Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.579
Filtrar
1.
Neotrop Entomol ; 53(4): 854-867, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38958916

RESUMEN

The genus Anastrepha contains some of the most important fruit pests in the Americas. It comprises more than 300 species, of which 129 occur in Brazil. The genus is divided into 26 species groups, including the pseudoparallela group with 31 species, whose known host plants are primarily fruits of the genus Passiflora (Passifloraceae). Fourteen species are recorded in Brazil. Here, a new species of Anastrepha reared from fruits of Passiflora actinia Hook. and Passiflora elegans Mast. from southern Brazil is described and illustrated. In addition, a synopsis of the Brazilian species of the pseudoparallela group is provided.


Asunto(s)
Tephritidae , Animales , Brasil , Tephritidae/clasificación , Masculino , Femenino , Passiflora/parasitología , Frutas/parasitología
2.
Neotrop Entomol ; 53(4): 929-936, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963529

RESUMEN

Body size is an important morphological characteristic that covaries with the quality of parasitoids and predators. Data show that the larger the organism is, the better the biological parameters and the host location by natural enemies in the field. The standard way of evaluating the size of parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae) is by measuring the tibia, but using only one body part to estimate the size of organisms can lead to miscalculations. In this paper, commercial Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae) and Trichogramma galloi Zucchi, 1988 (Hymenoptera: Trichogrammatidae) were mounted on slides for microscopy and photographed, and the photographs were used to measure their antennae, scutellum, ovipositor, tibia, and wing. Principal component analysis (PCA) and linear discriminant analysis (LDA) were performed to select the body part that best represents their size. PCA showed that all body parts represented size in a similar way, and LDA showed that the ovipositor was the most representative. We conclude that the best body parts for representing the size of the Trichogramma species studied are the wing and ovipositor, and at least two body parts are needed to detect two size groups.


Asunto(s)
Himenópteros , Animales , Himenópteros/clasificación , Himenópteros/anatomía & histología , Tamaño Corporal , Alas de Animales/anatomía & histología
3.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000406

RESUMEN

Diabetes mellitus (DM) poses a significant challenge to global health, with its prevalence projected to rise dramatically by 2045. This narrative review explores the bidirectional relationship between periodontitis (PD) and type 1 diabetes mellitus (T1DM), focusing on cellular and molecular mechanisms derived from the interplay between oral microbiota and the host immune response. A comprehensive search of studies published between 2008 and 2023 was conducted to elucidate the association between these two diseases. Preclinical and clinical evidence suggests a bidirectional relationship, with individuals with T1DM exhibiting heightened susceptibility to periodontitis, and vice versa. The review includes recent findings from human clinical studies, revealing variations in oral microbiota composition in T1DM patients, including increases in certain pathogenic species such as Porphyromonas gingivalis, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans, along with shifts in microbial diversity and abundance. Molecular mechanisms underlying this association involve oxidative stress and dysregulated host immune responses, mediated by inflammatory cytokines such as IL-6, IL-8, and MMPs. Furthermore, disruptions in bone turnover markers, such as RANKL and OPG, contribute to periodontal complications in T1DM patients. While preventive measures to manage periodontal complications in T1DM patients may improve overall health outcomes, further research is needed to understand the intricate interactions between oral microbiota, host response, periodontal disease, and systemic health in this population.


Asunto(s)
Diabetes Mellitus Tipo 1 , Microbiota , Enfermedades Periodontales , Humanos , Diabetes Mellitus Tipo 1/microbiología , Diabetes Mellitus Tipo 1/complicaciones , Enfermedades Periodontales/microbiología , Periodontitis/microbiología , Periodontitis/complicaciones , Periodontitis/inmunología
4.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000473

