Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39275063

RESUMEN

Many naturally occurring chemical metabolites with significant cytotoxic activities have been isolated from medicinal plants and have become the leading hotspot of anti-cancer research in recent years. Hyptis rhomboidea Mart. et Gal is used as a folk medicine in South China to treat or assist in the treatment of liver disease, ulcers, and edema. But its chemical constituents have not been fully investigated yet. This study aimed to assess the cytotoxicity of H. rhomboidea, which was chemically characterized by chromatography-mass spectrometry methods. The results showed that the 95% ethanol extract of H. rhomboidea has marked inhibitory effects on five human cancer cell lines (HL-60, A549, SMMC-7721, MDA-MB-231, and SW480), with IC50 values ranging from 15.8 to 40.0 µg/mL. A total of 64 compounds were identified by ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and gas chromatograph-mass spectroscopy (GC-MS) analysis of H. rhomboidea crude extract. Among them, kaempferol, quercetin, rosmarinic acid, squalene, and campesterol were found to be abundant and might be the major metabolites involved to its bioactivity. The cytotoxic characterization and metabolite profiling of H. rhomboidea displayed in this research provides scientific evidence to support its use as medicinal properties.


Asunto(s)
Antineoplásicos Fitogénicos , Hyptis , Extractos Vegetales , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Línea Celular Tumoral , Hyptis/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Cromatografía de Gases y Espectrometría de Masas , Metaboloma , Metabolómica/métodos , Cromatografía Líquida de Alta Presión , Supervivencia Celular/efectos de los fármacos
2.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673964

RESUMEN

Hyponatremia is the prevalent electrolyte imbalance in cancer patients, and it is associated with a worse outcome. Notably, emerging clinical evidence suggests that hyponatremia adversely influences the response to anticancer treatments. Therefore, this study aims to investigate how reduced extracellular [Na+] affects the responsiveness of different cancer cell lines (from human colon adenocarcinoma, neuroblastoma, and small cell lung cancer) to cisplatin and the underlying potential mechanisms. Cisplatin dose-response curves revealed higher IC50 in low [Na+] than normal [Na+]. Accordingly, cisplatin treatment was less effective in counteracting the proliferation and migration of tumor cells when cultured in low [Na+], as demonstrated by colony formation and invasion assays. In addition, the expression analysis of proteins involved in autophagosome-lysosome formation and the visualization of lysosomal areas by electron microscopy revealed that one of the main mechanisms involved in chemoresistance to cisplatin is the promotion of autophagy. In conclusion, our data first demonstrate that the antitumoral effect of cisplatin is markedly reduced in low [Na+] and that autophagy is an important mechanism of drug escape. This study indicates the role of hyponatremia in cisplatin chemoresistance and reinforces the recommendation to correct this electrolyte alteration in cancer patients.


Asunto(s)
Antineoplásicos , Autofagia , Proliferación Celular , Cisplatino , Sodio , Humanos , Cisplatino/farmacología , Autofagia/efectos de los fármacos , Sodio/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Hiponatremia/metabolismo , Movimiento Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos
3.
Elife ; 122023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37823551

RESUMEN

The splicing factor SF3B1 is recurrently mutated in various tumors, including pancreatic ductal adenocarcinoma (PDAC). The impact of the hotspot mutation SF3B1K700E on the PDAC pathogenesis, however, remains elusive. Here, we demonstrate that Sf3b1K700E alone is insufficient to induce malignant transformation of the murine pancreas, but that it increases aggressiveness of PDAC if it co-occurs with mutated KRAS and p53. We further show that Sf3b1K700E already plays a role during early stages of pancreatic tumor progression and reduces the expression of TGF-ß1-responsive epithelial-mesenchymal transition (EMT) genes. Moreover, we found that SF3B1K700E confers resistance to TGF-ß1-induced cell death in pancreatic organoids and cell lines, partly mediated through aberrant splicing of Map3k7. Overall, our findings demonstrate that SF3B1K700E acts as an oncogenic driver in PDAC, and suggest that it promotes the progression of early stage tumors by impeding the cellular response to tumor suppressive effects of TGF-ß.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Mutación , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/patología , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Neoplasias Pancreáticas
4.
Nutrients ; 15(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37299499

