Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39202999

RESUMEN

Colorectal cancer (CRC) is the third most common type of cancer worldwide. Its treatment options have had a limited impact on cancer remission prognosis. Therefore, there is an ongoing need to discover novel anti-cancer agents. Medicinal plants have gained recognition as a source of anti-cancer bioactive compounds. Recently, ethanolic extract of L. virginicum stems ameliorated dinitrobenzene sulfonic acid (DNBS)-induced colitis by modulating the intestinal immune response. However, no scientific study has demonstrated this potential cytotoxic impact on colon cancer cells. The objective of this study was to evaluate the cytotoxic effect of the methanolic extract of L. virginicum (ELv) on a human colorectal adenocarcinoma cell line (Caco-2) and to identify and quantify the phenolic compounds present in ELv extracts by liquid chromatography-mass spectrometry analysis. The cytotoxic activity was assessed using cell viability assays by reduction in the compound 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH). MTT and LDH assays revealed that the ELv decreases cell viability in the Caco-2 cell line in a concentration-dependent manner. Cell death was a result of DNA fragmentation and p53-mediated apoptosis. Eight phenolic acids and five flavonoids were identified and quantified in the stems. In conclusion, our findings demonstrate that the extract of L. virginicum possesses cytotoxic properties on Caco-2 cell line, suggesting that it could be a potential source of new drugs against CRC.


Asunto(s)
Apoptosis , Supervivencia Celular , Lepidium , Metanol , Extractos Vegetales , Proteína p53 Supresora de Tumor , Humanos , Células CACO-2 , Extractos Vegetales/farmacología , Extractos Vegetales/química , Apoptosis/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Supervivencia Celular/efectos de los fármacos , Metanol/química , Lepidium/química , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Fenoles/farmacología , Fenoles/química
2.
Cancers (Basel) ; 16(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39001487

RESUMEN

Stimulator of interferon genes protein (STING) activates the immune response in inflammatory cells. STING expression in cancer cells is less well characterized, but STING agonists are currently being evaluated as anticancer drugs. A tissue microarray containing 18,001 samples from 139 different tumor types was analyzed for STING by immunohistochemistry. STING-positive tumor cells were found in 130 (93.5%) of 139 tumor entities. The highest STING positivity rates occurred in squamous cell carcinomas (up to 96%); malignant mesothelioma (88.5%-95.7%); adenocarcinoma of the pancreas (94.9%), lung (90.3%), cervix (90.0%), colorectum (75.2%), and gallbladder (68.8%); and serous high-grade ovarian cancer (86.0%). High STING expression was linked to adverse phenotypes in breast cancer, clear cell renal cell carcinoma, colorectal adenocarcinoma, hepatocellular carcinoma, and papillary carcinoma of the thyroid (p < 0.05). In pTa urothelial carcinomas, STING expression was associated with low-grade carcinoma (p = 0.0002). Across all tumors, STING expression paralleled PD-L1 positivity of tumor and inflammatory cells (p < 0.0001 each) but was unrelated to the density of CD8+ lymphocytes. STING expression is variable across tumor types and may be related to aggressive tumor phenotype and PD-L1 positivity. The lack of relationship with tumor-infiltrating CD8+ lymphocytes argues against a significant IFN production by STING positive tumor cells.