RESUMEN

Nematodes of the genus Trichinella are important pathogens of humans and animals. This study aimed to enhance the genomic and transcriptomic resources for T. pseudospiralis (non-encapsulated phenotype) and T. spiralis (encapsulated phenotype) and to explore transcriptional profiles. First, we improved the assemblies of the genomes of T. pseudospiralis (code ISS13) and T. spiralis (code ISS534), achieving genome sizes of 56.6 Mb (320 scaffolds, and an N50 of 1.02 Mb) and 63.5 Mb (568 scaffolds, and an N50 value of 0.44 Mb), respectively. Then, for each species, we produced RNA sequence data for three key developmental stages (first-stage muscle larvae [L1s], adults, and newborn larvae [NBLs]; three replicates for each stage), analysed differential transcription between stages, and explored enriched pathways and processes between species. Stage-specific upregulation was linked to cellular processes, metabolism, and host-parasite interactions, and pathway enrichment analysis showed distinctive biological processes and cellular localisations between species. Indeed, the secreted molecules calmodulin, calreticulin, and calsyntenin-with possible roles in modulating host immune responses and facilitating parasite survival-were unique to T. pseudospiralis and not detected in T. spiralis. These insights into the molecular mechanisms of Trichinella-host interactions might offer possible avenues for developing new interventions against trichinellosis.


Asunto(s)
Transcriptoma , Trichinella spiralis , Trichinella , Animales , Trichinella spiralis/genética , Trichinella/genética , Genómica/métodos , Genoma de los Helmintos , Perfilación de la Expresión Génica/métodos , Larva/genética , Larva/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Especificidad de la Especie , Interacciones Huésped-Parásitos/genética , Triquinelosis/parasitología , Triquinelosis/genética
5.
Aquat Toxicol ; 273: 107012, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38954869

RESUMEN

This study examined the impact of sertraline, an antidepressant common in treated wastewater, on the host-parasite dynamics between parasitic freshwater mussel (Unio tumidus, Unionidae) larvae (glochidia) and their host fish (Squalius cephalus, Cyprinidae). Employing a full-factorial design, both fish and glochidia were subjected to sertraline at the combinations of 0 µg L-1 (control), 0.2 µg L-1 (environmentally relevant concentration), and 4 µg L-1 (elevated concentration, short-term exposure of the parasite). The results showed that long-term host exposure (involving intensive sertraline accumulation in the fish brain) marginally increased subsequent glochidia attachment success by 2 %, while parasite exposure at the same environmentally relevant concentrations had no detectable effect. There was also no effect of exposure of glochidia to 0.2 µg L-1 of sertraline on their viability and encapsulation success during the initial parasitic stage. However, a significant alteration in attachment behavior, marked by a 3.3 % increase in attachment success and changes in the glochidia spatial distribution on the host body, was noted after 24 h of glochidia exposure to 4 µg L-1 of sertraline. Importantly, this study provides the first evidence of sertraline transfer from exposed glochidia to nonexposed host fish, as indicated by elevated levels of sertraline (12.8 ng g-1) in the brain tissue of nonexposed hosts. These findings highlight the subtle yet significant effects of pharmaceutical pollutants on freshwater ecosystems but also underscore the importance of understanding the unexpected dynamics of such contamination to predict and address future ecological changes.

7.
Angew Chem Int Ed Engl ; : e202410454, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994649

RESUMEN

Host-guest complexation offers a promising approach for mitigating surface defects in perovskite solar cells (PSCs). Crown ethers are the most widely used macrocyclic hosts for complexing perovskite surfaces, yet their supramolecular interactions and functional implications require further understanding. Here we show that the dipole moment of crown ethers serves as an indicator of supramolecular interactions with both perovskites and precursor salts. A larger dipole moment, achieved through the substitution of heteroatoms, correlates with enhanced coordination with lead cations. Perovskite films incorporating aza-crown ethers as additives exhibited improved morphology, reduced defect densities, and better energy-level alignment compared to those using native crown ethers. We report power-conversion efficiencies (PCEs) exceeding 25% for PSCs, which show enhanced long-term stability, and a record PCE of 21.5% for host-guest complexation-based perovskite solar modules with an active area of 14.0 cm2.

