RESUMEN
A reliable suspension-based platform for scaling engineered cardiac tissue (ECT) production from human induced pluripotent stem cells (hiPSCs) is crucial for regenerative therapies. Here, we compared the production and functionality of ECTs formed using our scaffold-based, engineered tissue microsphere differentiation approach with those formed using the prevalent scaffold-free aggregate platform. We utilized a microfluidic system for the rapid (1 million cells/min), high density (30, 40, 60 million cells/ml) encapsulation of hiPSCs within PEG-fibrinogen hydrogel microspheres. HiPSC-laden microspheres and aggregates underwent suspension-based cardiac differentiation in chemically defined media. In comparison to aggregates, microspheres maintained consistent size and shape initially, over time, and within and between batches. Initial size and shape coefficients of variation for microspheres were eight and three times lower, respectively, compared to aggregates. On day 10, microsphere cardiomyocyte (CM) content was 27 % higher and the number of CMs per initial hiPSC was 250 % higher than in aggregates. Contraction and relaxation velocities of microspheres were four and nine times higher than those of aggregates, respectively. Microsphere contractile functionality also improved with culture time, whereas aggregate functionality remained unchanged. Additionally, microspheres displayed improved ß-adrenergic signaling responsiveness and uniform calcium transient propagation. Transcriptomic analysis revealed that while both microspheres and aggregates demonstrated similar gene regulation patterns associated with cardiomyocyte differentiation, heart development, cardiac muscle contraction, and sarcomere organization, the microspheres exhibited more pronounced transcriptional changes over time. Taken together, these results highlight the capability of the microsphere platform for scaling up biomanufacturing of ECTs in a suspension-based culture platform.
RESUMEN
BACKGROUND/AIMS: Advances in induced pluripotent stem cell (iPSC) technology allow for reprogramming of adult somatic cells into stem cells from which patient- and disease-specific cardiomyocytes (CMs) can be derived. Yet, the potential of iPSC technology to revolutionize cardiovascular research is limited, in part, by the embryonic nature of these cells. Here, we test the hypothesis that decellularized porcine left ventricular extracellular cardiac matrix (ECM) provides environmental cues that promote transcriptional maturation and patterning of iPSC-CMs in culture. METHODS: Cardiac progenitor cells were plated on ECM or standard tissue plates (2D monolayer) for 30 days, after which CM orientation and single cell transcriptomics were evaluated using confocal imaging and singe cell RNA-sequencing, respectively. RESULTS: Cardiac progenitors differentiated on left ventricular ECM formed longitudinal fibers that differed quantitatively from progenitors differentiated in standard 2D conditions. Unsupervised clustering of single cell transcriptomics identified a CM cluster expressing a higher level of genes related to CM maturation. CMs differentiated on ECM were overrepresented in this cluster, indicating a bias toward CM maturation, compared to cells differentiated in standard 2D monolayer conditions. CONCLUSION: Our data suggest that environmental cues related to the left ventricular ECM may promote differentiation to a more mature CM state compared to cells differentiated on a standard 2D monolayer, while facilitating organization into longitudinal micro-fibers. Our study highlights the utility of ECM as a differentiation substrate to promote CM maturation and fiber orientation in vitro .
Asunto(s)
Diferenciación Celular , Matriz Extracelular , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Matriz Extracelular/metabolismo , Animales , Porcinos , Transcriptoma , Células Cultivadas , Análisis de la Célula Individual , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismoRESUMEN
Aging represents the leading risk factor for developing neurodegenerative disorders. One of the nine hallmarks of aging is mitochondrial dysfunction. Age-related mitochondrial alterations have been shown to affect mitochondrial energy metabolism, reduction-oxidation homeostasis, and mitochondrial dynamics. Previous reports have shown that induced pluripotent stem cells (iPSCs) from aged donors do not keep the aging signature at the transcriptomic level. However, not all aspects of aging have been investigated, and especially not the mitochondria-related aging signature. Therefore, the present study compared the mitochondrial function in iPSCs from healthy aged donors compared to those of young donors. We addressed whether aged iPSCs may be used as drug-screening models of "aging in a dish" to identify therapies alleviating mitochondria aging. Compared to iPSCs from young donors, we demonstrate that iPSCs from aged donors show impaired mitochondrial bioenergetics and exhibit a rise in reactive oxygen species generation. Furthermore, aged iPSCs present a lower mitochondrial mass and alterations in the morphology of the mitochondrial network when compared to iPSCs from young donors. This study provides the first evidence that the aging phenotype is present at the mitochondrial level in iPSCs from aged donors, ranging from bioenergetics to mitochondrial network morphology. This model might be used to screen mitochondria-targeting drugs to promote healthy aging at the mitochondrial level.