RESUMEN

Several individual olive oil phenols (OOPs) and their secoiridoid derivatives have been shown to exert anti-proliferative and pro-apoptotic activity in treatments of human cancer cell lines originating from several tissues. This study evaluated the synergistic anti-proliferative/cytotoxic effects of five olive secoiridoid derivatives (oleocanthal, oleacein, oleuropein aglycone, ligstroside aglycone and oleomissional) in all possible double combinations and of total phenolic extracts (TPEs) on eleven human cancer cell lines representing eight cell-culture-based cancer models. Individual OOPs were used to treat cells for 72 h in half of their EC50 values for each cell line and their synergistic, additive or antagonistic interactions were evaluated by calculating the coefficient for drug interactions (CDI) for each double combination of OOPs. Olive oil TPEs of determined OOPs' content, originating from three different harvests of autochthonous olive cultivars in Greece, were evaluated as an attempt to investigate the efficacy of OOPs to reduce cancer cell numbers as part of olive oil consumption. Most combinations of OOPs showed strong synergistic effect (CDIs < 0.9) in their efficacy, whereas TPEs strongly impaired cancer cell viability, better than most individual OOPs tested herein, including the most resistant cancer cell lines evaluated.


Asunto(s)
Antineoplásicos , Neoplasias , Olea , Humanos , Antineoplásicos/uso terapéutico , Iridoides/farmacología , Neoplasias/tratamiento farmacológico , Aceite de Oliva/uso terapéutico , Fenoles/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Línea Celular Tumoral
5.
J Pharm Biomed Anal ; 231: 115411, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37094410

RESUMEN

Nucleic acid-based analytical bioplatforms have gained importance as diagnostic tests for genomics and as early detection tools for diseases such as cancer. In this context, we report the development of an amperometric bioplatform for the determination of a specific human papillomavirus type 16 (HPV16) sequence. The bioplatform utilizes an immune-nucleic acid hybrid-sandwich assay. A biotinylated RNA capture probe (RNAbCp), complementary to the selected HPV16 target DNA sequence, was immobilised on the surface of streptavidin coated magnetic microbeads (Strep-MBs). The RNA/DNA heteroduplex resulting from the hybridization of the RNAbCP and the HPV16 target sequence was recognised by a commercial antibody that specifically bound to the heteroduplex (AbDNA-RNA). A horseradish-peroxide labeled secondary antibody (antiIgG-HRP) was used for the detection of AbDNA-RNA. Relying on amperometric detection of the resulting HRP-labeled magnetic bioconjugates captured on screen-printed electrodes (SPCEs) in the presence of H2O2 and hydroquinone (HQ), the biotool achieved a low limit of detection (0.5 pM) for the synthetic HPV16 target DNA. In addition, the developed bioplatform was able to discriminate between HPV16 positive and negative human cancer cells using only 25 ng of amplified DNA in a test time of 45 min.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Humanos , Virus del Papiloma Humano , Carcinógenos , Peróxido de Hidrógeno , ADN , ARN , Anticuerpos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Electrodos
6.
Epigenetics Chromatin ; 15(1): 41, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36544209

