Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.371
Filtrar
1.
Neuron ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39111306

RESUMEN

Human brain ontogeny is characterized by a considerably prolonged neotenic development of cortical neurons and circuits. Neoteny is thought to be essential for the acquisition of advanced cognitive functions, which are typically altered in intellectual disability (ID) and autism spectrum disorders (ASDs). Human neuronal neoteny could be disrupted in some forms of ID and/or ASDs, but this has never been tested. Here, we use xenotransplantation of human cortical neurons into the mouse brain to model SYNGAP1 haploinsufficiency, one of the most prevalent genetic causes of ID/ASDs. We find that SYNGAP1-deficient human neurons display strong acceleration of morphological and functional synaptic formation and maturation alongside disrupted synaptic plasticity. At the circuit level, SYNGAP1-haploinsufficient neurons display precocious acquisition of responsiveness to visual stimulation months ahead of time. Our findings indicate that SYNGAP1 is required cell autonomously for human neuronal neoteny, providing novel links between human-specific developmental mechanisms and ID/ASDs.

2.
Biol Psychiatry Glob Open Sci ; 4(5): 100344, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39099731

RESUMEN

Background: Human brain organoids are 3-dimensional cellular models that mimic architectural features of a developing brain. Generated from human induced pluripotent stem cells, these organoids offer an unparalleled physiologically relevant in vitro system for disease modeling and drug screening. In the current study, we sought to establish a foundation for a magnetic resonance imaging (MRI)-based, label-free imaging system that offers high-resolution capabilities for deep tissue imaging of whole organoids. Methods: An 11.7T Bruker/89 mm microimaging system was used to collect high-resolution multishell 3-dimensional diffusion images of 2 induced pluripotent stem cell-derived human hippocampal brain organoids. The MRI features identified in the study were interpreted on the basis of similarities with immunofluorescence microscopy. Results: MRI microscopy at ≤40 µm isotropic resolution provided a 3-dimensional view of organoid microstructure. T2-weighted contrast showed a rosette-like internal structure and a protruding spherical structure that correlated with immunofluorescence staining for the choroid plexus. Diffusion tractography methods can be used to model tissue microstructural features and possibly map neuronal organization. This approach complements traditional immunohistochemistry imaging methods without the need for tissue clearing. Conclusions: This proof-of-concept study shows, for the first time, the application of high-resolution diffusion MRI microscopy to image 2-mm diameter spherical human brain organoids. Application of ultrahigh-field MRI and diffusion tractography is a powerful modality for whole organoid imaging and has the potential to make a significant impact for probing microstructural changes in brain organoids used to model psychiatric disorders, neurodegenerative diseases, and viral infections of the human brain, as well as for assessing neurotoxicity in drug screening.


Versace et al. present a groundbreaking approach using ultrahigh-resolution MRI (11.7T) for deep tissue imaging of whole human brain organoids. These 3D miniature brains mimic the developing brain's architecture and hold promise for disease modeling and drug discovery. This label-free MRI approach offers the potential to characterize microstructural features in human brain organoids modeling psychiatric disorders, neurodegenerative diseases, viral infections, and/or drug-induced neurotoxicity.

3.
Brain Struct Funct ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153086

RESUMEN

Specific spatiotemporal patterns of the normal glial differentiation during human brain development have not been thoroughly studied. Immunomorphological studies on postmortem material have remained a basic method for human neurodevelopmental studies so far. The main problem for the immunohistochemical research of astrogliogenesis is that now there are no universal astrocyte markers, that characterize the whole mature astrocyte population or precursors at each stage of development. To define the general course of astrogliogenesis in the developing human cortex, 25 fetal autopsy samples at the stages from eight postconceptional weeks to birth were collected for the immunomorphological analysis. Spatiotemporal immunoreactivity patterns with the panel of markers (ALDH1L1, GFAP, S100, SOX9, and Olig-2), related to glial differentiation were described and compared. The early S100 + cell population of ventral origin was described as well. This S100 + cell distribution deviated from the SOX9-immunoreactivity pattern and was similar to the Olig-2 one. In the given material the dorsal gliogenic wave was characterized by ALDH1L1-, GFAP-, and S100-immunoreactivity manifestation in the dorsal proliferative niche at the end of the early fetal period. The time point of dorsal astrogliogenesis was agreed upon not later than the 17 GW stage. ALDH1L1 + , GFAP + , S100 + , and SOX9 + cell expansion patterns from the ventricular and subventricular zones to the intermediate zone, subplate, and cortical plate were described at the end of early fetal, middle, and late fetal periods. The ALDH1L1-, GFAP-, and S100-immunoreactivity patterns were shown to be not completely identical.

