Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.870
Filtrar
1.
Front Toxicol ; 6: 1401036, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086553

RESUMEN

The cell painting (CP) assay has emerged as a potent imaging-based high-throughput phenotypic profiling (HTPP) tool that provides comprehensive input data for in silico prediction of compound activities and potential hazards in drug discovery and toxicology. CP enables the rapid, multiplexed investigation of various molecular mechanisms for thousands of compounds at the single-cell level. The resulting large volumes of image data provide great opportunities but also pose challenges to image and data analysis routines as well as property prediction models. This review addresses the integration of CP-based phenotypic data together with or in substitute of structural information from compounds into machine (ML) and deep learning (DL) models to predict compound activities for various human-relevant disease endpoints and to identify the underlying modes-of-action (MoA) while avoiding unnecessary animal testing. The successful application of CP in combination with powerful ML/DL models promises further advances in understanding compound responses of cells guiding therapeutic development and risk assessment. Therefore, this review highlights the importance of unlocking the potential of CP assays when combined with molecular fingerprints for compound evaluation and discusses the current challenges that are associated with this approach.

2.
Front Chem ; 12: 1407331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086985

RESUMEN

Background: Rearranged during transfection (RET), an oncogenic protein, is associated with various cancers, including non-small-cell lung cancer (NSCLC), papillary thyroid cancer (PTC), pancreatic cancer, medullary thyroid cancer (MTC), breast cancer, and colorectal cancer. Dysregulation of RET contributes to cancer development, highlighting the importance of identifying lead compounds targeting this protein due to its pivotal role in cancer progression. Therefore, this study aims to discover effective lead compounds targeting RET across different cancer types and evaluate their potential to inhibit cancer progression. Methods: This study used a range of computational techniques, including Phase database creation, high-throughput virtual screening (HTVS), molecular docking, molecular mechanics with generalized Born surface area (MM-GBSA) solvation, assessment of pharmacokinetic (PK) properties, and molecular dynamics (MD) simulations, to identify potential lead compounds targeting RET. Results: Initially, a high-throughput virtual screening of the ZINC database identified 2,550 compounds from a pool of 170,269. Subsequent molecular docking studies revealed 10 compounds with promising negative binding scores ranging from -8.458 to -7.791 kcal/mol. MM-GBSA analysis further confirmed the potential of four compounds to exhibit negative binding scores. MD simulations demonstrated the stability of CID 95842900, CID 137030374, CID 124958150, and CID 110126793 with the target receptors. Conclusion: These findings suggest that these selected four compounds have the potential to inhibit phosphorylated RET (pRET) tyrosine kinase activity and may represent promising candidates for the treatment of various cancers.

3.
Water Res ; 263: 122155, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39088881

RESUMEN

With widespread occurrence and increasing concern of emerging contaminants (CECs) in source water, biologically active filters (BAF) have been gaining acceptance in water treatment. Both BAFs and graphene oxide (GO) have been shown to be effective in treating CECs. However, studies to date have not addressed interactions between GO and microbial communities in water treatment processes such as BAFs. Therefore, in the present study, we investigated the effect of GO on the properties and microbial growth rate in a BAF system. Synthesized GO was characterized with a number of tools, including scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectrometry. GO exhibited the characteristic surface functional groups (i.e., C-OH, C=O, C-O-C, and COOH), crystalline structure, and sheet-like morphology. To address the potential toxicity of GO on the microbial community, reactive oxygen species (ROS) generation was measured using nitro blue tetrazolium (NBT) assay. Results revealed that during the exponential growth phase, ROS generation was not observed in the presence of GO compared to the control batch. In fact, the adenosine triphosphate (ATP) concentrations increased in the presence of GO (25 µg/L - 1000 µg/L) compared to the control without GO. The growth rate in systems with GO exceeded the control by 20 % to 46 %. SEM images showed that GO sheets can form an effective scaffold to promote bacterial adhesion, proliferation, and biofilm formation, demonstrating its biocompatibility. Next-generation sequencing (Illumina MiSeq) was used to characterize the BAF microbial community, and high-throughput sequencing analysis confirmed the greater richness and more diverse microbial communities compared to systems without GO. This study is the first to report the effect of GO on the microbial community of BAF from a water treatment plant, which provides new insights into the potential of utilizing a bio-optimized BAF for advanced and sustainable water treatment or reuse strategies.