RESUMEN

BACKGROUND: Regulatory elements such as promoters, enhancers, and insulators interact each other to mediate molecular processes. To capture chromatin interactions of regulatory elements, 3C-derived methods such as Hi-C and Micro-C are developed. Here, we generated and analyzed Hi-C, Micro-C, and promoter capture Micro-C datasets with different sequencing depths to study chromatin interactions of regulatory elements and nucleosome positions in human prostate cancer cells. RESULTS: Compared to Hi-C, Micro-C identifies more high-resolution loops, including ones around structural variants. By evaluating the effect of sequencing depth, we revealed that more than 2 billion reads of Micro-C are needed to detect chromatin interactions at 1 kb resolution. Moreover, we found that deep-sequencing identifies additional long-range loops that are longer than 1 Mb in distance. Furthermore, we found that more than 50% of the loops are involved in insulators while less than 10% of the loops are promoter-enhancer loops. To comprehensively capture chromatin interactions that promoters are involved in, we performed promoter capture Micro-C. Promoter capture Micro-C identifies loops near promoters with a lower amount of sequencing reads. Sequencing of 160 million reads of promoter capture Micro-C resulted in reaching a plateau of identifying loops. However, there was still a subset of promoters that are not involved in loops even after deep-sequencing. By integrating Micro-C with NOMe-seq and ChIP-seq, we found that active promoters involved in loops have a more accessible region with lower levels of DNA methylation and more highly phased nucleosomes, compared to active promoters that are not involved in loops. CONCLUSION: We determined the required sequencing depth for Micro-C and promoter capture Micro-C to generate high-resolution chromatin interaction maps and loops. We also investigated the effect of sequencing coverage of Hi-C, Micro-C, and promoter capture Micro-C on detecting chromatin loops. Our analyses suggest the presence of distinct regulatory element groups, which are differently involved in nucleosome positions and chromatin interactions. This study does not only provide valuable insights on understanding chromatin interactions of regulatory elements, but also present guidelines for designing research projects on chromatin interactions among regulatory elements.


Asunto(s)
Ensamble y Desensamble de Cromatina , Nucleosomas , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Elementos de Facilitación Genéticos , Nucleosomas/genética , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos/genética
7.
Front Endocrinol (Lausanne) ; 13: 1007801, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407311

RESUMEN

Despite great efforts, effective treatment against cancer has not yet been found. However, natural compounds such as the polyphenol resveratrol have emerged as promising preventive agent in cancer therapy. The mode of action of resveratrol is still poorly understood, but it can modulate many signaling pathways related to the initiation and progression of cancer. Adenosinergic signaling may be involved in the antitumoral action of resveratrol since resveratrol binds to the orthosteric binding site of adenosine A2A receptors and acts as a non-selective agonist for adenosine receptors. In the present study, we measured the impact of resveratrol treatment on different adenosinergic pathway components (i.e. adenosine receptors levels, 5'-nucleotidase, adenosine deaminase, and adenylyl cyclase activities, protein kinase A levels, intracellular adenosine and other related metabolites levels) and cell viability and proliferation in HeLa and SH-SY5Y cell lines. Results revealed changes leading to turning off cAMP signaling such as decreased levels of A2A receptors and reduced adenylyl cyclase activation, increased levels of A1 receptors and increased adenylyl cyclase inhibition, and lower levels of PKA. All these changes could contribute to the antitumoral action of resveratrol. Interestingly, these effects were almost identical in HeLa and SH-SY5Y cells suggesting that resveratrol enhances A1 and hinders A2A adenosine receptors signaling as part of a potential mechanism of antitumoral action.


Asunto(s)
Adenilil Ciclasas , Neuroblastoma , Humanos , Resveratrol/farmacología , Adenilil Ciclasas/metabolismo , Receptores Purinérgicos P1/metabolismo , Adenosina/farmacología
8.
Molecules ; 27(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36431822

