Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Respirology ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967138
2.
Nat Prod Res ; : 1-5, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982630

RESUMEN

Mitragynine, a primary alkaloid found in kratom leaves has been reported to have a broad range of pharmacological and toxicological properties while its congener, paynatheine has comparatively less information available on these aspects. Mitragynine and its congener, paynantheine, were isolated from the ethanol kratom leaves extract using gravity column chromatography techniques. Our study evaluated the cytotoxicity potential of mitragynine and paynantheine on normal human liver cell line, HL-7702, and human hepatoma cell line, HepG2. Mitragynine exhibited a moderate inhibitory effect on the HepG2 cell line with IC50 value of 42.11 ± 1.31 µM in comparison with vinblastine (IC50: 15.45 ± 0.72 µM) while it showed non-cytotoxic properties towards the HL-7702 cell line with concentrations ranging below 200 µM. In contrast, paynantheine exhibited weak cytotoxic properties towards HepG2 and HL-7702 cell lines. Further comprehensive evaluations of both compounds are needed to establish more details on the cytotoxicity potential of kratom alkaloids.

3.
Sci Total Environ ; 927: 172237, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582105

RESUMEN

Dichloroacetonitrile (DCAN), an emerged nitrogenous disinfection by-product (N-DBP) in drinking water, has garnered attention owing to its strong cytotoxicity, genotoxicity, and carcinogenicity. However, there are limited studies on its potential hepatotoxicity mechanisms. Understanding hepatotoxicity is essential in order to identify and assess the potential risks posed by environmental pollutants on liver health and to safeguard public health. Here, we investigated the viability, reactive oxygen species (ROS) levels, and cell cycle profile of DCAN-exposed HepG2 cells and analyzed the mechanism of DCAN-induced hepatotoxicity using both transcriptomic and metabolomic techniques. The study revealed that there was a decrease in cell viability, increase in ROS production, and increase in the number of cells in the G2/M phase with an increase in the concentration of DCAN. Omics analyses showed that DCAN exposure increased cellular ROS levels, leading to oxidative damage in hepatocytes, which further induced DNA damage, cell cycle arrest, and cell growth impairment. Thus, DCAN has significant toxic effects on hepatocytes. Integrated analysis of transcriptomics and metabolomics offers new insights into the mechanisms of DCAN-induced hepatoxicity.


Asunto(s)
Acetonitrilos , Metabolómica , Transcriptoma , Humanos , Transcriptoma/efectos de los fármacos , Células Hep G2 , Acetonitrilos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo
4.
Int Immunopharmacol ; 132: 111937, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38569427

RESUMEN

Tuberculosis (TB) treatment requires a long therapeutic duration and induces adverse effects such as hepatotoxicity, causing discontinuation of treatment. Reduced adherence to TB medications elevates the risk of recurrence and the development of drug resistance. Additionally, severe cavitary TB with a high burden of Mycobacterium tuberculosis (Mtb) and inflammation-mediated tissue damage may need an extended treatment duration, resulting in a higher tendency of drug-induced toxicity. We previously reported that the administration of Lactobacillus sakei CVL-001 (L. sakei CVL-001) regulates inflammation and improves mucosal barrier function in a murine colitis model. Since accumulating evidence has reported the functional roles of probiotics in drug-induced liver injury and pulmonary inflammation, we employed a parabiotic form of the L. sakei CVL-001 to investigate whether this supplement may provide beneficial effects on the reduction in drug-induced liver damage and pulmonary inflammation during chemotherapy. Intriguingly, L. sakei CVL-001 administration slightly reduced Mtb burden without affecting lung inflammation and weight loss in both Mtb-resistant and -susceptible mice. Moreover, L. sakei CVL-001 decreased T cell-mediated inflammatory responses and increased regulatory T cells along with an elevated antigen-specific IL-10 production, suggesting that this parabiotic may restrain excessive inflammation during antibiotic treatment. Furthermore, the parabiotic intervention significantly reduced levels of alanine aminotransferase, an indicator of hepatotoxicity, and cell death in liver tissues. Collectively, our data suggest that L. sakei CVL-001 administration has the potential to be an adjunctive therapy by reducing pulmonary inflammation and liver damage during anti-TB drug treatment and may benefit adherence to TB medication in lengthy treatment.