4.
Angew Chem Int Ed Engl ; : e202409610, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087463

RESUMEN

Recent decades have seen a dramatic increase in the commercial use of biocatalysts, transitioning from energy-intensive traditional chemistries to more sustainable methods. Current enzyme engineering techniques, such as directed evolution, require the generation and testing of large mutant libraries to identify optimized variants. Unfortunately, conventional screening methods are unable to screen such large libraries in a robust and timely manner. Droplet-based microfluidic systems have emerged as a powerful high-throughput tool for library screening at kilohertz rates. Unfortunately, almost all reported systems are based on fluorescence detection, restricting their use to a limited number of enzyme types that naturally convert fluorogenic substrates or require the use of surrogate substrates. To expand the range of enzymes amenable to evolution using droplet-based microfluidic systems, we present an absorbance-activated droplet sorter that allows of droplet sorting at kilohertz rates without the need for optical monitoring of the microfluidic system. To demonstrate the utility of the sorter, we rapidly screen a 105-member aldehyde dehydrogenase library towards D-glyceraldehyde using a NADH mediated coupled assay that generates WST-1 formazan as the colorimetric product. We successfully identify a variant with a 51% improvement in catalytic efficiency and a significant increase in overall activity across a broad substrate spectrum.

5.
Vet Microbiol ; 297: 110213, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116641

RESUMEN

Pneumonia caused by Mesomycoplasma hyopneumoniae (Mhp) is a respiratory disease with high morbidity and low mortality that typically presents in growing pigs. Although often subclinical, the disease can significantly affect the pig farming industry economically due to decreased growth rates and inefficient feed conversion. Effective control of Mhp depends on the detection of dominant strains prevalent in infected animals, which vary in virulence. However, traditional culture methods for diagnosing Mhp are laborious and slow, whereas multi-locus sequence typing, another possible method, requires identifying several genes. This study introduces a novel pair of polymerase chain reaction (PCR) primers for the rapid detection and genetic evolution analysis of Mhp strains to facilitate improved vaccine selection. The genetic evolutionary tree established using the PCR amplification fragment was highly similar to the genetic evolutionary tree established using whole-genome sequences. Analysis of 131 samples from Guangxi and Hunan slaughterhouses revealed a 30.53 % prevalence of Mhp. High-throughput sequencing has shown that Mhp has a diverse bacterial population in clinically collected samples. The prevalence of major strains may vary among regions. Additionally, the strains of Mhp vaccines sold may differ significantly from the strains prevalent on farms. In summary, this work has designed a pair of primers that will be useful for detecting the diversity of Mhp and for targeted prevention and control.

6.
Front Vet Sci ; 11: 1417244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104549

RESUMEN

Amidst rising global temperatures, chronic heat stress (CHS) is increasingly problematic for the poultry industry. While mammalian CHS responses are well-studied, avian-specific research is lacking. This study uses in-depth transcriptome sequencing to evaluate the pulmonary response of Cherry Valley ducks to CHS at ambient temperatures of 20°C and a heat-stressed 29°C. We detailed the CHS-induced gene expression changes, encompassing mRNAs, lncRNAs, and miRNAs. Through protein-protein interaction network analysis, we identified central genes involved in the heat stress response-TLR7, IGF1, MAP3K1, CIITA, LCP2, PRKCB, and PLCB2. Subsequent functional enrichment analysis of the differentially expressed genes and RNA targets revealed significant engagement in immune responses and regulatory processes. KEGG pathway analysis underscored crucial immune pathways, specifically those related to intestinal IgA production and Toll-like receptor signaling, as well as Salmonella infection and calcium signaling pathways. Importantly, we determined six miRNAs-miR-146, miR-217, miR-29a-3p, miR-10926, miR-146b-5p, and miR-17-1-3p-as potential key regulators within the ceRNA network. These findings enhance our comprehension of the physiological adaptation of ducks to CHS and may provide a foundation for developing strategies to improve duck production under thermal stress.