Asunto(s)
Envejecimiento , Metabolismo Energético , Células Madre Pluripotentes Inducidas , Mitocondrias , Especies Reactivas de Oxígeno , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Envejecimiento/metabolismo , Senescencia Celular , Adulto , Anciano , Donantes de TejidosRESUMEN
Background: Platelet-rich fibrin (PRF) has been used, while concentrated growth factor (CGF) has recently evolved as a bioscaffold in regenerative endodontics. Aims: This study aimed to evaluate the effect of PRF and CGF on the proliferation, migration, and differentiation of human-induced pluripotent stem cells (hiPSCs). Materials and Methods: CGF and PRF were fabricated from voluntarily donated human blood, and a conditioned medium was prepared. HiPSCs were isolated and cultivated on a conditioned medium for 12 days. The proliferation rate was analyzed using a trypan blue assay on days 9, 10, and 11. The migratory rate was evaluated using a wound healing assay after 24, 48, and 72 h. For assessing the differentiation of hiPSCs, various markers with quantitative real-time polymerase chain reactions on day 12 were used. Results: Mesenchymal phenotypic transition was seen with an increase in proliferation rate in the PRF group more than in the CGF group on day 9, along with the differentiation of cells with an increase in osteoblastic markers on day 12 in both groups. The migratory capacity of cells was significantly increased in the CGF and PRF groups, with a greater increase in the CGF group. Conclusions: CGF and PRF extend the duration of growth factor activity and enhance cell proliferation and osteogenic differentiation, with hiPSCs serving as a bioscaffold with high regenerative potential.
RESUMEN
Stem cell fate decisions, including proliferation, differentiation, morphological changes, and viability, are impacted by microenvironmental cues such as physical and biochemical signals. However, the specific impact of matrix elasticity on kidney cell development and function remains less understood due to the lack of models that can closely recapitulate human kidney biology. An established protocol to differentiate podocytes from human-induced pluripotent stem (iPS) cells provides a promising avenue to elucidate the role of matrix elasticity in kidney tissue development and lineage determination. In this study, we synthesized polyacrylamide hydrogels with different stiffnesses and investigated their ability to promote podocyte differentiation and biomolecular characteristics. We found that 3 kPa and 10 kPa hydrogels significantly support the adhesion, differentiation, and viability of podocytes. Differentiating podocytes on a more compliant (0.7 kPa) hydrogel resulted in significant cell loss and detachment. Further investigation of the mechanosensitive proteins yes-associated protein (YAP) and synaptopodin revealed nuanced molecular distinctions in cellular responses to matrix elasticity that may otherwise be overlooked if morphology and cell spreading alone were used as the primary metric for selecting matrices for podocyte differentiation. Specifically, hydrogels with kidney-like rigidities outperformed traditional tissue culture plates at modulating the molecular-level expression of active mechanosensitive proteins critical for podocyte health and function. These findings could guide the development of physiologically relevant platforms for kidney tissue engineering, disease modeling, and mechanistic studies of organ physiology and pathophysiology. Such advances are critical for realizing the full potential of in vitro platforms in accurately predicting human biological responses.
RESUMEN
Three-dimensional (3D) cerebral cortical organoids are popular in vitro cellular model systems widely used to study human brain development and disease, compared to traditional stem cell-derived methods that use two-dimensional (2D) monolayer cultures. Despite the advancements made in protocol development for cerebral cortical organoid derivation over the past decade, limitations due to biological, mechanistic, and technical variables remain in generating these complex 3D cellular systems. Building from our previously established differentiation system, we have made modifications to our existing 3D cerebral cortical organoid protocol that resolve several of these technical and biological challenges when working with diverse groups of human induced pluripotent stem cell (hiPSC) lines. This improved protocol blends a 2D monolayer culture format for the specification of neural stem cells and expansion of neuroepithelial progenitor cells with a 3D system for improved self-aggregation and subsequent organoid development. Furthermore, this "hybrid" approach is amenable to both an accelerated cerebral cortical organoid protocol as well as an alternative long-term differentiation protocol. In addition to establishing a hybrid technical format, this protocol also offers phenotypic and morphological characterization of stage-specific cellular profiles using antibodies and fluorescent-based dyes for live cell imaging. © 2024 Wiley Periodicals LLC. Basic Protocol 1: hiPSC-based 2D monolayer specification into neural stem cells (NSCs) Basic Protocol 2: Serial passaging and 2D monolayer expansion of neuroepithelial progenitor cells (NPCs) Support Protocol 1: Direct cryopreservation and rapid thawing of NSCs and NPCs Basic Protocol 3: Bulk aggregation of 3D neurospheres and accelerated cerebral cortical organoid differentiation Alternate Protocol 1: Bulk aggregation of 3D neurospheres and long-term cerebral cortical organoid differentiation Support Protocol 2: High-throughput 3D neurosphere formation and 2D neurosphere migration assay Support Protocol 3: LIVE/DEAD stain cell imaging assay of 3D neurospheres Support Protocol 4: NeuroFluor NeuO live cell dye for 3D cerebral cortical organoids.