RESUMEN

Antiaris africana Engler leaves have been used in Senegalese folk medicine to treat breast cancer. The present study aimed to investigate the anticancer potential of Antiaris africana Engler leaves using several human cancer cell lines. The leaves of Antiaris africana Engler were extracted in parallel with water or 70% ethanol and each extract divided into three parts by successive liquid-liquid extraction with ethyl acetate and butanol. The phytochemical components of the active extract were investigated using ultra-performance liquid chromatography-diode array detector-quadrupole time-of-flight tandem mass spectrometry (UPLC-DAD-QTOF-MS/MS). The cytotoxic and cytostatic effects of each extract, as well as their fractions, were evaluated in vitro via flow and image cytometry on different human cancer phenotypes, such as breast (MCF-7), pancreas (AsPC-1), colon (SW-620) and acute monocytic leukemia (THP-1). Both hydro-alcoholic and aqueous extracts induced strong apoptosis in MCF-7 cells. The water fraction of the hydro-alcoholic extract was found to be the most active, suppressing the cell growth of MCF-7 in a dose-dependent manner. The half maximum effective concentration (EC50) of this fraction was 64.6 ± 13.7 µg/mL for MCF-7, with equivalent values for all tested phenotypes. In parallel, the apoptotic induction by this fraction resulted in a EC50 of 63.5 ± 1.8 µg/mL for MCF-7, with again equivalent values for all other cellular tested phenotypes. Analysis of this fraction by UPLC-DAD-QTOF-MS/MS led to the identification of hydroxycinnamates as major components, one rutin isomer, and three cardiac glycosides previously isolated from seeds and bark of Antiaris africana Engler and described as cytotoxic in human cancer models. These results provide supportive data for the use of Antiaris africana Engler leaves in Senegal.


Asunto(s)
Antiaris , Moraceae , Niño , Humanos , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/química , Hojas de la Planta/química , Agua/análisis
9.
Molecules ; 27(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209155

RESUMEN

Chemotherapy is one of the most commonly used methods of cancer disease treatment. Due to the acquisition of drug resistance and the possibility of cancer recurrence, there is an urgent need to search for new molecules that would be more effective in destroying cancer cells. In this study, 1-(benzofuran-2-yl)ethan-1-one oxime and 26 oxime ethers containing heterocyclic, alicyclic or aromatic moiety were screened for their cytotoxicity against HeLa cancer cell line. The most promising derivatives with potential antitumor activity were 2-(cyclohexylideneaminoxy)acetic acid (18) and (E)-acetophenone O-2-morpholinoethyl oxime (22), which reduced the viability of HeLa cells below 20% of control at concentrations of 100-250 µg/mL. Some oxime ethers, namely thiazole and benzothiophene derivatives (24-27), also reduced HeLa cell viability at similar concentrations but with lower efficiency. Further cytotoxicity evaluation confirmed the specific toxicity of (E)-acetophenone O-2-morpholinoethyl oxime (22) against A-549, Caco-2, and HeLa cancer cells, with an EC50 around 7 µg/mL (30 µM). The most potent and specific compound was (E)-1-(benzothiophene-2-yl)ethanone O-4-methoxybenzyl oxime (27), which was selective for Caco-2 (with EC50 116 µg/mL) and HeLa (with EC50 28 µg/mL) cells. Considering the bioavailability parameters, the tested derivatives meet the criteria for good absorption and permeation. The presented results allow us to conclude that oxime ethers deserve more scientific attention and further research on their chemotherapeutic activity.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Éteres/química , Oximas/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Análisis Espectral , Relación Estructura-Actividad
10.
Oncol Lett ; 23(3): 99, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35154430