4.
Stem Cell Res Ther ; 15(1): 258, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135132

RESUMEN

BACKGROUND: Alzheimer disease (AD) is a heterogenous and multifactorial disease, and its pathology is partly driven by microglia and their activated phenotype. Brain organoids (BOs) are gaining prominence as a relevant model of the human brain for the study of AD; however, BOs are commonly devoid of microglia. To overcome this limitation, current protocols incorporate microglia through either (1) co-culture (BO co-culture), or (2) molecular manipulation at critical windows of BO development to have microglia arise innately (BO innate cultures). It is currently unclear whether the microglia incorporated into BOs by either of these two protocols differ in function. METHODS: At in vitro day 90, BO innate cultures and BO-co-cultures were challenged with the AD-related ß-amyloid peptide (Aß) for up to 72 h. After Aß challenge, BOs were collected for immunoblotting. Immunoblots compared immunodensity and protein banding of Aß and ionized calcium-binding adapter molecule 1 (IBA1, a marker of microglial activation) in BOs. The translational potential of these observations was supported using 56 human cortical samples from neurocognitively normal donors and patients with early-onset AD and late-onset AD. Statistical analyses were conducted using the Kruskal-Wallis test, a two-way ANOVA, or a simple linear regression, and where applicable, followed by Dunn's or Sidak's test. RESULTS: We show that BO co-cultures promote Aß oligomerization as early as 24 h and this coincides with a significant increase in IBA1 levels. In contrast, the Aßs do not oligomerize in BO innate cultures and the IBA1 response was modest and only emerged after 48 h. In human cortical samples, we found IBA1 levels correlated with age at onset, age at death, and the putative diagnostic Aß(1-42)/Aß(1-40) ratio (particularly in their oligomeric forms) in a sex-dependent manner. CONCLUSIONS: Our unique observations suggest that BOs with innate microglia model the response of a healthy brain to Aß, and by extension the initial stages of Aß challenge. It would be impossible to model these early stages of pathogenesis in BOs where microglia are already compromised, such as those with microglia incorporated by co-culture.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Encéfalo , Técnicas de Cocultivo , Microglía , Organoides , Humanos , Microglía/metabolismo , Técnicas de Cocultivo/métodos , Péptidos beta-Amiloides/metabolismo , Organoides/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Femenino , Masculino , Anciano , Persona de Mediana Edad
5.
J Cereb Blood Flow Metab ; : 271678X241277621, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177056

RESUMEN

Neuroimaging studies have indicated that altered cerebral blood flow (CBF) was associated with the long-term symptoms of postacute sequelae of SARS-CoV-2 infection (PASC), also known as "long COVID". COVID-19 and long COVID were found to be strongly associated with host gene expression. Nevertheless, the relationships between altered CBF, clinical symptoms, and gene expression in the central nervous system (CNS) remain unclear in individuals with long COVID. This study aimed to explore the genetic mechanisms of CBF abnormalities in individuals with long COVID by transcriptomic-neuroimaging spatial association. Lower CBF in the left frontal-temporal gyrus was associated with higher fatigue and worse cognition in individuals with long COVID. This CBF pattern was spatially associated with the expression of 2,178 genes, which were enriched in the molecular functions and biological pathways of COVID-19. Our study suggested that lower CBF is associated with persistent clinical symptoms in long COVID individuals, possibly as a consequence of the complex interactions among multiple COVID-19-related genes, which contributes to our understanding of the impact of adverse CNS outcomes and the trajectory of development to long COVID.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39136736