Asunto(s)
Diferenciación Celular , Corteza Cerebral , Células Madre Pluripotentes Inducidas , Organoides , Células Madre Pluripotentes Inducidas/citología , Organoides/citología , Humanos , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Técnicas de Cultivo de Célula/métodos , Células-Madre Neurales/citología , Técnicas de Cultivo Tridimensional de Células/métodosRESUMEN
BACKGROUND: Long-QT syndrome is a primary cardiac ion channelopathy predisposing a patient to ventricular arrhythmia through delayed repolarization on the resting ECG. We aimed to establish a patient-specific, human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes model of long-QT syndrome type 3 (LQT3) using clustered regularly interspaced palindromic repeats (CRISPR/Cas9), for disease modeling and drug challenge. METHODS AND RESULTS: HiPSCs were generated from a patient with LQT3 harboring an SCN5A pathogenic variant (c.1231G>A; p.Val411Met), and an unrelated healthy control. The same SCN5A pathogenic variant was engineered into the background healthy control hiPSCs via CRISPR/Cas9 gene editing to generate a second disease model of LQT3 for comparison with an isogenic control. All 3 hiPSC lines were differentiated into cardiomyocytes. Both the patient-derived LQT3 (SCN5A+/-) and genetically engineered LQT3 (SCN5A+/-) hiPSC-derived cardiomyocytes showed significantly prolonged cardiomyocyte repolarization compared with the healthy control. Mexiletine, a cardiac voltage-gated sodium channel (NaV1.5) blocker, shortened repolarization in both patient-derived LQT3 and genetically engineered LQT3 hiPSC-derived cardiomyocytes, but had no effect in the control. Notably, calcium channel blockers nifedipine and verapamil showed a dose-dependent shortening of repolarization, rescuing the phenotype. Additionally, therapeutic drugs known to prolong the corrected QT in humans (ondansetron, clarithromycin, and sotalol) demonstrated this effect in vitro, but the LQT3 clones were not more disproportionately affected compared with the control. CONCLUSIONS: We demonstrated that patient-derived and genetically engineered LQT3 hiPSC-derived cardiomyocytes faithfully recapitulate pathologic characteristics of LQT3. The clinical significance of such an in vitro model is in the exploration of novel therapeutic strategies, stratifying drug adverse reaction risk and potentially facilitating a more targeted, patient-specific approach in high-risk patients with LQT3.
Asunto(s)
Potenciales de Acción , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Miocitos Cardíacos , Canal de Sodio Activado por Voltaje NAV1.5 , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Síndrome de QT Prolongado/tratamiento farmacológico , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Antiarrítmicos/farmacología , Mexiletine/farmacología , Fenotipo , Edición Génica/métodos , Sistemas CRISPR-Cas , Diferenciación Celular , Masculino , Bloqueadores de los Canales de Calcio/farmacología , Estudios de Casos y Controles , Trastorno del Sistema de Conducción CardíacoRESUMEN
Introduction: Schizophrenia (SCZ) is a psychiatric disorder caused by environmental, social, and genetic factors. This phenomenon is a severe neuropsychiatric disorder with a 1% worldwide prevalence. As SCZ is an exclusively human disorder, animal models cannot mimic SCZ pathophysiology. Thus, it is crucial to develop a novel human-based specific model of SCZ to elucidate mechanisms of the occurrence of the disease. In this regard, the aim of this study was reprogramming somatic cells to human-induced pluripotent stem cells (hiPSCs), with possible potency to transformed to specific neural stem cells. Methods: In the present study, we directly reprogrammed the isolated human ear dermal fibroblasts (HDFs) from schizophrenic patients into hiPSCs using some episomal agents in Matrigel-coated plates. The existence of pluripotency markers was confirmed by the immunocytochemistry (ICC) test and alkaline phosphatase protocol. We performed karyotype analysis to ensure the maintenance of the normal chromosomes. Results: Analysis of colonies exhibited intense alkaline phosphatase engagement and Oct4, SSEA4, Nanog, and Tra-1-60. HiPSCs showed normal karyotypes and were potent to differentiate into ectoderm, endoderm, and mesoderm. Conclusion: This study showed human dermal mesenchymal fibroblasts taken from schizophrenic patients can be reprogrammed to hiPSCs, with potential to transformation to three germ layers with sufficient expression of relate molecular markers. This is the first steps to produce SCZ specific neural stem cells, which can be used in the assessment of cellular changes in schizophrenia and possible effects of antipsychotic agents. .
