunto(s)
Acero , Industrias , Metalurgia
20.
Plant Cell Rep ; 43(7): 179, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913159

RESUMEN

KEY MESSAGE: DzMYB2 functions as an MYB activator, while DzMYB3 acts as an MYB repressor. They bind to promoters, interact with DzbHLH1, and influence phenolic contents, revealing their roles in phenylpropanoid regulation in durian pulps. Durian fruit has a high nutritional value attributed to its enriched bioactive compounds, including phenolics, carotenoids, and vitamins. While various transcription factors (TFs) regulate phenylpropanoid biosynthesis, MYB (v-myb avian myeloblastosis viral oncogene homolog) TFs have emerged as pivotal players in regulating key genes within this pathway. This study aimed to identify additional candidate MYB TFs from the transcriptome database of the Monthong cultivar at five developmental/postharvest ripening stages. Candidate transcriptional activators were discerned among MYBs upregulated during the ripe stage based on the positive correlation observed between flavonoid biosynthetic genes and flavonoid contents in ripe durian pulps. Conversely, MYBs downregulated during the ripe stage were considered candidate repressors. This study focused on a candidate MYB activator (DzMYB2) and a candidate MYB repressor (DzMYB3) for functional characterization. LC-MS/MS analysis using Nicotiana benthamiana leaves transiently expressing DzMYB2 revealed increased phenolic compound contents compared with those in leaves expressing green fluorescence protein controls, while those transiently expressing DzMYB3 showed decreased phenolic compound contents. Furthermore, it was demonstrated that DzMYB2 controls phenylpropanoid biosynthesis in durian by regulating the promoters of various biosynthetic genes, including phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR). Meanwhile, DzMYB3 regulates the promoters of PAL, 4-coumaroyl-CoA ligase (4CL), CHS, and CHI, resulting in the activation and repression of gene expression. Moreover, it was discovered that DzMYB2 and DzMYB3 could bind to another TF, DzbHLH1, in the regulation of flavonoid biosynthesis. These findings enhance our understanding of the pivotal role of MYB proteins in regulating the phenylpropanoid pathway in durian pulps.


Asunto(s)
Flavonoides , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Flavonoides/metabolismo , Flavonoides/biosíntesis , Aciltransferasas/genética , Aciltransferasas/metabolismo , Propanoles/metabolismo , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Fenilanina Amoníaco-Liasa/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...