RESUMEN

Musa basjoo (MB) is a species of the banana plant belonging to the genus Musa that has been used as a folk medicine. However, evidence-based biological activities and the molecular mechanism of action of MB are unknown. Thus, the aim of the present study was to examine whether the crude dried leaf extracts of MB inhibit the growth of colorectal (HT29 and HCT116) and other types (HepG2, MCF-7 and PC-3) of human cancer cell lines. Crude extracts of MB inhibited the growth of cells with IC50 values of 136 µg/ml (acetone extract, HT29), 51 µg/ml (acetone extract, HCT116), 45 µg/ml (acetone extract, HepG2), 40 µg/ml (acetone extract, MCF-7), 29 µg/ml (acetone extract, PC-3), 175 µg/ml (methanol extract, HT29), 137 µg/ml (methanol extract, HCT116), 102 µg/ml (methanol extract, HepG2), 85 µg/ml (methanol extract, MCF-7), and 85 µg/ml (methanol extract, PC-3) in colony formation assays, and 126 µg/ml (acetone extract, HT29), 68 µg/ml (acetone extract, HCT116), 260 µg/ml (methanol extract, HT29), and 216 µg/ml (methanol extract, HCT116) in MTT assays. Thin layer chromatography analysis revealed the potential existence of aromatic compounds in the acetone extract of MB. Flow cytometric analysis indicated that the percentage of cells in G1 increased, and this was associated with a concomitant decrease of cells in the S and/or G2-M phases of the cell cycle. When colorectal cancer cells were treated with acetone extract of MB, there was a marked decrease in the levels of expression of the cyclin D1, cyclin E, cdk2 and cdk4 proteins and a marked increase in the levels of the expression of the p21CIP1, p27KIP1, and p53 proteins, but those of apoptosis-associated protein PARP did not change. There was a tendency for acetone extract of MB to inhibit xenograft tumor growth in mice. Collectively, the crude extracts of MB contain active components that exert growth inhibition of human cancer cells. This is the first systematic study of the anticancer activity of MB and may broaden insights into the possible clinical approach of specific herbal medicines.

11.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613449

RESUMEN

Olive oil phenols (OOPs) are associated with the prevention of many human cancers. Some of these have been shown to inhibit cell proliferation and induce apoptosis. However, no systematic comparative study exists for all the investigated compounds under the same conditions, due to difficulties in their isolation or synthesis. Herein are presented innovative methods for large-scale selective extraction of six major secoiridoids from olive oil or leaves enabling their detailed investigation. The cytotoxic/antiproliferative bioactivity of these six compounds was evaluated on sixteen human cancer cell lines originating from eight different tissues. Cell viability with half-maximal effective concentrations (EC50) was evaluated after 72 h treatments. Antiproliferative and pro-apoptotic effects were also assessed for the most bioactive compounds (EC50 ≤ 50 µM). Oleocanthal (1) showed the strongest antiproliferative/cytotoxic activity in most cancer cell lines (EC50: 9−20 µM). The relative effectiveness of the six OOPs was: oleocanthal (1) > oleuropein aglycone (3a,b) > ligstroside aglycone (4a,b) > oleacein (2) > oleomissional (6a,b,c) > oleocanthalic acid (7). This is the first detailed study comparing the bioactivity of six OOPs in such a wide array of cancer cell lines, providing a reference for their relative antiproliferative/cytotoxic effect in the investigated cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Olea , Humanos , Iridoides/farmacología , Aceite de Oliva/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Línea Celular
12.
Nat Prod Res ; 36(10): 2542-2546, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34075849

RESUMEN

A series of schiartane C29 nortriterpenoids with 5/5/7/6/5 membered consecutive rings (1‒5) with an unique schinortriterpenoid skeleton including a new, kadcoccilactone V (1), together with four known ones (2‒5) and three known triterpenoids (6‒8) were identified from stems of Kadsura coccinea (Lem.) A. C. Smith. The structures of 1 and known compounds were elucidated by interpretation of 1D and 2D NMR, and HR-ESI-MS data as well as comparing those data in the literature. All the isolated compounds were examined for cytotoxic effects against six human cancer cell lines [(HCT-15 (colon), NUGC-3 (stomach), NCI-H23 (lung), ACHN (renal), PC-3 (prostate), and MDA-MB-231 (breast)]. Among them, compound 6 showed potent cytotoxicity against NCI-H23 (GI50 1.28 µM) and NUGC-3 (GI50 1.28 µM), and significantly inhibited on PC-3, MDA-MB-231, ACHN, HCT-15 with GI50 values around 2.33 to 2.67 µM.