Asunto(s)
Latilactobacillus sakei , Mycobacterium tuberculosis , Probióticos , Animales , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/inmunología , Ratones , Neumonía/tratamiento farmacológico , Neumonía/inmunología , Antituberculosos/uso terapéutico , Antituberculosos/efectos adversos , Femenino , Tuberculosis/tratamiento farmacológico , Tuberculosis/inmunología , Ratones Endogámicos C57BL , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Humanos , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/microbiología , Interleucina-10/metabolismo , Ratones Endogámicos BALB C , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/inmunología
5.
Cureus ; 16(2): e53533, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38445150

RESUMEN

This case report delves into the intricate challenges of managing tuberculosis (TB) in a 70-year-old male with decompensated chronic liver disease (DCLD) and a history of endoscopic variceal ligation. The patient, initially presenting with symptoms such as black-colored stools, breathlessness, and weight loss, was diagnosed with right-sided pneumonia alongside DCLD. Despite the administration of standard beta-lactam plus macrolide antibiotics, the patient exhibited no improvement. Subsequent bronchoscopy revealed Mycobacterium tuberculosis (MTB), prompting the initiation of first-line anti-tubercular therapy. However, the hepatotoxic response necessitated a switch to a modified regimen with non-hepatotoxic drugs, emphasizing the challenge of managing TB in cirrhotic patients. Effective management of MTB infection involves personalized administration of anti-TB drugs, taking into account the individual's chronic liver disease status. This case underscores the importance of treating tuberculosis in liver cirrhosis patients based on the Child-Turcotte-Pugh score. A tailored and vigilant approach is indispensable for the successful management of MTB infection.

6.
Toxics ; 12(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38250995

RESUMEN

This review presents a new perspective on the exacerbation of autism spectrum disorder (ASD) by per- and polyfluoroalkyl substances (PFAS) through the gut-liver-brain axis. We have summarized evidence reported on the involvement of the gut microbiome and liver inflammation that led to the onset and exacerbation of ASD symptoms. As PFAS are toxicants that particularly target liver, this review has comprehensively explored the possible interaction between PFAS and acetaminophen, another liver toxicant, as the chemicals of interest for future toxicology research. Our hypothesis is that, at acute dosages, acetaminophen has the ability to aggravate the impaired conditions of the PFAS-exposed liver, which would further exacerbate neurological symptoms such as lack of social communication and interest, and repetitive behaviors using mechanisms related to the gut-liver-brain axis. This review discusses their potential interactions in terms of the gut-liver-brain axis and signaling pathways that may contribute to neurological diseases.

7.
Mar Environ Res ; 193: 106294, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38096712

RESUMEN

Contamination of the aquatic environment with different insecticides is a major concern in the aquatic ecosystem today. For this reason, in the designed study, Thiamethoxam (TMX) for which there is limited information on its negative effects on Oncorhynchus mykiss was investigated, its effects on hematotoxicity, oxidative status, cytotoxicity, DNA damage and apoptotic status indicators in blood/liver tissue. However, the antitoxic potential of ulexite (UX) supplementation in the elimination of TMX-mediated toxicity has been determined. LC50-96h value determined for TMX 0.73 mg/L has been determined. As a result of hematology profile, TMX application, RBC, Hgb and Hct values showed a temporal decrease compared to the control group, while increases were determined in MCV, MCH and MCHC values. It was determined that the inhibition/induction of hematological parameters was slowed down by adding UX to the medium. During the trial (48th and 96th hours), it was noted that TMX induced cortisol level, while UX supplementation slowed this induction at 48th hour. Antioxidant enzyme activities were significantly inhibited by TMX application, and MDA and MPO values increased as a result of the stimulation of ROS. It was determined that UX added to the medium showed activity in favor of antioxidants and tried to inhibit MDA and MPO levels. When Nrf-2, one of the inflammation parameters, was compared with the administration and control groups, it was determined that it inhibited depending on time, TNF-α, IL-6, DNA damage and apoptosis were induced, and UX suppressed this situation. The results obtained were evaluated as statistically meaningful. Briefly, it was determined that TMX induced oxidative damage in all tissues at 48th - 96th hours, whereas UX mitigated this situation. The results provide possible in vivo evidence that UX supplements can reduce TMX-mediated oxidative stress and tissues damage in O. mykiss blood and liver tissues.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Insecticidas , Humanos , Tiametoxam/toxicidad , Ecosistema , Estrés Oxidativo , Antioxidantes , Insecticidas/toxicidad
8.
Toxics ; 11(11)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37999577