RESUMEN

Angiogenesis is the process by which blood vessels are generated from preexisting ones. Synthetic cannabinoids represent new psychoactive substances that bind to the cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R) and simulate similar effects of tetrahydrocannabinol, the primary component found in cannabis. In the present study, we used the synthetic cannabinoid EMB-FUBINACA to study its impact on brain angiogenesis. Human brain microvascular endothelial cells (HBMECs) were cultivated in DMEM media before being subjected to different concentrations of EMB-FUBINACA and the control. Cell viability and the migration rates of HBMECs were evaluated using the viability and wound healing assays, respectively. An in vitro Matrigel Tube Formation Assay was carried out to measure the angiogenic capacity of endothelial cells. Angiopoietin-1 (ANG-1), Angiopoietin-2 (ANG-2), and vascular endothelial growth factor (VEGF) mRNA expression were detected using Real-Time PCR. The released VEGF, ANG-1, and ANG-2 concentrations were detected using ELISA. Western blotting was performed to measure the levels of phosphorylated GSK-3ß, VEGF, ANG-1, and ANG-2. EMB-FUBINACA stimulated endothelial cell proliferation, migration, and capillary tube-like formation and promoted the expression of proangiogenic factors on RNA and protein levels. This study points out that the synthetic cannabinoid EMB-FUBINACA is a potential candidate for further investigations to confirm its potential as an inducer of brain angiogenesis. This could encourage researchers to create a new therapeutic approach for angiogenesis-related diseases.

7.
Alzheimers Dement ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39175425

RESUMEN

INTRODUCTION: The paramagnetic iron, diamagnetic amyloid beta (Aß) plaques and their interaction are crucial in Alzheimer's disease (AD) pathogenesis, complicating non-invasive magnetic resonance imaging for prodromal AD detection. METHODS: We used a state-of-the-art sub-voxel quantitative susceptibility mapping method to simultaneously measure Aß and iron levels in post mortem human brains, validated by histology. Further transcriptomic analysis using Allen Human Brain Atlas elucidated the underlying biological processes. RESULTS: Regional increased paramagnetic and diamagnetic susceptibility were observed in medial prefrontal, medial parietal, and para-hippocampal cortices associated with iron deposition (R = 0.836, p = 0.003) and Aß accumulation (R = 0.853, p = 0.002) in AD brains. Higher levels of gene expression relating to cell cycle, post-translational protein modifications, and cellular response to stress were observed. DISCUSSION: These findings provide quantitative insights into the variable vulnerability of cortical regions to higher levels of Aß aggregation, iron overload, and subsequent neurodegeneration, indicating changes preceding clinical symptoms. HIGHLIGHTS: The vulnerability of distinct brain regions to amyloid beta (Aß) and iron accumulation varies. Histological validation was performed on stained sections of ex-vivo human brains. Regional variations in susceptibility were linked to gene expression profiles. Iron and Aß levels in ex-vivo brains were simultaneously quantified.