7.
Front Plant Sci ; 15: 1415209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104842

RESUMEN

Introduction: Fusarium oxysporum is a significant soil-borne fungal pathogen that affects over 100 plant species, including crucial crops like tomatoes, bananas, cotton, cucumbers, and watermelons, leading to wilting, yellowing, growth inhibition, and ultimately plant death. The root rot disease of A. macrocephala, caused by F. oxysporum, is one of the most serious diseases in continuous cropping, which seriously affects its sustainable development. Methods: In this study, we explored the interaction between A. macrocephala and F. oxysporum through integrated small RNA (sRNA) and degradome sequencing to uncover the microRNA (miRNA)-mediated defense mechanisms. Results: We identified colonization of F. oxysporum in A. macrocephala roots on day 6. Nine sRNA samples were sequenced to examine the dynamic changes in miRNA expression in A. macrocephala infected by F. oxysporum at 0, 6, and 12 days after inoculation. Furthermore, we using degradome sequencing and quantitative real-time PCR (qRT-PCR), validated four miRNA/target regulatory units involved in A. macrocephala-F. oxysporum interactions. Discussion: This study provides new insights into the molecular mechanisms underlying A. macrocephala's early defense against F. oxysporum infection, suggesting directions for enhancing resistance against this pathogen.

9.
Sci Rep ; 14(1): 17870, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090215

RESUMEN

The study of species groups in which the presence of interspecific hybridization or introgression phenomena is known or suspected involves analysing shared bi-parentally inherited molecular markers. Current methods are based on different categories of markers among which the classical microsatellites or the more recent genome wide approaches for the analyses of thousands of SNPs or hundreds of microhaplotypes through high throughput sequencing. Our approach utilizes intron-targeted amplicon sequencing to characterise multi-locus intron polymorphisms (MIPs) and assess genetic diversity. These highly variable intron regions, combined with inter-specific transferable loci, serve as powerful multiple-SNP markers potentially suitable for various applications, from species and hybrid identification to population comparisons, without prior species knowledge. We developed the first panel of MIPs highly transferable across fish genomes, effectively distinguishing between species, even those closely related, and populations with different structures. MIPs offer versatile, hypervariable nuclear markers and promise to be especially useful when multiple nuclear loci must be genotyped across different species, such as for the monitoring of interspecific hybridization. Moreover, the relatively long sequences obtained ease the development of single-locus PCR-based diagnostic markers. This method, here demonstrated in teleost fishes, can be readily applied to other taxa, unlocking a new source of genetic variation.


Asunto(s)
Peces , Intrones , Animales , Intrones/genética , Peces/genética , Peces/clasificación , Polimorfismo de Nucleótido Simple , Genética de Población , Especificidad de la Especie , Metagenómica/métodos , Genómica/métodos
10.
Trends Microbiol ; 32(8): 791-806, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39111288

RESUMEN

In recent years, genetic circuit-based regulation of metabolic flux in microbial cell factories has received significant attention. In this review, we describe a pipeline for the design and construction of genetic circuits for metabolic flux optimization. In particular, we summarize the recent advances in computationally assisted prediction of critical metabolic nodes and genetic circuit design automation. Further, we introduce strategies for constructing high-performance genetic circuits. We also summarize the latest applications of genetic circuits in the dynamic regulation of metabolism and high-throughput screening. Finally, we discuss the challenges and prospects associated with the design and construction of sophisticated genetic circuits. Through this review, we aim to provide a theoretical basis for designing and constructing high-performance genetic circuits to optimize metabolic flux.


Asunto(s)
Redes Reguladoras de Genes , Redes y Vías Metabólicas , Redes y Vías Metabólicas/genética , Ingeniería Metabólica/métodos , Biología Sintética/métodos , Bacterias/genética , Bacterias/metabolismo
11.
Cell Oncol (Dordr) ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115605