RESUMEN
PURPOSE OF REVIEW: Hypoplastic left heart syndrome (HLHS) is a critical congenital heart defect characterized by the underdevelopment of left-sided heart structures, leading to significant circulatory challenges, and necessitating multiple surgeries for survival. Despite advancements in surgical interventions, long-term outcomes often involve heart failure, highlighting the need for a deeper understanding of HLHS pathogenesis. Current in vivo and in vitro models aim to recapitulate HLHS anatomy and physiology, yet they face limitations in accuracy and complexity. RECENT FINDINGS: In vivo models, including those in chick, lamb, and mouse, provide insights into hemodynamic and genetic factors influencing HLHS. In vitro models using human induced pluripotent stem cells offer valuable platforms for studying genetic mutations and cellular mechanisms. This review evaluates these models' utility and limitations, and proposes future directions for developing more sophisticated models to enhance our understanding and treatment of HLHS.
RESUMEN
Injuries to the central nervous system, such as stroke and traumatic spinal cord injury, result in an aggregate scar that both limits tissue degeneration and inhibits tissue regeneration. The aggregate scar includes chondroitin sulfate proteoglycans (CSPGs), which impede cell migration and axonal outgrowth. Chondroitinase ABC (ChASE) is a potent yet fragile enzyme that degrades CSPGs, and thus may enable tissue regeneration. ChASE37, with 37-point mutations to the native enzyme, has been shown to be more stable than ChASE, but its efficacy has never been tested. To answer this question, we investigated the efficacy of ChASE37 first in vitro using human cell-based assays and then in vivo in a rodent model of stroke. We demonstrated ChASE37 degradation of CSPGs in vitro and the consequent cell adhesion and axonal sprouting now possible using human induced pluripotent stem cell (hiPSC)-derived neurons. To enable prolonged release of ChASE37 to injured tissue, we expressed it as a fusion protein with a Src homology 3 (SH3) domain and modified an injectable, carboxymethylcellulose (CMC) hydrogel with SH3-binding peptides (CMC-bp) using inverse electron-demand Diels-Alder chemistry. We injected this affinity release CMC-bp/SH3-ChASE37 hydrogel epicortically to endothelin-1 stroke-injured rats and confirmed bioactivity via degradation of CSPGs and axonal sprouting in and around the lesion. With CSPG degradation shown both in vitro by greater cell interaction and in vivo with local delivery from a sustained release formulation, we lay the foundation to test the potential of ChASE37 and its delivery by local affinity release for tissue regeneration after stroke.