RESUMEN

Doxorubicin (DOX) is a broad-spectrum antineoplastic agent that widely used in clinic. However, its application is largely limited by its toxicity in multiple organs. Fibroblast growth factor 1 (FGF1) showed protective potential in various liver diseases, but the role of endogenous FGF1 in DOX-induced liver damage is currently unknown. Both wild-type (WT) and FGF1 knockout (FGF1-KO) mice were treated with DOX. DOX induced loss of body weight and liver weight and elevation of ALT and AST in WT mice, which were aggravated by FGF1 deletion. FGF1 deletion exacerbated hepatic oxidative stress mirrored by further elevated 3-nitrosative modification of multiple proteins and malondialdehyde content. These were accompanied by blunted compensatively antioxidative responses indicated by impaired upregulation of nuclear factor erythroid 2-related factor 2 and its downstream antioxidant gene expression. The aggravated oxidative stress was coincided with exacerbated cell apoptosis in DOX-treated FGF1-KO mice reflected by further increased TUNEL positive cell staining and BCL-2-associated X expression and caspase 3 cleavage. These detrimental changes in DOX-treated FGF1-KO mice were associated with worsened intestinal fibrosis and increased upregulation fibrotic marker connective tissue growth factor and α-smooth muscle actin expression. However, DOX-induced hepatic inflammatory responses were not further affected by FGF1 deletion. These results demonstrate that endogenous FGF1 deficiency aggravates DOX-induced liver damage and FGF1 is a potential therapeutic target for treatment of DOX-associated hepatoxicity.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37930392

RESUMEN

To investigate and compare efficacy as well as safety of Bacillus subtilis and dexamethasone (Dexa) in complete Freund's adjuvant (CFA)-induced arthritis, we used glucocorticoid monotherapy (Dexa 5 mg/kg/day) and B. subtilis (1 × 108 CFU/animal/day p.o) as pre-treatment and concurrent treatment for a duration of 35 days. Specific emphasis was on chronic aspect of this study since long-term use of Dexa is known to produce undesirable side effects. Treatment with Dexa significantly attenuated the arthritic symptoms but produced severe side effects like weight loss, increased mortality, immunosuppression, and altered histology of liver, kidney, and spleen. Oxidative stress was also elevated by Dexa in these organs which contributed to the damage. Treatment with B. subtilis improved symptoms of arthritis without producing any deleterious side effects as seen with Dexa therapy. Immunohistochemistry (IHC) profile revealed decreased expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1ß, tumor necrosis factor alpha (TNF-α), and increased nuclear factor erythroid 2-related factor 2 (Nrf-2) expression by B. subtilis and Dexa treatment in ankle joint of arthritic mice. Radiological scores were also improved by both treatments. This study concludes that B. subtilis could be an effective alternative for treating arthritis than Dexa since it does not produce life-threatening side effects on prolong treatment.