RESUMEN

PURPOSE: Osteosarcoma, a highly malignant primary bone tumor primarily affecting adolescents, frequently develops resistance to initial chemotherapy, leading to metastasis and limited treatment options. Our study aims to uncover novel therapeutic targets for metastatic and recurrent osteosarcoma. METHODS: In this study, we proved the potential of modulating the YAP1-regulated glutamine metabolic pathway to augment the response of OS to DFMO. We initially employed single-cell transcriptomic data to gauge the activation level of polyamine metabolism in MTAP-deleted OS patients. This was further substantiated by transcriptome sequencing data from recurrent and non-recurrent patient tissues, confirming the activation of polyamine metabolism in progressive OS. Through high-throughput drug screening, we pinpointed CIL56, a YAP1 inhibitor, as a promising candidate for a combined therapeutic strategy with DFMO. In vivo, we utilized PDX and CDX models to validate the therapeutic efficacy of this drug combination. In vitro, we conducted western blot analysis, qPCR analysis, immunofluorescence staining, and PuMA experiments to monitor alterations in molecular expression, distribution, and tumor metastasis capability. We employed CCK-8 and colony formation assays to assess the proliferative capacity of cells in the experimental group. We used flow cytometry and reactive oxygen probes to observe changes in ROS and glutamine metabolism within the cells. Finally, we applied RNA-seq in tandem with metabolomics to identify metabolic alterations in OS cells treated with a DFMO and CIL56 combination. This enabled us to intervene and validate the role of the YAP1-mediated glutamine metabolic pathway in DFMO resistance. RESULTS: Through single-cell RNA-seq data analysis, we pinpointed a subset of late-stage OS cells with significantly upregulated polyamine metabolism. This upregulation was further substantiated by transcriptomic profiling of recurrent and non-recurrent OS tissues. High-throughput drug screening revealed a promising combination strategy involving DFMO and CIL56. DFMO treatment curbs the phosphorylation of YAP1 protein in OS cells, promoting nuclear entry and initiating the YAP1-mediated glutamine metabolic pathway. This reduces intracellular ROS levels, countering DFMO's anticancer effect. The therapeutic efficacy of DFMO can be amplified both in vivo and in vitro by combining it with the YAP1 inhibitor CIL56 or the glutaminase inhibitor CB-839. This underscores the significant potential of targeting the YAP1-mediated glutamine metabolic pathway to enhance efficacy of DFMO. CONCLUSION: Our findings elucidate YAP1-mediated glutamine metabolism as a crucial bypass mechanism against DFMO, following the inhibition of polyamine metabolism. Our study provides valuable insights into the potential role of DFMO in an "One-two Punch" therapy of metastatic and recurrent osteosarcoma.

12.
Methods Mol Biol ; 2845: 203-218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115669

RESUMEN

The characterization of interactions between autophagy modifiers (Atg8-family proteins) and their natural ligands (peptides and proteins) or small molecules is important for a detailed understanding of selective autophagy mechanisms and for the design of potential Atg8 inhibitors that affect the autophagy processes in cells. The fluorescence polarization (FP) assay is a rapid, cost-effective, and robust method that provides affinity and selectivity information for small molecules and peptide ligands targeting human Atg8 proteins.This chapter introduces the basic principles of FP assays. In addition, a case study on peptide interaction with human Atg8 proteins (LC3/GABARAPs) is described. Finally, data analysis and quality control of FP assays are discussed for the proper calculation of Ki values for the measured compounds.


Asunto(s)
Polarización de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Proteínas Asociadas a Microtúbulos , Unión Proteica , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Polarización de Fluorescencia/métodos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/efectos de los fármacos , Péptidos/metabolismo , Péptidos/química , Ligandos , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo
13.
bioRxiv ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39091869

RESUMEN

G protein-coupled receptors (GPCRs) are key pharmacological targets, yet many remain underutilized due to unknown activation mechanisms and ligands. Orphan GPCRs, lacking identified natural ligands, are a high priority for research, as identifying their ligands will aid in understanding their functions and potential as drug targets. Most GPCRs, including orphans, couple to Gi/o/z family members, however current assays to detect their activation are limited, hindering ligand identification efforts. We introduce GZESTY, a highly sensitive, cell-based assay developed in an easily deliverable format designed to study the pharmacology of Gi/o/z-coupled GPCRs and assist in deorphanization. We optimized assay conditions and developed an all-in-one vector employing novel cloning methods to ensure the correct expression ratio of GZESTY components. GZESTY successfully assessed activation of a library of ligand-activated GPCRs, detecting both full and partial agonism, as well as responses from endogenous GPCRs. Notably, with GZESTY we established the presence of endogenous ligands for GPR176 and GPR37 in brain extracts, validating its use in deorphanization efforts. This assay enhances the ability to find ligands for orphan GPCRs, expanding the toolkit for GPCR pharmacologists.