3.
Front Pharmacol ; 15: 1216199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464730

RESUMEN

Introduction: Based on extensive data from oncology research, the use of phytochemicals or plant-based nutraceuticals is considered an innovative tool for cancer management. This research aimed to analyze the oncostatic properties of Salvia officinalis L. [Lamiaceae; Salviae officinalis herba] using animal and in vitro models of breast carcinoma (BC). Methods: The effects of dietary administered S. officinalis in two concentrations (0.1%/SAL 0.1/and 1%/SAL 1/) were assessed in both syngeneic 4T1 mouse and chemically induced rat models of BC. The histopathological and molecular evaluations of rodent carcinoma specimens were performed after the autopsy. Besides, numerous in vitro analyses using two human cancer cell lines were performed. Results and Conclusion: The dominant metabolites found in S. officinalis propylene glycol extract (SPGE) were representatives of phenolics, specifically rosmarinic, protocatechuic, and salicylic acids. Furthermore, the occurrence of triterpenoids ursolic and oleanolic acid was proved in SPGE. In a mouse model, a non-significant tumor volume decrease after S. officinalis treatment was associated with a significant reduction in the mitotic activity index of 4T1 tumors by 37.5% (SAL 0.1) and 31.5% (SAL 1) vs. controls (set as a blank group with not applied salvia in the diet). In addition, salvia at higher doses significantly decreased necrosis/whole tumor area ratio by 46% when compared to control tumor samples. In a rat chemoprevention study, S. officinalis at a higher dose significantly lengthened the latency of tumors by 8.5 days and significantly improved the high/low-grade carcinomas ratio vs. controls in both doses. Analyses of the mechanisms of anticancer activities of S. officinalis included well-validated prognostic, predictive, and diagnostic biomarkers that are applied in both oncology practice and preclinical investigation. Our assessment in vivo revealed numerous significant changes after a comparison of treated vs. untreated cancer cells. In this regard, we found an overexpression in caspase-3, an increased Bax/Bcl-2 ratio, and a decrease in MDA, ALDH1, and EpCam expression. In addition, salvia reduced TGF-ß serum levels in rats (decrease in IL-6 and TNF-α levels were with borderline significance). Evaluation of epigenetic modifications in rat cancer specimens in vivo revealed a decline in the lysine methylations of H3K4m3 and an increase in lysine acetylation in H4K16ac levels in treated groups. Salvia decreased the relative levels of oncogenic miR21 and tumor-suppressive miR145 (miR210, miR22, miR34a, and miR155 were not significantly altered). The methylation of ATM and PTEN promoters was decreased after S. officinalis treatment (PITX2, RASSF1, and TIMP3 promoters were not altered). Analyzing plasma metabolomics profile in tumor-bearing rats, we found reduced levels of ketoacids derived from BCAAs after salvia treatment. In vitro analyses revealed significant anti-cancer effects of SPGE extract in MCF-7 and MDA-MB-231 cell lines (cytotoxicity, caspase-3/-7, Bcl-2, Annexin V/PI, cell cycle, BrdU, and mitochondrial membrane potential). Our study demonstrates the significant chemopreventive and treatment effects of salvia haulm using animal or in vitro BC models.

4.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108571

RESUMEN

The antiproliferative activity of xanthohumol (1), a major prenylated chalcone naturally occurring in hops, and its aurone type derivative (Z)-6,4'-dihydroxy-4-methoxy-7-prenylaurone (2) were investigated. Both flavonoids, as well as cisplatin as a reference anticancer drug, were tested in vivo against ten human cancer cell lines (breast cancer (MCF-7, SK-BR-3, T47D), colon cancer (HT-29, LoVo, LoVo/Dx), prostate cancer (PC-3, Du145), lung cancer (A549) and leukemia (MV-4-11) and two normal cell lines (human lung microvascular endothelial (HLMEC)) and murine embryonic fibroblasts (BALB/3T3). Chalcone 1 and aurone 2 demonstrated potent to moderate anticancer activity against nine tested cancer cell lines (including drug-resistant ones). The antiproliferative activity of all the tested compounds against cancer and the normal cell lines was compared to determine their selectivity of action. Prenylated flavonoids, especially the semisynthetic derivative of xanthohumol (1), aurone 2, were found as selective antiproliferative agents in most of the used cancer cell lines, whereas the reference drug, cisplatin, acted non-selectively. Our findings suggest that the tested flavonoids can be considered strong potential candidates for further studies in the search for effective anticancer drugs.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Chalconas , Humanos , Ratones , Animales , Femenino , Cisplatino/farmacología , Cisplatino/uso terapéutico , Chalconas/farmacología , Flavonoides/farmacología , Flavonoides/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular , Línea Celular Tumoral
5.
J Imaging ; 9(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36826944