10.
Drug Metab Dispos ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37793785

RESUMEN

In the early '70s, Dr B. B. Brodie, Head of the LCP, NHI, NIH, initiated a program to elucidate the mechanism of hepatic necrosis induced in rats by bromobenzene. These studies showed a crucial role for its 3,4-epoxide intermediate, known in part, to collapse to 4-bromophenol. To examine a possible contribution of this phenol to tissue toxicity, some rats were co-administered a high dose of acetaminophen to suppress phenolic clearance by glucuronidation and sulfation. Subsequent examination of liver slices showed that the acetaminophen-only control rats had extensive centrilobular liver necrosis. This article is a personal reminiscence of the events that led up to this accidental observation, how it happened, and the subsequent resolution of the underlying mechanism, including the covalent binding of NAPQI to liver protein as the initial "hit", the glutathione protective threshold, the antidotal activity of cysteine, and the existence of the "therapeutic window" for antidotal therapy. Collectively, these studies formed the basis for antidotal therapy of acetaminophen overdose patients, Significance Statement Not applicable.

11.
Curr Res Toxicol ; 5: 100131, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841056

RESUMEN

Several toxicological studies were conducted to evaluate the hepatoxicity of PBDEs using different animal models, congeners, duration of exposure, and other parameters. These variations in different animal models and conditions might have an impact on extrapolating experimental results to humans. Hence, by the meta-analysis, we aimed to clarify and elucidate the species differences in hepatoxicity induced by PBDE exposure in rats and mice across different conditions and moderators. Fourteen in vivo studies that utilized rats and mice models were identified, and data such as author names, year of publication, type of PBDE congeners, rodent species, life stage of exposure, dosage, duration, and hepatoxicity indicators were extracted. The pooled standard mean difference (SMD) with a 95% confidence interval (95% CI) was used to evaluate the association between hepatoxicity and PBDE exposure across multiple approaches of measurement. Subgroup analysis, meta-regression, and interaction analysis were utilized to elucidate the species-related differences among the results of the involved studies. The pooled SMD of hepatoxicity of PBDE exposure in the involved in vivo studies was 1.82 (p = 0.016), indicating exposure to PBDE congeners and mixtures is associated with a significant increase in liver toxicity in rodents. Moreover, findings showed that rats were more sensitive to PBDEs than mice with the BDE-209 had the highest SMD value. Among the life stages of exposure, embryonic stage was found to be the most sensitive to hepatoxicity induced by PBDE congeners. Positive relationships were found between the incidence of hepatoxicity with dosage and duration of exposure to PBDE. Interaction analyses showed significant interactions between rodent species (rats or mice), dosage, length of exposure, and hepatotoxicity endpoints. Rats demonstrated an increased susceptibility to variations in organ weight, histopathological changes, mitochondrial dysfunction, and oxidative stress markers. Conversely, mice showed pronounced lipid accumulation and modifications in liver enzyme expression levels. However, significant differences were not found in terms of endoplasmic reticular stress as a mechanistic endpoint for hepatotoxicity. In conclusion, this meta-analysis showed that there might be some species-related differences in hepatoxicity induced by PBDE exposure in rats and mice depending on the parameters used. This study highlights the importance of cross-species extrapolation of results from animal models to accurately assess the potential risks to human health from exposure to PBDEs.

13.
Environ Pollut ; 335: 122296, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37536476

RESUMEN

Uranium is a contaminate in the underground water in many regions of the world, which poses health risks to the local populations through drinking water. Although the health hazards of natural uranium have been concerned for decades, the controversies about its detrimental effects continue at present since it is still unclear how uranium interacts with molecular regulatory networks to generate toxicity. Here, we integrate transcriptomic and metabolomic methods to unveil the molecular mechanism of lipid metabolism disorder induced by uranium. Following exposure to uranium in drinking water for twenty-eight days, aberrant lipid metabolism and lipogenesis were found in the liver, accompanied with aggravated lipid peroxidation and an increase in dead cells. Multi-omics analysis reveals that uranium can promote the biosynthesis of unsaturated fatty acids through dysregulating the metabolism of arachidonic acid (AA), linoleic acid, and glycerophospholipid. Most notably, the disordered metabolism of polyunsaturated fatty acids (PUFAs) like AA may contribute to lipid peroxidation induced by uranium, which in turn triggers ferroptosis in hepatocytes. Our findings highlight disorder of lipid metabolism as an essential toxicological mechanism of uranium in the liver, offering insight into the health risks of uranium in drinking water.