8.
mBio ; : e0121124, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995035

RESUMEN

Intracellular infection by a pathogen induces significant rewiring of host cell signaling and biological processes. Understanding how an intracellular pathogen such as Toxoplasma gondii modulates host cell metabolism with single-cell resolution has been challenged by the variability of infection within cultures and difficulties in separating host and parasite metabolic processes. A new study from Gallego-Lopez and colleagues (G. M. Gallego-López, E. C. Guzman, D. E. Desa, L. J. Knoll, M. C. Skala, mBio e00727-24, 2024, https://doi.org/10.1128/mbio.00727-24) applies a quantitative imaging approach to evaluate the host cell metabolism during intracellular infection with Toxoplasma. This study provides important insights into host metabolic responses to Toxoplasma infection and offers a valuable tool to dissect the mechanisms underlying parasite infection and pathophysiology.

9.
ISME J ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984791

RESUMEN

The rectal anal junction (RAJ) is the major colonization site of Shiga toxin-producing Escherichia coli (STEC) O157 in beef cattle, leading to transmission of this foodborne pathogen from farms to food chains. To date, there is limited understanding on whether mucosa-attached microbiome has a profound impact on host-STEC interactions. In this study, the active RAJ mucosa-attached microbiota and its potential role in host immunity-STEC-commensal interactions were investigated using RAJ mucosal biopsies collected from calves orally challenged with two STEC O157 strains with or without functional stx2a (stx2a + or stx2a-). The results revealed that shifts of microbial diverstives, topological, and assembly patterns were subjected to stx2a production post-challenge and Paeniclostridium and Gallibacterium being the keystone taxa for both microbial interactions and assembly. Additional mucosal transcriptome profiling showed stx2a-dependent host immune responses (i.e. B and T cell signaling, antigen processing and presentation) post-challenge. Further integrated analysis revealed that mucosa-attached beneficial microbes (i.e. Provotella, Faecalibacterium, and Dorea) interacted with host immune genes pre-challenge to maintain host homeostasis, however, opportunistic pathogenic microbes (i.e. Paeniclostridium) could interact with host immune genes after the STEC O157 colonization and interactions were stx2a-dependent. Furthermore, bacterial predicted functions involved in pathogen (O157 and Paeniclostridium) colonization and metabolism were related to host immunities. These findings suggest that host-microbe interactions could shift from beneficial to opportunistic pathogenic bacteria-driven during the pathogen colonization and be dependent on the production of particular virulence factors, highlighting the potential regulatory role of mucosa-attached microbiota in affecting pathogen-commensal-host interactions under STEC O157 infection in calves.

10.
Front Immunol ; 15: 1367432, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994364

RESUMEN

Background: Innovative therapies against bacterial infections are needed. One approach is to focus on host-directed immunotherapy (HDT), with treatments that exploit natural processes of the host immune system. The goals of this type of therapy are to stimulate protective immunity while minimizing inflammation-induced tissue damage. We use non-traditional large animal models to explore the potential of the mammosphere-derived epithelial cell (MDEC) secretome, consisting of all bioactive factors released by the cells, to modulate host immune functions. MDEC cultures are enriched for mammary stem and progenitor cells and can be generated from virtually any mammal. We previously demonstrated that the bovine MDEC secretome, collected and delivered as conditioned medium (CM), inhibits the growth of bacteria in vitro and stimulates functions related to tissue repair in cultured endothelial and epithelial cells. Methods: The immunomodulatory effects of the bovine MDEC secretome on bovine neutrophils, an innate immune cell type critical for resolving bacterial infections, were determined in vitro using functional assays. The effects of MDEC CM on neutrophil molecular pathways were explored by evaluating the production of specific cytokines by neutrophils and examining global gene expression patterns in MDEC CM-treated neutrophils. Enzyme linked immunosorbent assays were used to determine the concentrations of select proteins in MDEC CM and siRNAs were used to reduce the expression of specific MDEC-secreted proteins, allowing for the identification of bioactive factors modulating neutrophil functions. Results: Neutrophils exposed to MDEC secretome exhibited increased chemotaxis and phagocytosis and decreased intracellular reactive oxygen species and extracellular trap formation, when compared to neutrophils exposed to control medium. C-X-C motif chemokine 6, superoxide dismutase, peroxiredoxin-2, and catalase, each present in the bovine MDEC secretome, were found to modulate neutrophil functions. Conclusion: The MDEC secretome administered to treat bacterial infections may increase neutrophil recruitment to the site of infection, stimulate pathogen phagocytosis by neutrophils, and reduce neutrophil-produced ROS accumulation. As a result, pathogen clearance might be improved and local inflammation and tissue damage reduced.