8.
Exp Neurol ; 380: 114919, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142370

RESUMEN

Oxidative stress can impair the endothelial barrier and thereby enable autoantibody migration in Neuromyelitis optica spectrum disorder (NMOSD). Tissue-specific vulnerability to autoantibody-mediated damage could be explained by a differential, tissue-dependent endothelial susceptibility to oxidative stress. In this study, we aim to investigate the barrier integrity and complement profiles of brain and retinal endothelial cells under oxygen-induced oxidative stress to address the question of whether the pathomechanism of NMOSD preferentially affects the brain or the retina. Primary human brain microvascular endothelial cells (HBMEC) and primary human retinal endothelial cells (HREC) were cultivated at different cell densities (2.5*104 to 2*105 cells/cm2) for real-time cell analysis. Both cell types were exposed to 100, 500 and 2500 µM H2O2. Immunostaining (CD31, VE-cadherin, ZO-1) and Western blot, as well as complement protein secretion using multiplex ELISA were performed. HBMEC and HREC cell growth phases were cell type-specific. While HBMEC cell growth could be categorized into an initial peak, proliferation phase, plateau phase, and barrier breakdown phase, HREC showed no proliferation phase, but entered the plateau phase immediately after an initial peak. The plateau phase was 7 h shorter in HREC. Both cell types displayed a short-term, dose-dependent adaptive response to H2O2. Remarkably, at 100 µM H2O2, the transcellular resistance of HBMEC exceeded that of untreated cells. 500 µM H2O2 exerted a more disruptive effect on the HBMEC transcellular resistance than on HREC. Both cell types secreted complement factors H (FH) and I (FI), with FH secretion remaining stable after 2 h, but FI secretion decreasing at higher H2O2 concentrations. The observed differences in resistance to oxidative stress between primary brain and retinal endothelial cells may have implications for further studies of NMOSD and other autoimmune diseases affecting the eye and brain. These findings may open novel perspectives for the understanding and treatment of such diseases.


Asunto(s)
Encéfalo , Células Endoteliales , Peróxido de Hidrógeno , Estrés Oxidativo , Retina , Humanos , Estrés Oxidativo/fisiología , Estrés Oxidativo/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Retina/metabolismo , Encéfalo/metabolismo , Peróxido de Hidrógeno/farmacología , Células Cultivadas , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos
9.
Drug Metab Pharmacokinet ; 58: 101031, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39146603

RESUMEN

Substance use disorders (SUDs) are complex mental health conditions involving a problematic pattern of substance use. Challenges remain in understanding their neural mechanisms, which are likely to lead to improved SUD treatments. Human brain organoids, brain-like 3D in vitro cultures derived from human stem cells, show unique potential in recapitulating the response of a developing human brain to substances. Here, we review the recent progress in understanding SUDs using human brain organoid models focusing on neurodevelopmental perspectives. We first summarize the background of SUDs in humans. Moreover, we introduce the development of various human brain organoid models and then discuss current progress and findings underlying the abuse of substances like nicotine, alcohol, and other addictive drugs using organoid models. Furthermore, we review efforts to develop organ chips and microphysiological systems to engineer better human brain organoids for advancing SUD studies. Lastly, we conclude by elaborating on the current challenges and future directions of SUD studies using human brain organoids.

10.
bioRxiv ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39091876

RESUMEN

Cryopreservation in cryovials extends cell storage at low temperatures, and advances in organoid cryopreservation improve reproducibility and reduce generation time. However, cryopreserving human organoids presents challenges due to the limited diffusion of cryoprotective agents (CPAs) into the organoid core and the potential toxicity of these agents. To overcome these obstacles, we developed a cryopreservation technique using a pillar plate platform. To illustrate cryopreservation application to human brain organoids (HBOs), early-stage HBOs were produced by differentiating induced pluripotent stem cells (iPSCs) into neuroectoderm (NEs) in an ultralow atachement (ULA) 384-well plate. These NEs were transferred and encapsulated in Matrigel on the pillar plate. The early-stage HBOs on the pillar plate were exposed to four commercially available CPAs, including PSC cryopreservation kit, CryoStor CS10, 3dGRO, and 10% DMSO, before being frozen overnight at -80°C and subsequently stored in a liquid nitrogen dewar. We examined the impact of CPA type, organoid size, and CPA exposure duration on cell viability post-thaw. Additionally, the differentiation of early-stage HBOs on the pillar plate was assessed using RT-qPCR and immunofluorescence staining. The PSC cryopreservation kit proved to be the least toxic for preserving these HBOs on the pillar plate. Notably, smaller HBOs showed higher cell viability post-cryopreservation than larger ones. An incubation period of 80 minutes with the PSC kit was essential to ensure optimal CPA diffusion into HBOs with a diameter of 400 - 600 µm. These cryopreserved early-stage HBOs successfully matured over 30 days, exhibiting gene expression patterns akin to non-cryopreserved HBOs. The cryopreserved early-stage HBOs on the pillar plate maintained high viability after thawing and successfully differentiated into mature HBOs. This on-chip cryopreservation method could extend to other small organoids, by integrating cryopreservation, thawing, culturing, staining, rinsing, and imaging processes within a single system, thereby preserving the 3D structure of the organoids.