Asunto(s)
Agua Potable , Uranio , Ratones , Animales , Uranio/toxicidad , Uranio/metabolismo , Transcriptoma , Hígado/metabolismo , Ácidos Grasos Insaturados/metabolismo , Metabolómica
14.
Fish Shellfish Immunol ; 139: 108906, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37348686

RESUMEN

Synthetic phenolic antioxidants (SPAs) are an environmental concern due to their persistence nature and bioaccumulation. However, the hepatoxicity and mechanisms of SPAs in aquatic organisms remain poorly understood. In this study, grass carp were exposed to two representative SPAs (BHA and BHT) at environmentally relevant levels (0.1 µM) for 30 days. We observed that BHA and BHT exposure significantly increased the levels of serum aminotransferase (ALT) and aspartate aminotransferase (AST) in grass carp, accompanied by mild inflammatory cell infiltration and irregularity in the shape of hepatocytes. Dihydro ethylenediamine staining showed that BHA and BHT exposure resulted in elevated levels of superoxide levels, accompanied by increased antioxidant enzyme activities (T-AOC, SOD, CAT, GSH-PX) and MDA levels, which is suggestive of oxidative stress responses in the liver of grass carp. Besides, BHA and BHT could dock into the pocket of phosphatidylinositol 3-kinases (PI3K) and thereby inhibiting PI3K/mammalian target of rapamycin (mTOR)/protein kinase B (AKT) signaling cascades. Meanwhile, our results clarified that BHA and BHT could promote autophagosome production and increase the expression of key autophagy proteins, likely due to inhibition of PI3K/mTOR/AKT signaling pathway. Moreover, BHA and BHT could induce apoptotic process by upregulating the expression of Bax, Caspase3 and Caspase8 and downregulating Bcl2 expression. Notably, BHT exhibited more hepatoxicity on the indicators of the apoptosis and oxidative stress than BHA. In summary, our findings demonstrated that BHA and BHT exposure could induce liver damage induced via regulating ROS/PI3K-mediated autophagic hyperactivation, which is a crucial step in triggering hepatocyte death. This study provides novel insight into the potential mechanisms underlying liver damage caused by BHA and BHT in aquatic organisms, and offers a new theoretical basis for ecological risk assessment of SPAs.


Asunto(s)
Antioxidantes , Carpas , Animales , Antioxidantes/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Sirolimus , Carpas/metabolismo , Fenoles , Apoptosis , Autofagia , Serina-Treonina Quinasas TOR/metabolismo , Mamíferos/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-37055905

RESUMEN

The hepatotoxicity of drugs is one of the leading causes of drug withdrawal from the pharmaceutical market and high drug attrition rates. Currently, the commonly used hepatocyte models include conventional hepatic cell lines and animal models, which cannot mimic human drug-induced liver injury (DILI) due to poorly defined dose-response relationships and/or lack of human-specific mechanisms of toxicity. In comparison to 2D culture systems from different cell sources such as primary human hepatocytes and hepatomas,, 3D organoids derived from an inducible pluripotent stem cell (iPSC) or adult stem cells are promising accurate models to mimic organ behavior with a higher level of complexity and functionality owing to their ability to self-renewal. Meanwhile, the heterogeneous cell composition of the organoids enables metabolic and functional zonation of hepatic lobule important in drug detoxification and has the ability to mimic idiosyncratic DILI as well. Organoids having higher drug-metabolizing enzyme capacities can culture long-term and be combined with microfluidic-based technologies such as organ-on-chips for a more precise representation of human susceptibility to drug response in a high-throughput manner. However, there are numerous limitations to be considered about this technology, such as enough maturation, differences between protocols and high cost. Herein, we first reviewed the current preclinical DILI assessment tools and looked at the organoid technology with respect to in vitro detoxification capacities. Then we discussed the clinically applicable DILI assessment markers and the importance of liver zonation in the next generation organoid-based DILI models.