Asunto(s)
Células Epiteliales , Neutrófilos , Secretoma , Animales , Bovinos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Secretoma/metabolismo , Femenino , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Citocinas/metabolismo , Fagocitosis , Glándulas Mamarias Animales/inmunología , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Células Cultivadas , Especies Reactivas de Oxígeno/metabolismo
11.
Ecol Evol ; 14(7): e70016, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39015876

RESUMEN

Freshwater bivalve mussels in the order Unionida are highly endangered ecosystem engineers with a parasitic lifecycle necessitating a fish host to metamorphose from larval glochidia to juvenile mussel. While many species are broadcast spawners and release a large number of glochidia into the water column, many other species have a variety of highly evolved lure mechanisms and mantle displays to attract hosts to ensure a more targeted infestation. Almost all lure mussels are found exclusively in North America, with only one European species (Unio crassus) occasionally displaying a host attraction behaviour referred to as larval spurting. Here, I present evidence that the depressed river mussel (Pseudanodonta complanata) exhibits mantle displays to attract fish to gravid mussels for a targeted infestation, the first description of mantle displays in Europe.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39018219

RESUMEN

RATIONALE: Allogeneic hematopoietic stem-cell transplantation (Allo-HSCT) recipients are still believed to be poor candidates for intensive care unit (ICU) management. OBJECTIVES AND METHODS: We investigated outcomes and determinants of mortality in a large multicenter retrospective cohort of Allo-HSCT patients admitted between January 1, 2015 and December 31, 2020 to 14 French ICUs. MEASUREMENTS AND MAIN RESULTS: One thousand one hundred and sixty-four patients were admitted throughout the study period. At the time of ICU admission, 765 (66%) patients presented multiple organ dysfunction, including acute respiratory failure in 40% (n=461). Median SOFA was 6 (4-8). Invasive mechanical ventilation, renal replacement therapy and vasopressors were required in 438 (38%), 221 (19%) and 468 (41%) patients respectively. ICU mortality was 26% (302 deaths). Day-90, 1-year and 3-year mortality rates were 48%, 63%, and 70%, respectively. By multivariable analysis, age >56 years (OR 2·0 [1·53-2·60], p<0·001), time from Allo-HSCT to ICU admission between 30 and 90 days (OR 1·68 [1·17-2·40], p=0·005), corticosteroid-refractory acute graft-versus-host disease (OR 1·63 [1·38-1·93], p<0·001), need for vasopressors (OR 1·9 [1·42-2·55], p<0·001), and mechanical ventilation (OR 3·1 [2·29-4·18], p<0·001) were independently associated with day-90 mortality. In patients requiring mechanical ventilation, mortality rates ranged from 39% (no other risk factors for mortality) to 100% (4 associated risk factors for mortality). CONCLUSIONS: Most critically ill Allo-HSCT recipients survive their ICU stay, including those requiring mechanical ventilation, with an overall day-90 survival rate reaching 51.8%. A careful assessment of goals of care is required in patients with ≥ 2 risk factors for mortality.