11.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39051658

RESUMEN

Behavioral addiction (BA) is a conceptually new addictive phenotype characterized by compulsive reward-seeking behaviors despite adverse consequences. Currently, its underlying neurogenetic mechanism remains unclear. Here, this study aimed to investigate the association between cortical thickness (CTh) and genetic phenotypes in BA. We conducted a systematic search in five databases and extracted gene expression data from the Allen Human Brain Atlas. Meta-analysis of 10 studies (343 addicted individuals and 355 controls) revealed that the BA group showed thinner CTh in the precuneus, postcentral gyrus, orbital-frontal cortex, and dorsolateral prefrontal cortex (P < 0.005). Meta-regression showed that the CTh in the precuneus and postcentral gyrus were negatively associated with the addiction severity (P < 0.0005). More importantly, the CTh phenotype of BA was spatially correlated with the expression of 12 genes (false discovery rate [FDR] < 0.05), and the dopamine D2 receptor had the highest correlation (rho = 0.55). Gene enrichment analysis further revealed that the 12 genes were involved in the biological processes of behavior regulation and response to stimulus (FDR < 0.05). In conclusion, our findings demonstrated the thinner CTh in cognitive control-related brain areas in BA, which could be associated with the expression of genes involving dopamine metabolism and behavior regulation.


Asunto(s)
Conducta Adictiva , Corteza Cerebral , Humanos , Conducta Adictiva/genética , Conducta Adictiva/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Masculino , Adulto , Femenino , Grosor de la Corteza Cerebral , Receptores de Dopamina D2/genética , Imagen por Resonancia Magnética
12.
J Neuroinflammation ; 21(1): 175, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020359

RESUMEN

BACKGROUND: Key functions of Ca2+ signaling in rodent microglia include monitoring the brain state as well as the surrounding neuronal activity and sensing the danger or damage in their vicinity. Microglial Ca2+ dyshomeostasis is a disease hallmark in many mouse models of neurological disorders but the Ca2+ signal properties of human microglia remain unknown. METHODS: We developed a novel genetically-encoded ratiometric Ca2+ indicator, targeting microglial cells in the freshly resected human tissue, organotypically cultured tissue slices and analyzed in situ ongoing Ca2+ signaling of decades-old microglia dwelling in their native microenvironment. RESULTS: The data revealed marked compartmentalization of Ca2+ signals, with signal properties differing across the compartments and resident morphotypes. The basal Ca2+ levels were low in ramified and high in ameboid microglia. The fraction of cells with ongoing Ca2+ signaling, the fraction and the amplitude of process Ca2+ signals and the duration of somatic Ca2+ signals decreased when moving from ramified via hypertrophic to ameboid microglia. In contrast, the size of active compartments, the fraction and amplitude of somatic Ca2+ signals and the duration of process Ca2+ signals increased along this pathway.


Asunto(s)
Señalización del Calcio , Calcio , Microglía , Microglía/metabolismo , Humanos , Señalización del Calcio/fisiología , Calcio/metabolismo , Masculino , Femenino , Células Cultivadas
13.
Acta Neurochir (Wien) ; 166(1): 307, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060813