RESUMEN

This paper proposes a new Hepatocellular Carcinoma (HCC) classification method utilizing a hyperspectral imaging system (HSI) integrated with a light microscope. Using our custom imaging system, we have captured 270 bands of hyperspectral images of healthy and cancer tissue samples with HCC diagnosis from a liver microarray slide. Convolutional Neural Networks with 3D convolutions (3D-CNN) have been used to build an accurate classification model. With the help of 3D convolutions, spectral and spatial features within the hyperspectral cube are incorporated to train a strong classifier. Unlike 2D convolutions, 3D convolutions take the spectral dimension into account while automatically collecting distinctive features during the CNN training stage. As a result, we have avoided manual feature engineering on hyperspectral data and proposed a compact method for HSI medical applications. Moreover, the focal loss function, utilized as a CNN cost function, enables our model to tackle the class imbalance problem residing in the dataset effectively. The focal loss function emphasizes the hard examples to learn and prevents overfitting due to the lack of inter-class balancing. Our empirical results demonstrate the superiority of hyperspectral data over RGB data for liver cancer tissue classification. We have observed that increased spectral dimension results in higher classification accuracy. Both spectral and spatial features are essential in training an accurate learner for cancer tissue classification.

6.
Front Oncol ; 12: 843598, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574338

RESUMEN

Transfer RNA-derived small RNAs (tsRNAs) are conventional non-coding RNAs (ncRNAs) with a length between18 and 40 nucleotides (nt) playing a crucial role in treating various human diseases including tumours. Nowadays, with the use of high-throughput sequencing technologies, it has been proven that certain tsRNAs are dysregulated in multiple tumour tissues as well as in the blood serum of cancer patients. Meanwhile, data retrieved from the literature show that tsRNAs are correlated with the regulation of the hallmarks of cancer, modification of tumour microenvironment, and modulation of drug resistance. On the other side, the emerging role of tsRNAs as biomarkers for cancer diagnosis and prognosis is promising. In this review, we focus on the specific characteristics and biological functions of tsRNAs with a focus on their impact on various tumours and discuss the possibility of tsRNAs as novel potential biomarkers for cancer diagnosis and prognosis.

7.
Biosci Rep ; 40(12)2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33206184

RESUMEN

A growing number of researches suggest that microRNAs (miRNAs) as oncogene or tumor suppressor genes play a fundamental role in various kinds of cancers. Among them, miR-24-3p, as a star molecule, is widely studied. However, the prognostic value of miR-24-3p is unclear and controversial. We conducted this meta-analysis to evaluate the prognostic value of miR-24-3p in a variety of cancers by integrated existing articles from four databases. PubMed, Embase, Web of Science, and Cochrane Library (last update in March 2020) were searched for approach literature. Hazard ratios (HRs) and odds ratios (ORs) were used to evaluate the association between miR-24-3p expression levels and prognostic value or clinicopathological characteristics, respectively. A total of 15 studies from 14 literature were finally qualified and concluded in the present meta-analysis. A significantly worse overall survival was observed in higher expression of miR-24-3p cancer group for OS (overall survival) of log-rank tests and Cox multivariate regression by fixed effects model. Also, we found a significant correlation between elevated miR-24-3p levels to RFS (recurrence-free survival) and DFS (disease-free survival). In addition, the pooled odds ratios (ORs) showed that evaluated miR-24-3p was also associated with the larger tumor size (≥5 cm) and advanced TNM stage (III and IV). Built on the above findings, elevated expression levels of miR-24-3p may serve as a promising biomarker used to predict the worse prognosis of cancer patients.