13.
Adv Sci (Weinh) ; : e2404419, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018250

RESUMEN

Herein, hierarchically structured microgrid frameworks of Co3O4 and carbon composite deposited on reduced graphene oxide (Co3O4@C/rGO) are demonstrated through the three-dimensioinal (3D) printing method, where the porous structure is controllable and the height and width are scalable, for dendrite-free Na metal deposition. The sodiophilicity, facile Na metal deposition kinetics, and NaF-rich solid electrolyte interphase (SEI) formation of cubic Co3O4 phase are confirmed by combined spectroscopic and computational analyses. Moreover, the uniform and reversible Na plating/stripping process on 3D-printed Co3O4@C/rGO host is monitored in real time using in situ transmission electron and optical microscopies. In symmetric cells, the 3D printed Co3O4@C/rGO electrode achieves a long-term stability over 3950 at 1 mA cm-2 and 1 mAh cm-2 with a superior Coulombic efficiency (CE) of 99.87% as well as 120 h even at 20 mA cm-2 and 20 mAh cm-2, far exceeding the previously reported carbon-based hosts for Na metal anodes. Consequently, the full cells of 3D-printed Na@Co3O4@C/rGO anode with 3D-printed Na3V2(PO4)3@C-rGO cathode (≈15.7 mg cm-2) deliver the high specific capacity of 97.97 mAh g-1 after 500 cycles with a high CE of 99.89% at 0.5 C, demonstrating the real operation of flexible Na metal batteries.

14.
Diagn Microbiol Infect Dis ; 110(1): 116411, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39018934

RESUMEN

One of the main barriers for the implementation of metagenomic sequencing in routine diagnosis of infectious diseases is the presence of host DNA. While several enrichment methods are likely to overcome this issue, their effectiveness for specimens such as bone in the case of chronic infections remains to be determined. We compared the relevance of two methods for bacterial DNA enrichment when compared to a reference protocol during pretreatment of bone samples from fracture-related infections before HTS by both Illumina Miseq and Oxford Nanopore Technology (ONT). The bacterial/human DNA ratio was higher for either protocols than the reference technique (p = 0.00012), without any significant difference between them. HTS sensitivity over culture ranged from 21.7 % to 85 %. The ability of the studied protocols to improve the bacterial/human DNA ratio depends on the sequencing technique employed. In this context, there is room for improvement in enhancing the sensitivity of HTS for diagnostic purpose.

15.
Exp Parasitol ; : 108804, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019304

RESUMEN

Research on the use of entomopathogenic nematodes (EPNs) as a potential tool for the biological control of invertebrates has been growing in recent years, including studies involving snails with One Health importance. In this study, the effect of exposure time (24 or 48 hours) of Heterorhabditis bacteriophora HP88 on the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), as well as the concentration of total proteins, uric acid, and urea in the hemolymph of Biomphalaria glabrata, were investigated. The concentrations of these metabolic markers were measured weekly until the end of the third week after exposure. Along with a significant reduction in total protein levels, a significant increase (p<0.01) in uric acid and urea contents in the hemolymph of B. glabrata exposed to H. bacteriophora was observed. The accumulation of urea in these mollusks could lead to deleterious effects due to its high toxicity, inducing significant cell damage. Variations in transaminase activities were also observed, with snails exposed to EPNs showing significantly higher values (p<0.01) than individuals in the control group, both for ALT and AST. These results indicate that experimental exposure to infective juveniles of H. bacteriophora causes significant alterations in the metabolic pattern of B. glabrata, compromising the maintenance of its homeostasis. Finally, exposure for 48 hours caused more damage to the planorbid in question compared to snails exposed for 24 hours, suggesting that the exposure time may influence the intensity of the host's response.

16.
J Wildl Dis ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021050

RESUMEN

ABSTRACT: Toxoplasma gondii, a parasitic protozoan, may infect most warm-blooded animals, including humans and carnivores. Our study focused on alien-invasive American minks (Neogale vison) and domestic cats (Felis catus) in the Valdivian Temperate Rainforest, Chile. The main goal was to investigate the relationship between their dietary habits and T. gondii exposure in the Valdivia River watershed. To detect T. gondii exposure, blood serum samples from 49 domestic cats and 40 American minks were analyzed using an ELISA, and stable isotope analysis of δ15N and δ13C from vibrissae was performed to determine the dietary habits of both species. Relationships between T. gondii exposure and dietary habits were explored using generalized linear mixed-effects models. American minks that were T. gondii seropositive exhibited a broader prey range compared to seropositive domestic cats, with minimal dietary overlap between the two groups. Exposure of domestic cats to T. gondii had no significant association with any isotope value or prey item in their diet. In American minks, we found a positive and significant association between the proportion of Domestic chicken (Gallus gallus domesticus) in the diet and high δ15N values with T. gondii exposure. This suggests that domestic species prey related to anthropogenic areas, and the consumption of high-trophic-level prey, may contribute to T. gondii exposure in American minks. Conversely, contrary to previous hypotheses, consumption of rodents showed no significant association with T. gondii exposure in either species. Our findings emphasize the importance of further research to investigate trophic interactions in the transmission dynamics of T. gondii in the Valdivian Temperate Rainforest.