16.
Drug Metab Pharmacokinet ; 50: 100507, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37075616

RESUMEN

Diosbulbin B (DIOB) has been reported to cause serious liver injury. However, in traditional medicine, DIOB-containing herbs are highly safe in combination with ferulic acid (FA)-containing herbs, suggesting potential neutralizing effect of FA on the toxicity of DIOB. DIOB can be metabolized to generate reactive metabolites (RMs), which can covalently bind to proteins and lead to hepatoxicity. In the present study, the quantitative method was firstly established for investigating the correlation between DIOB RM-protein adducts (DRPAs) and hepatotoxicity. Then, we estimated the detoxication effect of FA in combination with DIOB and revealed the underlying mechanism. Our data indicated that the content of DRPAs positively correlate with the severity of hepatotoxicity. Meanwhile, FA is able to reduce the metabolic rate of DIOB in vitro. Moreover, FA suppressed the production of DRPAs and decreased the serum alanine/aspartate aminotransferase (ALT/AST) levels elevated by DIOB in vivo. Thus, FA can ameliorate DIOB-induced liver injury through reducing the production of DRPAs.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado/metabolismo , Proteínas/metabolismo , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo
17.
Appl Biochem Biotechnol ; 195(10): 5966-5979, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36729297

RESUMEN

BACKGROUND: Some herbal natural products play an important role in protecting organisms from the toxic effect of some xenobiotics. The present study was designed to evaluate the potential therapeutic effects of Ottelione A (OTTE) against carbon tetrachloride(CCl4)-induced toxicity in mice. METHODS: Adult male Swiss albino mice were divided into six groups: group I was used as a normal control received olive oil; group II received DMSO; group III received OTTE; group IV received CCl4 in olive oil, (injected i.p) 3 times/week for 6 weeks; group V received the same CCl4 regimen as group IV followed by OTTE injected for 15 days, and group VI first received OTTE injected for 15 days followed by the same CCl4 regimen as group IV. Some biochemical and histological parameters were investigated. RESULTS: Our results showed that the administration of CCl4 caused hepatotoxicity, as monitored by the significant increase in biochemical parameters concerning the olive oil group. Treatment with OTTE appeare d to be effective against hepatotoxic and liver changes induced by CCl4, as evidenced by the improvement of the same parameters. CONCLUSION: Ottelione A (OTTE) has good antioxidant and therapeutic properties, which can help in preventing CCl4-induced hepatotoxicity in both pre-treatment and post-treatment modes.


Asunto(s)
Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratones , Masculino , Animales , Tetracloruro de Carbono/toxicidad , Tetracloruro de Carbono/metabolismo , Aceite de Oliva/farmacología , Aceite de Oliva/metabolismo , Extractos Vegetales/química , Antioxidantes/farmacología , Hígado/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Estrés Oxidativo
18.
J Biochem Mol Toxicol ; 37(6): e23329, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36808658

RESUMEN

Doxorubicin (DOX), is a high efficiency anthracycline antitumor drug. However, the clinical application of DOX is limited mainly by dose-related adverse drug reactions. Currently, the therapeutic effects of Atorvastatin (ATO) on DOX-induced hepatotoxicity were studied in vivo. The results indicated that DOX impaired hepatic function, as measured by an increased levels of liver weight index and serum concentrations of aspartate transaminase and alanine transaminase, as well as alteration of hepatic histology. In addition, DOX increased the serum levles of triglyceride (TG) and nonestesterified fatty acid. ATO prevented these changes. Mechanical analysis revealed that ATO restored the changes of malondialdehyde, reactive oxygen radical species, glutathione peroxidase and manganese superoxide dismutase. Additionally, ATO inhibited the increased expression levels of nuclear factor-kappa B and interleukin 1ß, hence suppressing inflammation. Meanwhile, ATO inhibited cell apoptosis by dramatically decreasing the Bax/Bcl-2 ratio. In addition, ATO mitigated the lipidtoxicity by inhibiting the adipolysis of TG and accelerating hepatic lipid metabolism. Taken together, the results suggest ATO has therapeutic effect on DOX-induced hepatotoxicity via inhibition of oxidative damage, inflammatory and apoptosis. In addition, ATO attenuates DOX-induced hyperlipidemia via modulation of lipid metabolism.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Atorvastatina/farmacología , Doxorrubicina/toxicidad , Estrés Oxidativo , Antiinflamatorios/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Apoptosis
19.
Hum Exp Toxicol ; 42: 9603271221149011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36594174