Asunto(s)
Biomarcadores de Tumor/genética , MicroARNs/genética , Neoplasias/genética , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Recurrencia Local de Neoplasia , Estadificación de Neoplasias , Neoplasias/mortalidad , Neoplasias/terapia , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Carga Tumoral
8.
Bioengineering (Basel) ; 7(1)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183157

RESUMEN

Ceria nanoparticles (CeO2 NPs) are generally considered in various functional applications, such as catalysts in fuel cells, sensors, and antioxidant and oxidase-like enzymes in the biological environment. The CeO2 NPs were synthesized using the E. globulus leaf extract-mediated hydrothermal technique. The synthesized NPs were characterized by various analytical instruments including powder X-ray diffractometer (PXRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and dynamic light scattering (DLS) analysis. The XRD results showed an average NPs sizes of 13.7 nm. Cytotoxic study results showed an IC50 value of 45.5 µg/L for A549 and 58.2 µg/L for HCT 116, indicating that CeO2 NPs are more toxic to A549 compared to HCT116 cell lines. The generation of ROS was responsible for its cytotoxic activity against cancer cell lines. Specific surface area (40.96 m2/g) and pore diameter (7.8 nm) were measured using Brunauer-Emmett-Teller (BET) nitrogen adsorption-desorption isotherms. CeO2 NPs with a high surface area were used as photocatalyst in degrading sunset yellow (SY) dye under UV-irradiation and 97.3% of the dye was degraded within 90 min. These results suggest that the synthesized CeO2 NPs could be used as a good photocatalyst as well as a cytotoxic agent against human cancer cell lines.

9.
Molecules ; 25(4)2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32075139

RESUMEN

In western Africa ethnomedicine, Lannea barteri Oliv. (Anacardiaceae) is believed to have activity against gastrointestinal, neurological and endocrine diseases. Previous studies on this plant have revealed antimicrobial, anticholinestrase, anticonvulsant, antioxidant and anti-inflammatory activities. However, the anticancer potential of L. barteri has not been studied to date. The aim of this study was to evaluate the anticancer potential of hot and cold extracts and silica gel column chromatographic fractions of L. barteri leaf and stem bark. The extracts and fractions were tested for anticancer activity by using the crystal violet cell proliferation assay on four adherent human carcinoma cell lines-5637 (bladder), KYSE 70 (oesophagus), SiSo (cervical) and HepG2 (hepatic). The inhibitory concentration (IC50) of fractions IH, 1I, 2E and 2F were: 3.75 ± 1.33, 3.88 ± 2.15, 0.53 ± 0.41, and 0.42 ± 0.45 µg/mL against KYSE 70 and 1.04 ± 0.94, 2.69 ± 1.17, 2.38 ± 3.64, 2.17 ± 1.92 µg/mL against SiSo cell lines respectively. Fraction 2E showed weak apoptotic activity at double the IC50 and some sign of cell cycle arrest in the G2/M phase. Thus, phytoconstituents of L. barteri leaf and stem bark can inhibit the proliferation of cancer cell lines indicating the presence of possible anticancer agents in this plant.


Asunto(s)
Anacardiaceae/química , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias/patología , Corteza de la Planta/química , Extractos Vegetales/química , Hojas de la Planta/química
10.
BMC Cancer ; 19(1): 867, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31470827

RESUMEN

BACKGROUND: MiR-221, acting as onco-miR or oncosuppressor-miR, plays an important role in tumor progression; however, the prognostic value of miR-221 in human carcinomas is controversial and inconclusive. The objective of our study was to conducted a systematic review and meta-analysis of miR-221 in various types of human cancers. METHODS: An online search of up-to-date electronic databases, including PubMed and Embase, was conducted to identify as many relevant papers as possible. 32 papers involving 3041 patients with different carcinomas were included in the analysis. Hazard ratios (HRs) of miR-221 were used to evaluate prognostic values. RESULTS: Thirty-two papers involving 15 cancers were included. MiR-221 was associated with a worse overall survival (OS) in patients, and a combined HR was 1.93 (95% CI of 1.43-2.60, 2080 patients, 22 studies, I-squared = 80.4%, P = 0.000); however, the combined HR for relapse-free survival (RFS) was 1.37 (95% CI of 0.75-2.48, 625 patients, 7 studies, I-squared = 78.8%, P = 0.000), and disease-free survival (DFS) was 1.24 (95% CI of 0.60-2.56, 539 patients, 5 studies, I-squared = 81.8%, P = 0.000). CONCLUSION: MiR-221 was shown to be associated with a poor OS in human carcinomas, and thus may serve as a useful predictor of clinical outcomes.