Asunto(s)
Kadsura , Triterpenos , Línea Celular , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Tallos de la Planta , Triterpenos/química , Triterpenos/farmacología
13.
Cells Tissues Organs ; 211(2): 212-221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33640894

RESUMEN

Although ribosomes are generally known to be a translational machinery, some ribosomal proteins also have accessory functions involving early development and differentiation. Previously, we reported that ribosome incorporation into human dermal fibroblasts generated embryoid body-like cell clusters, altered cellular fate, and differentiated into cells of all 3 germ layers. However, the molecular phenomena induced by ribosome incorporation in the cell remained unknown. Here, we demonstrate that ribosome incorporation into human breast cancer cell MCF7 leads to ribosome-induced cell clusters (RICs) formation accompanying with epithelial-mesenchymal transition (EMT)-like gene expression. Following ribosome incorporation, MCF7 cells cease proliferation, which is caused by inhibition of cell cycle transition from G0 to G1 phase. Further, MCF7 RICs show induced expression of EMT markers, TGF-ß1 and Snail along with autophagy markers and tumor suppressor gene p53. These findings indicate that the incorporation of ribosome into cancer cells induces an EMT-like phenomenon and changes the cancer cell characteristics.


Asunto(s)
Neoplasias de la Mama , Transición Epitelial-Mesenquimal , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Puntos de Control del Ciclo Celular , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Ribosomas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología
14.
Materials (Basel) ; 14(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209588

RESUMEN

Cancer is a major global public health problem and conventional chemotherapy has several adverse effects and deficiencies. As a valuable option for chemotherapy, nanomedicine requires novel agents to increase the effects of antineoplastic drugs in multiple cancer models. Since its discovery, carbon nanotubes (CNTs) are intensively investigated for their use as carriers in drug delivery applications. This study shows the development of a nanovector generated with commercial carbon nanotubes (cCNTs) that were oxidized (oxCNTs) and chemically functionalized with hyaluronic acid (HA) and loaded with carboplatin (CPT). The nanovector, oxCNTs-HA-CPT, was used as a treatment against HeLa and MDA-MB-231 human tumor cell lines. The potential antineoplastic impact of the fabricated nanovector was evaluated in human cervical adenocarcinoma (HeLa) and mammary adenocarcinoma (MDA-MB-231). The oxCNTs-HA-CPT nanovector demonstrate to have a specific antitumor effect in vitro. The functionalization with HA allows that nanovector bio-directed towards tumor cells, while the toxicity effect is attributed mainly to CPT in a dose-dependent manner.