RESUMEN

PURPOSE: The utilization of functional magnetic resonance imaging (fMRI) in studying the mechanisms and treatment of chronic pain has gained significant popularity. However, there is currently a dearth of literature conducting bibliometric analysis on fMRI studies focused on chronic pain. METHODS: All the literature included in this study was obtained from the Science Citation Index Expanded of Web of Science Core Collection. We used CiteSpace and VOSviewer to analyze publications, authors, countries or regions, institutions, journals, references and keywords. Additionally, we evaluated the timeline and burst analysis of keywords, as well as the timeline and burst analysis of references. The search was conducted from 2004 to 2023 and completed within a single day on October 4th, 2023. RESULTS: A total of 1,327 articles were retrieved. The annual publication shows an overall increasing trend. The United States has the highest number of publications and the main contributing institution is Harvard University. The journal PAIN produces the most articles. In recent years, resting-state fMRI, the prefrontal cortex, nucleus accumbens, thalamus, and migraines have been researched hotspots of fMRI studies on chronic pain. CONCLUSIONS: This study provides an in-depth perspective on fMRI for chronic pain research, revealing key points, research hotspots and research trends, which offers valuable ideas for future research activities. It concludes with a summary of advances in clinical practice in this area, pointing out the need for critical evaluation of these findings in the light of guidelines and expert recommendations. It is anticipated that further high-quality research outputs will be generated in the future, which will facilitate the utilization of fMRI in clinical decision-making for chronic pain.


Asunto(s)
Bibliometría , Dolor Crónico , Imagen por Resonancia Magnética , Dolor Crónico/diagnóstico por imagen , Imagen por Resonancia Magnética/estadística & datos numéricos , Imagen por Resonancia Magnética/tendencias , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología
14.
Am J Transl Res ; 16(6): 2517-2524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006264

RESUMEN

AIM: To investigate the effects of recombinant human brain natriuretic peptide (rhBNP) on efficacy, hemodynamics, and N-terminal pro-brain natriuretic peptide (NT-proBNP) in elderly patients with heart failure (HF). METHODS: In this retrospective analysis, the clinical data of 112 HF patients who visited the First Affiliated Hospital of Anhui University of Chinese Medicine between March 2019 and October 2022 were analyzed. On the basis of standard HF treatment, 52 patients additionally treated with milrinone intravenous were set as the control group (Con) and 60 patients with rhBNP were set as the observation group (Obs). The therapeutic efficacy and pre- and post-treatment echocardiographic indexes, NT-proBNP and hemodynamics were recorded and compared, and the adverse drug reactions and quality of life scores after treatment were counted. RESULTS: The Obs group showed a markedly higher post-treatment overall response rate than the Con (P=0.002). Besides, more obvious improvement of NT-proBNP and hemodynamic indexes were determined in the Obs group compared to the Con (P=0.000). Evidently ameliorated left ventricular ejection fraction (LVEF), left ventricular end-diastolic dimension (LVEDD) and left ventricular end-systolic diameter (LVESD) were observed in both groups after treatment, with more pronounced improvement in the Obs group (all P=0.000). The Obs group also exhibited an evidently lower incidence of adverse reactions and a better quality of life than the Con after treatment (P=0.000). CONCLUSIONS: rhBNP can effectively improve the cardiac function and hemodynamics in elderly HF patients, with high safety and few adverse reactions.

15.
IBRO Neurosci Rep ; 16: 106-117, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39007085

RESUMEN

Organoids are 3D cultured tissues derived from stem cells that resemble the structure of living organs. Based on the accumulated knowledge of neural development, neural organoids that recapitulate neural tissue have been created by inducing self-organized neural differentiation of stem cells. Neural organoid techniques have been applied to human pluripotent stem cells to differentiate 3D human neural tissues in culture. Various methods have been developed to generate neural tissues of different regions. Currently, neural organoid technology has several significant limitations, which are being overcome in an attempt to create neural organoids that more faithfully recapitulate the living brain. The rapidly advancing neural organoid technology enables the use of living human neural tissue as research material and contributes to our understanding of the development, structure and function of the human nervous system, and is expected to be used to overcome neurological diseases and for regenerative medicine.