17.
Chemistry ; : e202402438, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022852

RESUMEN

Photosynthesis is a complex multi-step process in which light collection is the initial step of photosynthesis and plays an important role in the efficiency of solar energy utilization. In order to improve the utilization of sunlight, researchers have developed a variety of artificial light-harvesting system to simulate photosynthesis in nature. Here, we report a supramolecular self-assembly artificial light-harvesting system in aqueous solution.  We modified ß-CD with the donor molecule naphthalimide and adamantane with the tetraphenylethylene molecule which has aggregation-induced emission effects (AIE). By using fluorescent molecules with AIE, the self-quenching effect caused by aggregation in aqueous solution can be effectively avoided. Due to the host-guest interaction of ß-CD and adamantane, nanoparticles with stable structure and uniform size can be spontaneously assembled in water. Because of the close distance and strong spectral overlap between naphthalimide and tetraphenylethylene, Förster resonance energy transfer (FRET) was realized, and artificial light-harvesting system was successfully constructed in aqueous solution. The light-harvesting system has a high energy transfer efficiency (ΦET). Therefore, this study provides a new strategy for constructing artificial light-harvesting system.

18.
J Virol ; : e0061824, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023323

RESUMEN

Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that has been associated with congenital neurological defects in fetuses born to infected mothers. At present, no vaccine or antiviral therapy is available to combat this devastating disease. Repurposing drugs that target essential host factors exploited by viruses is an attractive therapeutic approach. Here, we screened a panel of clinically approved small-molecule kinase inhibitors for their antiviral effects against a clinical isolate of ZIKV and thoroughly characterized their mechanisms of action. We found that the Raf kinase inhibitors Dabrafenib and Regorafenib potently impair the replication of ZIKV, but not that of its close relative dengue virus. Time-of-addition experiments showed that both inhibitors target ZIKV infection at post-entry steps. We found that Dabrafenib, but not Regorafenib, interfered with ZIKV genome replication by impairing both negative- and positive-strand RNA synthesis. Regorafenib, on the other hand, altered steady-state viral protein levels, viral egress, and blocked NS1 secretion. We also observed Regorafenib-induced ER fragmentation in ZIKV-infected cells, which might contribute to its antiviral effects. Because these inhibitors target different steps of the ZIKV infection cycle, their use in combination therapy may amplify their antiviral effects which could be further explored for future therapeutic strategies against ZIKV and possibly other flaviviruses. IMPORTANCE: There is an urgent need to develop effective therapeutics against re-emerging arboviruses associated with neurological disorders like Zika virus (ZIKV). We identified two FDA-approved kinase inhibitors, Dabrafenib and Regorafenib, as potent inhibitors of contemporary ZIKV strains at distinct stages of infection despite overlapping host targets. Both inhibitors reduced viral titers by ~1 to 2 log10 (~10-fold to 100-fold) with minimal cytotoxicity. Furthermore, we show that Dabrafenib inhibits ZIKV RNA replication whereas Regorafenib inhibits ZIKV translation and egress. Regorafenib has the added benefit of limiting NS1 secretion, which contributes to the pathogenesis and disease progression of several flaviviruses. Because these inhibitors affect distinct post-entry steps of ZIKV infection, their therapeutic potential may be amplified by combination therapy and likely does not require prophylactic administration. This study provides further insight into ZIKV-host interactions and has implications for the development of novel antivirals against ZIKV and possibly other flaviviruses.

