RESUMEN
Cryphonectria is a fungal genus associated with economically significant disease of trees. Herein we characterized a novel double-stranded RNA virus from the fungal species Cryphonectria naterciae, a species unexplored as a virus host. De novo assembly of RNA-seq data and Sanger sequencing of RACE (rapid amplification of cDNA ends) clones gave the complete, non-segmented genome (10,164 bp) of the virus termed Cryphonectria naterciae fusagravirus (CnFGV1) that was phylogenetically placed within the previously proposed viral family Fusagraviridae. Of 31 field-collected strains of C. naterciae, 40% tested CnFGV1-positive. Cocultivation resulted in within-species transmission of CnFGV1 to virus-free strains of C. naterciae. Comparison of the mycelium phenotype and the growth rate of CnFGV1-infected and virus-free isogenic strains revealed frequent sectoring and growth reduction in C. naterciae upon virus infection. Co-culturing also led to cross-species transmission of CnFGV1 to Cryphonectria carpinicola and Cryphonectria radicalis, but not to Cryphonectria parasitica. The virus-infected C. naterciae and the experimentally infected Cryphonectria spp. readily transmitted CnFGV1 through asexual spores to the next generation. CnFGV1 strongly reduced conidiation and in some cases vegetative growth of C. carpinicola, which is involved in the European hornbeam disease. This study is the first report of a fusagravirus in the family Cryphonectriaceae and lays the groundwork for assessing a hypovirulence effect of CnFGV1 against the hornbeam decline in Europe.