15.
J Virol ; 95(14): e0015121, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33952639

RESUMEN

RNA helicase A/DHX9 is required for diverse RNA-related essential cellular functions and antiviral responses and is hijacked by RNA viruses to support their replication. Here, we show that during the late replication stage in human cancer cells of myxoma virus (MYXV), a member of the double-stranded DNA (dsDNA) poxvirus family that is being developed as an oncolytic virus, DHX9, forms unique granular cytoplasmic structures, which we named "DHX9 antiviral granules." These DHX9 antiviral granules are not formed if MYXV DNA replication and/or late protein synthesis is blocked. When formed, DHX9 antiviral granules significantly reduced nascent protein synthesis in the MYXV-infected cancer cells. MYXV late gene transcription and translation were also significantly compromised, particularly in nonpermissive or semipermissive human cancer cells where MYXV replication is partly or completely restricted. Directed knockdown of DHX9 significantly enhanced viral late protein synthesis and progeny virus formation in normally restrictive cancer cells. We further demonstrate that DHX9 is not a component of the canonical cellular stress granules. DHX9 antiviral granules are induced by MYXV, and other poxviruses, in human cells and are associated with other known cellular components of stress granules, dsRNA and virus encoded dsRNA-binding protein M029, a known interactor with DHX9. Thus, DHX9 antiviral granules function by hijacking poxviral elements needed for the cytoplasmic viral replication factories. These results demonstrate a novel antiviral function for DHX9 that is recruited from the nucleus into the cytoplasm, and this step can be exploited to enhance oncolytic virotherapy against the subset of human cancer cells that normally restrict MYXV. IMPORTANCE The cellular DHX9 has both proviral and antiviral roles against diverse RNA and DNA viruses. In this article, we demonstrate that DHX9 can form unique antiviral granules in the cytoplasm during myxoma virus (MYXV) replication in human cancer cells. These antiviral granules sequester viral proteins and reduce viral late protein synthesis and thus regulate MYXV, and other poxviruses, that replicate in the cytoplasm. In addition, we show that in the absence of DHX9, the formation of DHX9 antiviral granules can be inhibited, which significantly enhanced oncolytic MYXV replication in human cancer cell lines where the virus is normally restricted. Our results also show that DHX9 antiviral granules are formed after viral infection but not by common nonviral cellular stress inducers. Thus, our study suggests that DHX9 has antiviral activity in human cancer cells, and this pathway can be targeted for enhanced activity of oncolytic poxviruses against even restrictive cancer cells.


Asunto(s)
Gránulos Citoplasmáticos/fisiología , ARN Helicasas DEAD-box/fisiología , Myxoma virus/fisiología , Proteínas de Neoplasias/fisiología , Animales , Antivirales , Línea Celular Tumoral , Gránulos Citoplasmáticos/química , ARN Helicasas DEAD-box/genética , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Biosíntesis de Proteínas , Conejos , Estrés Fisiológico , Proteínas Virales/metabolismo , Replicación Viral
16.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800261

RESUMEN

Among several anti-cancer therapies, chemotherapy can be used regardless of the stage of the disease. However, development of anti-cancer agents from potential chemicals must be executed very cautiously because of several problems, such as safety, drug resistance, and continuous administration. Most chemotherapeutics selectively cause cancer cells to undergo apoptosis. In this study, we tested the effects of a novel chemical, the benzothiazole derivative N-[2-[(3,5-dimethyl-1,2-oxazol-4-yl)methylsulfanyl]-1,3-benzothiazol-6-yl]-4-oxocyclohexane-1-carboxamide (PB11) on the human cell lines U87 (glioblastoma), and HeLa (cervix cancer). It was observed that this chemical was highly cytotoxic for these cells (IC50s < 50 nM). In addition, even 40 nM PB11 induced the classical apoptotic symptoms of DNA fragmentation and nuclear condensation. The increase of caspase-3 and -9 activities also indicated an increased rate of apoptosis, which was further confirmed via Western blotting analysis of apoptosis-associated proteins. Accordingly, PB11 treatment up-regulated the cellular levels of caspase-3 and cytochrome-c, whereas it down-regulated PI3K and AKT. These results suggest that PB11 induces cytotoxicity and apoptosis in cancer cells by suppressing the PI3K/AKT signaling pathways and, thus, may serve as an anti-cancer therapeutic.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzotiazoles/farmacología , Neoplasias , Transducción de Señal/efectos de los fármacos , Antineoplásicos/química , Benzotiazoles/química , Células HeLa , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
17.
3 Biotech ; 11(2): 63, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33489681

RESUMEN

Chickpea seed proteins are alleged source of nutraceuticals. These seed proteins were subjected to different proteases to produce peptides. The efficacy of these peptides was confirmed using six diverse human cancer cell lines (PA-1, Ishikawa cells, A549, MCF-7, HepG2, MDA-MB-231). Alcalase generated peptides exhibited the highest antagonistic inhibition of Ishikawa cells. Flow cytometric analysis revealed that chickpea peptide induced S and G2 phase arrest of cell cycle in a dose dependent manner. DNA fragmentation and apoptosis occurred by down regulation of Bcl-2 expression, upregulation of Bax expression and promotion of caspase-3 initiation. Chickpea peptides ascertain potential antiproliferative molecule that can be deployed in cancer treatment regimes.