16.
Front Neurosci ; 18: 1412356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988772

RESUMEN

Background: Dementia with Lewy bodies (DLB) can be difficult to distinguish from Alzheimer's disease (AD) and Parkinson's disease dementia (PDD) at different stages of its progression due to some overlaps in the clinical and neuropathological presentation of these conditions compared with DLB. Metallomic changes have already been observed in the AD and PDD brain-including widespread decreases in Cu levels and more localised alterations in Na, K, Mn, Fe, Zn, and Se. This study aimed to determine whether these metallomic changes appear in the DLB brain, and how the metallomic profile of the DLB brain appears in comparison to the AD and PDD brain. Methods: Brain tissues from ten regions of 20 DLB cases and 19 controls were obtained. The concentrations of Na, Mg, K, Ca, Zn, Fe, Mn, Cu, and Se were determined using inductively coupled plasma-mass spectrometry (ICP-MS). Case-control differences were evaluated using Mann-Whitney U tests. Results were compared with those previously obtained from AD and PDD brain tissue, and principal component analysis (PCA) plots were created to determine whether cerebral metallomic profiles could distinguish DLB from AD or PDD metallomic profiles. Results: Na was increased and Cu decreased in four and five DLB brain regions, respectively. More localised alterations in Mn, Ca, Fe, and Se were also identified. Despite similarities in Cu changes between all three diseases, PCA plots showed that DLB cases could be readily distinguished from AD cases using data from the middle temporal gyrus, primary visual cortex, and cingulate gyrus, whereas DLB and PDD cases could be clearly separated using data from the primary visual cortex alone. Conclusion: Despite shared alterations in Cu levels, the post-mortem DLB brain shows very few other similarities with the metallomic profile of the AD or PDD brain. These findings suggest that while Cu deficiencies appear common to all three conditions, metal alterations otherwise differ between DLB and PDD/AD. These findings can contribute to our understanding of the underlying pathogenesis of these three diseases; if these changes can be observed in the living human brain, they may also contribute to the differential diagnosis of DLB from AD and/or PDD.

17.
NMR Biomed ; : e5182, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993048

RESUMEN

Currently, brain iron content represents a new neuromarker for understanding the physiopathological mechanisms leading to Parkinson's disease (PD). In vivo quantification of biological iron is possible by reconstructing magnetic susceptibility maps obtained using quantitative susceptibility mapping (QSM). Applying QSM is challenging, as up to now, no standardization of acquisition protocols and phase image processing has emerged from referenced studies. Our objectives were to compare the accuracy and the sensitivity of 10 QSM pipelines built from algorithms from the literature, applied on phantoms data and on brain data. Two phantoms, with known magnetic susceptibility ranges, were created from several solutions of gadolinium chelate. Twenty healthy volunteers from two age groups were included. Phantoms and brain data were acquired at 1.5 and 3 T, respectively. Susceptibility-weighted images were obtained using a 3D multigradient-recalled-echo sequence. For brain data, 3D anatomical T1- and T2-weighted images were also acquired to segment the deep gray nuclei of interest. Concerning in vitro data, the linear dependence of magnetic susceptibility versus gadolinium concentration and deviations from the theoretically expected values were calculated. For brain data, the accuracy and sensitivity of the QSM pipelines were evaluated in comparison with results from the literature and regarding the expected magnetic susceptibility increase with age, respectively. A nonparametric Mann-Whitney U-test was used to compare the magnetic susceptibility quantification in deep gray nuclei between the two age groups. Our methodology enabled quantifying magnetic susceptibility in human brain and the results were consistent with those from the literature. Statistically significant differences were obtained between the two age groups in all cerebral regions of interest. Our results show the importance of optimizing QSM pipelines according to the application and the targeted magnetic susceptibility range, to achieve accurate quantification. We were able to define the optimal QSM pipeline for future applications on patients with PD.