14.
STAR Protoc ; 5(3): 103241, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39093705

RESUMEN

Developing antibodies with high specificity against post-translationally modified epitopes remains a challenge. Yeast biopanning is well suited in screening for high-specificity binders. Here, we present a protocol for screening and validating antibodies specific to protein phosphorylation sites using a set of yeast biopanning approaches. We describe steps for screening a yeast surface display library for antibodies and other binders. We then detail procedures for validating the antibodies found by analyzing their specificity through whole-well image analysis in 96-well plates. For complete details on the use and execution of this protocol, please refer to Arbaciauskaite et al.1.

15.
Chemosphere ; : 142984, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094700

RESUMEN

Although sanitary landfill is one of the principal municipal solid waste (MSW) treatment and disposal methods, its limitations, such as insufficient use of resources, long stability time, and high risk of environmental pollution, must be urgently resolved. The effect of multifunctional microbial community (MMC) inoculation on MSW landfill process was investigated using simulated anaerobic bioreactor landfill (ABL), and composition and microbial community structure of waste, leachate water quality, and gas production were monitored. MMC inoculation significantly accelerated lignocellulose degradation, and the (Hemicellulose content + Cellulose content)/Lignin content ((C+H)/L) of MMC inoculation treatment was 0.89±0.04 on day 44, which was significantly lower than that of the control group (1.14±0.02). At the end of the landfill process, the reductive organic matter, ammonia nitrogen, and volatile fatty acids in the leachate of the MMC group decreased to 9,400.00±288.68, 332.78±5.77, and 79.33±6.44 mg L-1, respectively, significantly lower than those of the control group (24,167.00±208.17, 551.14±5.60, and 156.33±8.22 mg L-1). Meanwhile, MMC inoculation increased the methane production to 118.12±5.42 L kg-1 of dry matter, significantly higher than the output of the control group (60.60±2.24 L kg-1). MMC inoculation optimized the microbial community structure in ABL and increased lignocellulose-degrading microorganisms (Brevundimonas, Cellvibrio, Leifsonia, and Devosia) and methanogen (Methanosaeta and Methanoculleus) abundance in the middle stage of landfill. Moreover, MMC introduction improved the abundance of carbon metabolism enzymes and increased saprophytic fungal abundance by 30.09% in the middle stage of landfill. Overall, these findings may help in developing an effective method to increase the lifespan of landfills and enhance their post-closure management.

16.
Front Microbiol ; 15: 1410219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101036

RESUMEN

Long-term continuous cropping affects the soil microecological community and leads to nutrient imbalances, which reduces crop yields, and crop rotation can increase soil productivity. To study the effects of the cultivation of tomato (Solanum lycopersicum) and corn (Zea mays) on the microbial community, physical and chemical factors and the structure of aggregates in cotton (Gossypium hirsutum) long-term continuous cropping soils were examined. Four cropping patterns were established, including one continuous cropping pattern and three crop rotation patterns, and the diversity of the soil microecological community was measured using high-throughput sequencing. The physical and chemical properties of different models of soil were measured, and the soil aggregate structure was determined by dry and wet sieving. Planting of aftercrop tomato and corn altered the bacterial community of the cotton continuous soil to a lesser extent and the fungal community to a greater extent. In addition, continuous cropping reduced the diversity and richness of the soil fungal community. Different aftercrop planting patterns showed that there were very high contents of soil organic carbon and organic matter in the cotton-maize rotation model, while the soil aggregate structure was the most stable in the corn-cotton rotation model. Planting tomato in continuous cropping cotton fields has a greater effect on the soil microbial community than planting maize. Therefore, according to the characteristics of different succeeding crop planting patterns, the damage of continuous cropping of cotton to the soil microenvironment can be alleviated directionally, which will enable the sustainable development of cotton production.

17.
Small ; : e2404121, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101620

RESUMEN

Developments in droplet microfluidics have facilitated an era of high-throughput, sensitive single-cell, or single-molecule measurements capable of tackling the heterogeneity present in biological systems. Relying on single emulsion (SE) compartments, droplet assays achieve absolute quantification of nucleic acids, massively parallel single-cell profiling, and more. Double emulsions (DEs) have seen recent interest for their potential to build upon SE techniques. DEs are compatible with flow cytometry enabling high-throughput multi-parameter drop screening and eliminate content mixing due to coalescence during lengthy workflows. Despite these strengths, DEs lack important technical functions that exist in SEs such as methods for adding reagents to droplets on demand. Consequently, DEs cannot be used for multistep workflows which has limited their adoption in assay development. Here, strategies to enable reagent addition and other active manipulations on DEs are reported by converting DE inputs to SEs on chip. After conversion, drops are manipulated using existing SE techniques, including reagent addition, before reforming a DE at the outlet. Device designs and operation conditions achieving drop-by-drop reagent addition to DEs are identified and used as part of a multi-step aptamer screening assay performed entirely in DE drops. This work enables the further development of multistep DE droplet assays.