18.
3 Biotech ; 10(8): 365, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32832326

RESUMEN

Binary or Bin toxin produced by Lysinibacillus sphaericus is composed of BinA (42 kDa) and BinB (51 kDa) subunits. These work together to exert maximal toxicity against mosquito larvae via pore formation and induction of apoptosis. The C-terminal domains in both subunits are homologous to those of aerolysin-type ß pore-forming toxins, including parasporin-2 (PS2). The latter is one of the Bacillus thuringiensis toxins that exhibits specific cytotoxicity against human cancer cells. The present study investigates the possible anticancer activity of Bin toxin using PS2 as a control. We demonstrate that treatment with a high concentration of trypsin-activated Bin inhibits cell proliferation in human cancer cells A549, Caco-2, HepG2, HK-1 and KKU-M055. In the most susceptible cells, HK-1, Bin toxin exposure led to morphological alterations, decreased migration, decreased adhesion activity and apoptosis induction. Although these effects necessitated high concentrations, they suggest that Bin toxin may be optimized as a novel potential cancer-therapeutic agent.

19.
Pharm Biol ; 58(1): 732-740, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32715869

RESUMEN

CONTEXT: Kalanchoe species (Crassulaceae) are widely used in traditional medicine as remedies in infectious diseases and cancer treatment. OBJECTIVE: Cytotoxic and antimicrobial activities of Kalanchoe daigremontiana Raym.-Hamet & H. Perrier, K. pinnata (Lam.) Pers., and K. blossfeldiana Poelln. extracts were determined. The relationship between biological activities and the extracts bufadienolides content was also investigated. MATERIALS AND METHODS: Fresh leaves of Kalanchoe species were macerated with 95% ethanol or water. The quantitative analysis of bufadienolides in the extracts was carried out with mass spectrometry. Cytotoxicity tests were performed on human cancer cell lines - HeLa, SKOV-3, MCF-7, and A375 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay and Real-Time Cell Analysis system. The microbiological study was done using a few bacteria strains (ß-hemolytic Streptococcus, Corynebacterium diphtheriae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus hirae, Escherichia coli) and Candida albicans. RESULTS: The K. blossfeldiana ethanol extract and K. daigremontiana water extract exhibited the most potent cytotoxic activity (IC50 < 19 µg/mL for HeLa and SKOV-3 cells). The strongest antibacterial effects showed ethanol extract of K. blossfeldiana and K. pinnata (MIC values were 8.45, 8.45, 0.25 and <33.75 µg/mL for S. aureus, S. epidermidis, and E. hirae, respectively). The highest total amount of bufadienolides was in K. daigremontiana ethanol extract. In contrast, K. blossfeldiana ethanol extract did not show the presence of these compounds. CONCLUSIONS: Kalanchoe blossfeldiana ethanol extract is a potential candidate for cancer and bacterial infection treatment. Additionally, the biological effects of Kalanchoe extracts are not dependent on the presence and amount of bufadienolides in the plant extracts.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos Fitogénicos/farmacología , Bufanólidos/farmacología , Kalanchoe/química , Extractos Vegetales/farmacología , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Bufanólidos/química , Bufanólidos/aislamiento & purificación , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Hojas de la Planta
20.
Cancers (Basel) ; 12(6)2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575437

RESUMEN

This overview summarizes recent data disclosing the efficacy of the PARP inhibitor PJ34 in exclusive eradication of a variety of human cancer cells without impairing healthy proliferating cells. Its cytotoxic activity in cancer cells is attributed to the insertion of specific un-repairable anomalies in the structure of their mitotic spindle, leading to mitotic catastrophe cell death. This mechanism paves the way to a new concept of cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...