Asunto(s)
Carcinoma/mortalidad , MicroARNs/genética , Regulación hacia Arriba , Biomarcadores de Tumor/genética , Carcinoma/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , Análisis de Supervivencia
11.
Anticancer Agents Med Chem ; 19(17): 2079-2090, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30987575

RESUMEN

BACKGROUND: L-kynurenine, derivate of L-tryptophan, is synthetized by indoleamine 2,3-dioxygenase (IDO). The effects of L-kynurenine depend on its binding to an aryl hydrocarbon receptor (AhR). OBJECTIVE: The aim of this study was to investigate the changes within the apoptotic pathway in PANC-1 cells subjected to L-kynurenine or L-tryptophan considering the production of anti-apoptotic proteins from the IAPs and Bcl-2 family, as well as the regulation of NF-κB signaling. METHODS: The investigated substances were added alone or in combination with the AhR inhibitor (CH223191) to cultures of PANC-1 cells. Cytoplasmic and nuclear proteins were analyzed by immunoblotting and cells were incubated with the investigated substances to determine cytotoxicity and proliferative effects. RESULTS: Incubation of PANC-1 cells with L-kynurenine or L-tryptophan resulted in the increase in antiapoptotic cIAP-1, cIAP-2, XIAP and Bcl-2 expression and a decrease in pro-apoptotic Bax. These changes were accompanied by the reduction of active caspases -9, -3 and PARP-1. The treatment leads to translocation and enhanced production of nuclear NF-κB p50 and Bcl-3. Incubation of the cells with AhR blocker either alone or together with L-kynurenine or L-tryptophan resulted in the opposite effect, leading to the downregulation of IAPs and Bcl-2, upregulation of Bax and caspases expression. CONCLUSION: 1) L-kynurenine and its precursor promote anti-apoptotic effects through the modulation of IDOdependent pathway and regulation of IAPs, Bcl-2 and NF-κB family members in pancreatic carcinoma cells 2) inhibition of AhR by CH223191 exerts an apoptosis-promoting effect, and this observation might suggest the potential use of this compound in pancreatic cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Azo/farmacología , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Quinurenina/farmacología , FN-kappa B/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Pirazoles/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Compuestos Azo/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Quinurenina/química , Estructura Molecular , FN-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Pirazoles/química , Relación Estructura-Actividad , Células Tumorales Cultivadas , Neoplasias Pancreáticas
12.
Adv Pharm Bull ; 8(1): 149-155, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29670850

RESUMEN

Purpose: This paper introduces a green and simple hydrothermal synthesis to prepare carbon quantum dots (CQDs) from walnut oil with a high quantum yield. In addition, cytotoxic and apoptogenic properties of the CQDs were analyzed on human cancer cell lines. Methods: The optical properties and morphological characteristic were investigated by the TEM, XRD, FT-IR, UV-vis and photoluminescence (PL).The cytotoxic potential of walnut CQDs was evaluated on PC3, MCF-7 and HT-29 human carcinoma cell lines using the MTT methods. The mechanism of action was studied by investigating the mode of cell death using the activation of caspase-3 and 9 as well as mitochondrial membrane potential (MMP). Cellular uptake of the CQDs was detected by fluorescence microscope. CQDs had an average size of 12 nm and a significant emission at 420 nm at an excitation wavelength of 350 nm was recorded. Results: The prepared CQDs possessed a good fluorescent quantum yield of 14.5% with quinine sulfate (quantum yield 54%) as a reference and excellent photo as well as pH stabilities. The walnut CQDs were proved to be an extremely potent cytotoxic agent, especially against MCF-7 and PC-3 cell lines. Induction of apoptosis by CQDs was accompanied by an increase in the activation of caspase-3. Caspase-9 activity did not increase after exposure to the CQDs. Additionally; the MMP did not show any significant loss. Conclusion: The results of our study can corroborate the cytotoxic and apoptotic effect of walnut CQDs in the PC3 and MCF-7 cancer cell lines.