RESUMEN

Except for clinical value, borneol is routinely used in food and cosmetics with seldom safety evaluation. To investigate its hepatoxicity, we exposed 3 dpf (days post fertilization) larval zebrafish to borneol at a gradient of concentrations (200-500 µM) for 3 days. Herein, our results revealed that high doses of borneol (300-500 µM) caused liver size decrease or lateral lobe absence. Borneol also seriously disturbed the hepatic protein metabolism presented with the increased activity of alanine aminotransferase (ALT) and lipid metabolism shown with the increased level of triglycerides (TG) and total cholesterol (TC). The lipid accumulation (oil red staining) was detected as well. Additionally, significant upregulation of genes was detected that related to oxidative stress, lipid anabolism, endoplasmic reticulum stress (ERS), and autophagy. Conversely, the lipid metabolism-related genes were markedly downregulated. Moreover, the changes in the superoxide dismutase activity and the level of glutathione and malondialdehyde raised the likelihood of lipid peroxidation. The outcomes indicated the involvement of oxidative stress, ERS, lipid metabolism, and autophagy in borneol-induced lipid metabolic disorder and hepatic injury. This study will provide a more comprehensive understanding of borneol hepatoxicity and the theoretical basis for the safe use of this compound.


Asunto(s)
Hígado , Pez Cebra , Animales , Estrés Oxidativo , Triglicéridos , Metabolismo de los Lípidos
20.
Toxicol Mech Methods ; 33(6): 437-451, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36718047

RESUMEN

Cadmium (Cd) accumulates in the body through contaminated foods or water and causes pathological damage to the liver via oxidative stress and inflammatory reactions. This study was conducted to explore the effects of dendropanoxide (DPx) on Cd-induced hepatotoxicity in rats. Sprague-Dawley (SD) rats were injected with CdCl2 (7 mg/kg body weight) intraperitoneally for 14 days for the induction of liver dysfunction. The CdCl2-exposed rats were subjected to DPx (10 mg/kg) or silymarin (50 mg/kg). The animals were euthanized after 24 h of the last CdCl2 injection and the serum biochemical parameters, lipid content, pro-inflammatory cytokine levels, apoptotic cell death and histopathology of the tissues were analyzed. Additionally, the activity of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), was measured. Compared to controls, Cd-injected rats showed significantly elevated serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol, and pro-inflammatory cytokines, and a remarkable decrease in SOD and CAT activities. Importantly, Cd-induced liver damage was drastically ameliorated by treatment with DPx or silymarin. Treatment with DPx protected the Cd-induced histopathological hepatic injury, as confirmed by the evaluation of TUNEL assay. DPx treatment significantly reduced Bax and caspase-3 expression in Cd-injected rats. Additionally, HO-1 and NRF2 expressions were significantly increased after DPx administration in the liver of Cd-injected rats. Our data indicate that DPx successfully prevents Cd-induced hepatotoxicity by emphasizing the antioxidant and anti-inflammatory effect.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Silimarina , Ratas , Animales , Cadmio/toxicidad , Cadmio/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Ratas Sprague-Dawley , Cloruro de Cadmio/toxicidad , Cloruro de Cadmio/metabolismo , Hígado , Estrés Oxidativo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Superóxido Dismutasa/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...