19.
Adv Healthc Mater ; : e2401778, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979867

RESUMEN

Perylenequinonoid natural products are a class of photosensitizers (PSs) that exhibit high reactive oxygen species (ROS) generation and excellent activity for Type I/Type II dual photodynamic therapy. However, their limited activity against gram-negative bacteria and poor water solubility significantly restrict their potential in broad-spectrum photodynamic antimicrobial therapy (PDAT). Herein, a general approach to overcome the limitations of perylenequinonoid photosensitizers (PQPSs) in PDAT by utilizing a macrocyclic supramolecular carrier is presented. Specifically, AnBox·4Cl, a water-soluble cationic cyclophane, is identified as a universal macrocyclic host for PQPSs such as elsinochrome C, hypocrellin A, hypocrellin B, and hypericin, forming 1:1 host-guest complexes with high binding constants (≈107 m -1) in aqueous solutions. Each AnBox·4Cl molecule carries four positive charges that promote strong binding with the membrane of gram-negative bacteria. As a result, the AnBox·4Cl-PQPS complexes can effectively anchor on the surfaces of gram-negative bacteria, while the PQPSs alone cannot. In vitro and in vivo experiments demonstrate that these supramolecular PSs have excellent water solubility and high ROS generation, with broad-spectrum PDAT effect against both gram-negative and gram-positive bacteria. This work paves a new path to enhance PDAT by showcasing an efficient approach to improve PQPSs' water solubility and killing efficacy for gram-negative bacteria.

20.
BMC Ecol Evol ; 24(1): 95, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982371

RESUMEN

BACKGROUND: Adaptation to a stressor can lead to costs on other traits. These costs play an unavoidable role on fitness and influence the evolutionary trajectory of a population. Host defense seems highly subject to these costs, possibly because its maintenance is energetically costly but essential to the survival. When assessing the ecological risk related to pollution, it is therefore relevant to consider these costs to evaluate the evolutionary consequences of stressors on populations. However, to the best of our knowledge, the effects of evolution in irradiate environment on host defense have never been studied. Using an experimental evolution approach, we analyzed fitness across 20 transfers (about 20 generations) in Caenorhabditis elegans populations exposed to 0, 1.4, and 50.0 mGy.h- 1 of 137Cs gamma radiation. Then, populations from transfer 17 were placed in the same environmental conditions without irradiation (i.e., common garden) for about 10 generations before being exposed to the bacterial parasite Serratia marcescens and their survival was estimated to study host defense. Finally, we studied the presence of an evolutionary trade-off between fitness of irradiated populations and host defense. RESULTS: We found a lower fitness in both irradiated treatments compared to the control ones, but fitness increased over time in the 50.0 mGy.h- 1, suggesting a local adaptation of the populations. Then, the survival rate of C. elegans to S. marcescens was lower for common garden populations that had previously evolved under both irradiation treatments, indicating that evolution in gamma-irradiated environment had a cost on host defense of C. elegans. Furthermore, we showed a trade-off between standardized fitness at the end of the multigenerational experiment and survival of C. elegans to S. marcescens in the control treatment, but a positive correlation between the two traits for the two irradiated treatments. These results indicate that among irradiated populations, those most sensitive to ionizing radiation are also the most susceptible to the pathogen. On the other hand, other irradiated populations appear to have evolved cross-resistance to both stress factors. CONCLUSIONS: Our study shows that adaptation to an environmental stressor can be associated with an evolutionary cost when a new stressor appears, even several generations after the end of the first stressor. Among irradiated populations, we observed an evolution of resistance to ionizing radiation, which also appeared to provide an advantage against the pathogen. On the other hand, some of the irradiated populations seemed to accumulate sensitivities to stressors. This work provides a new argument to show the importance of considering evolutionary changes in ecotoxicology and for ecological risk assessment.


Asunto(s)
Evolución Biológica , Caenorhabditis elegans , Animales , Caenorhabditis elegans/efectos de la radiación , Caenorhabditis elegans/microbiología , Radiación Ionizante , Serratia marcescens , Rayos gamma/efectos adversos , Aptitud Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...