13.
Oncol Lett ; 13(5): 3662-3668, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28521469

RESUMEN

The aim of the present study was to investigate licochalcone-E (Lico-E)-induced apoptosis and the associated apoptotic signaling pathway in FaDu cells, a human pharyngeal squamous carcinoma cell line. Treatment with Lico-E exhibited significant cytotoxicity on FaDu cells in a concentration-dependent manner. The IC50 value of Lico-E in FaDu cells was ~50 µM. Treatment with Lico-E increased the number of dead FaDu cells. Furthermore, chromatin condensation, which is associated with apoptotic cell death, was observed in FaDu cells treated with Lico-E for 24 h. By contrast, Lico-E did not produce cytotoxicity or increase the number of dead cells when applied to human normal oral keratinocytes (hNOKs). Furthermore, chromatin condensation was not observed in hNOKs treated with Lico-E. Treatment with Lico-E increased the expression of Fas ligand and the cleaved form of caspase-8 in FaDu cells. Furthermore, treatment with Lico-E increased the expression of pro-apoptotic factors, including apoptosis regulator BAX, Bcl-2-associated agonist of cell death, apoptotic protease-activating factor 1, caspase-9 and tumor suppressor p53, while decreasing the expression of anti-apoptotic factors, including apoptosis regulator Bcl-2 and Bcl-2-like protein 1 in FaDu cells. The expression of cleaved caspases-3 and poly (ADP-ribose) polymerase was significantly upregulated following treatment with Lico-E in FaDu cells, while Lico-E-induced apoptotic FaDu cell death was partially suppressed by treatment with Z-VAD-FMK, a pan caspase inhibitor. Therefore, Lico-E-induced oral cancer (OC) cell-specific apoptosis is mediated by the death receptor-dependent extrinsic and mitochondrial-dependent intrinsic apoptotic signaling pathways. In conclusion, these data suggested that Lico-E exhibits potential chemopreventive effects and warrants further developed as a chemotherapeutic agent against OC.

14.
J Biomed Mater Res A ; 105(3): 728-736, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27770563

RESUMEN

Graphene oxide (GO) has received enormous attention regarding its possible applications in medical areas including cancer treatment. Nevertheless, graphene biocompatibility and its interactions with cancer, normal and immune system cells still remain a major issue. In the current study, we focused on the immunological impact of GO in the oxidative burst by GO produced in fresh isolated primary human neutrophils, the most abundant leukocyte of immune system. We also studied the GO cytotoxicity, cell uptake, and genotoxicity in fresh isolated primary human monocyte, neutrophil, human carcinoma cervical (HeLa) and L929 cells. GO biocompatibility was also analyzed in human red blood cell (hemocompatibility) and in primary human T lymphocytes (T cell). We observed that GO can interact with HeLa in vitro and immune system cells, but in major extension with cancer cells. The latter opened the way for further studies on the effects of GO on immune system pathways and treatments for human cancer at lower concentrations. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 728-736, 2017.


Asunto(s)
Antineoplásicos/farmacología , Daño del ADN , Grafito/farmacología , Ensayo de Materiales , Neoplasias , Linfocitos T/inmunología , Adulto , Femenino , Células HeLa , Humanos , Masculino , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología
15.
Oncol Lett ; 12(3): 2159-2162, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27602156