18.
Ageing Res Rev ; 100: 102414, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39002647

RESUMEN

The human brain stands as an intricate organ, embodying a nexus of structure, function, development, and diversity. This review delves into the multifaceted landscape of the brain, spanning its anatomical intricacies, diverse functional capacities, dynamic developmental trajectories, and inherent variability across individuals. The dynamic process of brain development, from early embryonic stages to adulthood, highlights the nuanced changes that occur throughout the lifespan. The brain, a remarkably complex organ, is composed of various anatomical regions, each contributing uniquely to its overall functionality. Through an exploration of neuroanatomy, neurophysiology, and electrophysiology, this review elucidates how different brain structures interact to support a wide array of cognitive processes, sensory perception, motor control, and emotional regulation. Moreover, it addresses the impact of age, sex, and ethnic background on brain structure and function, and gender differences profoundly influence the onset, progression, and manifestation of brain disorders shaped by genetic, hormonal, environmental, and social factors. Delving into the complexities of the human brain, it investigates how variations in anatomical configuration correspond to diverse functional capacities across individuals. Furthermore, it examines the impact of neurodegenerative diseases on the structural and functional integrity of the brain. Specifically, our article explores the pathological processes underlying neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, shedding light on the structural alterations and functional impairments that accompany these conditions. We will also explore the current research trends in neurodegenerative diseases and identify the existing gaps in the literature. Overall, this article deepens our understanding of the fundamental principles governing brain structure and function and paves the way for a deeper understanding of individual differences and tailored approaches in neuroscience and clinical practice-additionally, a comprehensive understanding of structural and functional changes that manifest in neurodegenerative diseases.

19.
Cells ; 13(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38994979

RESUMEN

HIV-associated neurocognitive disorders (HAND) persist under antiretroviral therapy as a complex pathology that has been difficult to study in cellular and animal models. Therefore, we generated an ex vivo human brain slice model of HIV-1 infection from surgically resected adult brain tissue. Brain slice cultures processed for flow cytometry showed >90% viability of dissociated cells within the first three weeks in vitro, with parallel detection of astrocyte, myeloid, and neuronal populations. Neurons within brain slices showed stable dendritic spine density and mature spine morphologies in the first weeks in culture, and they generated detectable activity in multi-electrode arrays. We infected cultured brain slices using patient-matched CD4+ T-cells or monocyte-derived macrophages (MDMs) that were exposed to a GFP-expressing R5-tropic HIV-1 in vitro. Infected slice cultures expressed viral RNA and developed a spreading infection up to 9 days post-infection, which were significantly decreased by antiretrovirals. We also detected infected myeloid cells and astrocytes within slices and observed minimal effect on cellular viability over time. Overall, this human-centered model offers a promising resource to study the cellular mechanisms contributing to HAND (including antiretroviral toxicity, substance use, and aging), infection of resident brain cells, and new neuroprotective therapeutics.


Asunto(s)
Encéfalo , Infecciones por VIH , VIH-1 , Humanos , Encéfalo/virología , Encéfalo/patología , VIH-1/fisiología , Infecciones por VIH/virología , Infecciones por VIH/patología , Adulto , Neuronas/virología , Neuronas/metabolismo , Macrófagos/virología , Macrófagos/metabolismo , Astrocitos/virología , Linfocitos T CD4-Positivos/virología , Técnicas de Cultivo de Tejidos
20.
J Neurochem ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973579

RESUMEN

Myelin water fraction (MWF) imaging has emerged as a promising magnetic resonance imaging (MRI) biomarker for investigating brain function and composition. This comprehensive review synthesizes the current state of knowledge on MWF as a biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination. The databases used include Web of Science, Scopus, Science Direct, and PubMed. We begin with a brief discussion of the theoretical foundations of MWF imaging, including its basis in MR physics and the mathematical modeling underlying its calculation, with an overview of the most adopted MRI methods of MWF imaging. Next, we delve into the clinical and research applications that have been explored to date, highlighting its advantages and limitations. Finally, we explore the potential of MWF to serve as a predictive biomarker for neurological disorders and identify future research directions for optimizing MWF imaging protocols and interpreting MWF in various contexts. By harnessing the power of MWF imaging, we may gain new insights into brain health and disease across the human lifespan, ultimately informing novel diagnostic and therapeutic strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...