Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 17(10)2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29064459

RESUMEN

The emerging research on automatic identification of user's contexts from the cross-domain environment in ubiquitous and pervasive computing systems has proved to be successful. Monitoring the diversified user's contexts and behaviors can help in controlling lifestyle associated to chronic diseases using context-aware applications. However, availability of cross-domain heterogeneous contexts provides a challenging opportunity for their fusion to obtain abstract information for further analysis. This work demonstrates extension of our previous work from a single domain (i.e., physical activity) to multiple domains (physical activity, nutrition and clinical) for context-awareness. We propose multi-level Context-aware Framework (mlCAF), which fuses the multi-level cross-domain contexts in order to arbitrate richer behavioral contexts. This work explicitly focuses on key challenges linked to multi-level context modeling, reasoning and fusioning based on the mlCAF open-source ontology. More specifically, it addresses the interpretation of contexts from three different domains, their fusioning conforming to richer contextual information. This paper contributes in terms of ontology evolution with additional domains, context definitions, rules and inclusion of semantic queries. For the framework evaluation, multi-level cross-domain contexts collected from 20 users were used to ascertain abstract contexts, which served as basis for behavior modeling and lifestyle identification. The experimental results indicate a context recognition average accuracy of around 92.65% for the collected cross-domain contexts.


Asunto(s)
Conducta/clasificación , Monitoreo Fisiológico/métodos , Semántica , Procesamiento de Señales Asistido por Computador , Concienciación , Humanos , Interfaz Usuario-Computador
2.
Sensors (Basel) ; 16(10)2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27690050

RESUMEN

Recent years have witnessed a huge progress in the automatic identification of individual primitives of human behavior, such as activities or locations. However, the complex nature of human behavior demands more abstract contextual information for its analysis. This work presents an ontology-based method that combines low-level primitives of behavior, namely activity, locations and emotions, unprecedented to date, to intelligently derive more meaningful high-level context information. The paper contributes with a new open ontology describing both low-level and high-level context information, as well as their relationships. Furthermore, a framework building on the developed ontology and reasoning models is presented and evaluated. The proposed method proves to be robust while identifying high-level contexts even in the event of erroneously-detected low-level contexts. Despite reasonable inference times being obtained for a relevant set of users and instances, additional work is required to scale to long-term scenarios with a large number of users.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...