RESUMEN

Clinical trials have revealed that molecular iodine (I2) has beneficial effects in fibrocystic breast disease and in cyclic mastalgia. Likewise, povidone-iodine (PVP-I), which is widely used in clinical practice as an antiseptic agent following tumour surgery, has been demonstrated to have cytotoxic effects on colon cancer and ascites tumour cells. Our previous study indicated that the growth of breast cancer and seven other human malignant cell lines was variably diminished by I2 and iodolactones. With the intention of developing an iodine-based anticancer therapy, the present investigations extended these studies by comparing the cytotoxic capacities of I2, potassium iodide (KJ), PVP-I and Lugol's solution on various human carcinoma cell lines. Upon staining the cell nuclei with Hoechst 33342, the cell densities were determined microscopically. While KJ alone did not affect cell proliferation, it enhanced the antiproliferative activity of I2. In addition, PVP-I significantly inhibited the proliferation of human MCF-7 breast carcinoma, IPC melanoma, and A549 and H1299 lung carcinoma cells in a concentration corresponding to 20 µM I2. Likewise, Lugol's solution in concentrations corresponding to 20-80 µM I2 were observed to reduce the growth of MCF-7 cells. Experiments with fresh human blood samples revealed that the antiproliferative activity of PVP-I and I2 is preserved in blood plasma to a high degree. These findings suggest that PVP-I, Lugol's solution, and a combination of iodide and I2 may be potent agents for use in the development of antitumour strategies.

16.
Eur J Med Chem ; 116: 36-45, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27043269

RESUMEN

An affinity capillary electrophoresis (ACE) method to estimate apparent dissociation constants between bovine brain calmodulin (CaM) and non-peptidic ligands was developed. The method was validated reproducing the dissociation constants of a number of well-known CaM ligands. In particular, the potent antagonist 125-C9 was ad hoc synthesized through an improved synthetic procedure. The ACE method was successfully applied to verify CaM affinity for lubeluzole, a well-known neuroprotective agent recently proved useful to potentiate the activity of anti-cancer drugs. Lubeluzole was slightly less potent than 125-C9 (Kd = 2.9 ± 0.7 and 0.47 ± 0.06 µM, respectively) and displayed Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibition (IC50 = 40 ± 1 µM). Possible binding modes of lubeluzole to CaM were explored by docking studies based on the X-ray crystal structures of several trifluoperazine-CaM complexes. An estimated dissociation constant in good agreement with the experimental one was found and the main aminoacidic residues and interactions contributing to complex formation were highlighted. The possibility that interference with Ca(2+) pathways may contribute to the previously observed chemosensitizing effects of lubeluzole on human ovarian adenocarcinoma and lung carcinoma cells are discussed.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Calmodulina/metabolismo , Piperidinas/metabolismo , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Tiazoles/metabolismo , Tiazoles/farmacología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Bovinos , Humanos , Simulación del Acoplamiento Molecular , Piperidinas/química , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Tiazoles/química
17.
Res Pharm Sci ; 10(4): 335-44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26600860

RESUMEN

Artemisia is an important genus of Iranian flora whose potent anti-proliferative effect has been demonstrated previously on human cancerous cell lines. In the current study, further fractionation was carried out on the petroleum ether extract of A. aucheri and their cytotoxic effects were evaluated on three human cancer cell lines. Cell viability was determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay. Real time polymerase chain reaction (RT-PCR) was used to evaluate the expression of apoptotic related genes. Activation of caspases and detection of intracellular doxorubicin (DOX) accumulation were evaluated using a spectrophotometer. Mitochondrial membrane potential (MMP) was measured using flow cytometry. The fraction NO-7 (F7) of petroleum ether extract showed the highest anti-proliferative effect, especially against SKNMC cells. Therefore, we focused on a description of the cytotoxic mechanism of the most potent fraction on SKNMC cells. The results indicated that F7 was able to induce apoptosis through MMP disruption, activation of caspases and increament of proapoptotic genes Bax and Smac/DIABLO. Moreover, our observation indicated that F7 is able to increase the cytotoxicity of DOX in SKNMC cells. The combination of F7+DOX significantly increased the intracellular accumulation of DOX. These results indicated that F7 induces apoptosis in SKNMC cells. Moreover, it might enhance the antitumor activity of DOX, through modulating the activity of multidrug resistant cancer cells and inducing apoptosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...