18.
Macromol Rapid Commun ; : e2400206, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101672

RESUMEN

In recent years, the fully oxygen-tolerant reversible deactivation radical polymerization (RDRP) has become a highly researched area. In this contribution, a new and minimalist method is successfully employed to accomplish fully oxygen-tolerant reversible addition-fragmentation chain transfer (RAFT) polymerization using bis(trithiocarbonate) disulfides (BisTTC) as an iniferter agent, where the released sulfur-centered trithiocarbonate (TTC) radical can initiate monomer. Furthermore, polymerization kinetics revealed the typical "living" features of this polymerization system. More importantly, by high-throughput screening, it is found that dodecyl-substituted TTC is responsible for the fully oxygen-tolerant RAFT polymerization though trithiocarbonate radical initiation and R radical deoxygenation. It is believed that trithiocarbonate radical initiation strategy provides a powerful and minimalist tool for fully oxygen-tolerant RDRPs.

19.
Microbiol Spectr ; : e0100424, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101825

RESUMEN

Growing evidence have indicated the crucial role of intratumor microbiome in a variety of solid tumor. However, the intratumoral microbiome in gynecological malignancies is largely unknown. In the present study, a total of 90 Han patients, including 30 patients with cancer in cervix, ovary, and endometrium each were enrolled, the composition of intratumoral microbiome was assessed by 16S rDNA amplicon high throughput sequencing. We found that the diversity and metabolic potential of intratumoral microbiome in all three cancer types were very similar. Furthermore, all three cancer types shared a few taxa that collectively take up high relative abundance and positive rate, including Pseudomonas sp., Comamonadaceae gen. sp., Bradyrhizobium sp., Saccharomonospora sp., Cutibacterium acnes, Rubrobacter sp., Dialister micraerophilus, and Escherichia coli. Additionally, Haemophilus parainfluenzae and Paracoccus sp. in cervical cancer, Pelomonas sp. in ovarian cancer, and Enterococcus faecalis in endometrial cancer were identified by LDA to be a representative bacterial strain. In addition, in cervical cancer patients, alpha-fetoprotein (AFP) (correlation coefficient = -0.3714) was negatively correlated (r = 0.4, 95% CI: 0.03 to 0.7) with Rubrobacter sp. and CA199 (correlation coefficient = 0.3955) was positively associated (r = 0.4, 95% CI: 0.03 to 0.7) with Saccharomonospora sp.. In ovarian cancer patients, CA125 (correlation coefficient = -0.4451) was negatively correlated (r = -0.4, 95% CI: -0.7 to -0.09) with Porphyromonas sp.. In endometrial cancer patients, CEA (correlation coefficient = -0.3868) was negatively correlated (r = -0.4, 95% CI: -0.7 to -0.02) with Cutibacterium acnes. This study promoted our understanding of the intratumoral microbiome in gynecological malignancies.IMPORTANCEIn this study, we found the compositional spectrum of tumor microbes among gynecological malignancies were largely similar by sharing a few taxa and differentiated by substantial species owned uniquely. Certain species, mostly unreported, were identified to be associated with clinical characteristics. This study prompted our understanding of gynecological malignancies and offered evidence for tumor microbes affecting tumor biology among cancers in the female reproductive system.

20.
SLAS Technol ; 29(4): 100174, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094982

RESUMEN

An optimized Affinity Selection-Mass Spectrometry (AS-MS) workflow has been developed for the efficient identification of potent USP1 inhibitors. USP1 was immobilized on agarose beads, ensuring low small molecule retention, efficient protein capture, and protein stability. The binding affinity of 49 compounds to USP1 was evaluated using the optimized AS-MS method, calculating binding index (BI) values for each compound. Biochemical inhibition assays validated the AS-MS results, revealing a potential correlation between higher BI values and lower IC50 values. This optimized workflow enables rapid identification of high-quality USP1 inhibitor hits, facilitating structure-activity relationship studies and accelerating the discovery of potential cancer therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...