RESUMEN
Organophosphorus nerve agents (OPNA) are hazardous environmental exposures to the civilian population and have been historically weaponized as chemical warfare agents (CWA). OPNA exposure can lead to several neurological, sensory, and motor symptoms that can manifest into chronic neurological illnesses later in life. There is still a large need for technological advancement to better understand changes in brain function following OPNA exposure. The human-relevant in vitro multi-electrode array (MEA) system, which combines the MEA technology with human stem cell technology, has the potential to monitor the acute, sub-chronic, and chronic consequences of OPNA exposure on brain activity. However, the application of this system to assess OPNA hazards and risks to human brain function remains to be investigated. In a concentration-response study, we have employed a human-relevant MEA system to monitor and detect changes in the electrical activity of engineered neural networks to increasing concentrations of the sarin surrogate 4-nitrophenyl isopropyl methylphosphonate (NIMP). We report a biphasic response in the spiking (but not bursting) activity of neurons exposed to low (i.e., 0.4 and 4 µM) versus high concentrations (i.e., 40 and 100 µM) of NIMP, which was monitored during the exposure period and up to 6 days post-exposure. Regardless of the NIMP concentration, at a network level, communication or coordination of neuronal activity decreased as early as 60 min and persisted at 24 h of NIMP exposure. Once NIMP was removed, coordinated activity was no different than control (0 µM of NIMP). Interestingly, only in the high concentration of NIMP did coordination of activity at a network level begin to decrease again at 2 days post-exposure and persisted on day 6 post-exposure. Notably, cell viability was not affected during or after NIMP exposure. Also, while the catalytic activity of AChE decreased during NIMP exposure, its activity recovered once NIMP was removed. Gene expression analysis suggests that human iPSC-derived neurons and primary human astrocytes resulted in altered genes related to the cell's interaction with the extracellular environment, its intracellular calcium signaling pathways, and inflammation, which could have contributed to how neurons communicated at a network level.
RESUMEN
Since the passage of the 2018 Agriculture Improvement Act (2018 Farm Bill), the number of products containing cannabis-derived compounds available to consumers have rapidly increased. Potential effects on liver function as a result from consumption of products containing cannabidiol (CBD), including hemp extracts, have been observed but the mechanisms for the effects are not fully understood. In this study, hepatocytes derived from human induced pluripotent stem cells (iPSCs) were used to evaluate potential hepatic effects of CBD and hemp extract at exposure concentrations ranging from 0.1 to 30 µM. Despite that a significant reduction in cell viability occurred only in the 30 µM group for both CBD and hemp extract, significant changes to cytochrome P450 activity, mitochondrial membrane potential, and lipid accumulation occurred within the concentration range of 0.1-3 µM for both CBD and hemp extract. Albumin and urea production, caspase 3/7 activity, and intracellular glutathione were significantly affected within the concentration range of 3-30 µM by CBD or hemp extract. These findings indicate that CBD and hemp extract can alter hepatic function and metabolism. The current study contributes data to help inform the evaluation of potential hepatotoxic effects of products containing cannabis-derived compounds.
RESUMEN
In the present study, we aimed to establish and characterize a mature cortical spheroid model system for Kleefstra syndrome (KS) using patient-derived iPSC. We identified key differences in the growth behavior of KS spheroids determined by reduced proliferation marked by low Ki67 and high E-cadherin expression. Conversely, in the spheroid-based neurite outgrowth assay KS outperformed the control neurite outgrowth due to higher BDNF expression. KS spheroids were highly enriched in VGLUT1/2-expressing glutamatergic and ChAT-expressing cholinergic neurons, while TH-positive catecholamine neurons were significantly underrepresented. Furthermore, high NMDAR1 expression was also detected in the KS spheroid, similarly to other patients-derived neuronal cultures, denoting high NMDAR1 expression as a general, KS-specific marker. Control and KS neuronal progenitors and neurospheres were exposed to different toxicants (paraquat, rotenone, bardoxolone, and doxorubicin), and dose-response curves were assessed after acute exposure. Differentiation stage and compound-specific differences were detected with KS neurospheres being the most sensitive to paraquat. Altogether this study describes a robust 3D model system expressing the disease-specific markers and recapitulating the characteristic pathophysiological traits. This platform is suitable for testing developing brain-adverse environmental effects interactions, drug development, and screening towards individual therapeutic strategies.
Asunto(s)
Diferenciación Celular , Deleción Cromosómica , Cromosomas Humanos Par 9 , Células Madre Pluripotentes Inducidas , Esferoides Celulares , Humanos , Cromosomas Humanos Par 9/genética , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/citología , Diferenciación Celular/efectos de los fármacos , Anomalías Craneofaciales/patología , Anomalías Craneofaciales/metabolismo , Discapacidad Intelectual/metabolismo , Proliferación Celular/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Corteza Cerebral/efectos de los fármacos , Células Cultivadas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Rotenona/toxicidad , Cardiopatías Congénitas , Proteínas del Tejido NerviosoRESUMEN
We present a TALEN-based workflow to generate and maintain dual-edited (IL-15+/+/TGFßR2-/-) iPSCs that produce enhanced iPSC-derived natural killer (iNK) cells for cancer immunotherapy. It involves using a cell lineage promoter for knocking in (KI) gene(s) to minimize the potential effects of expression of any exogenous genes on iPSCs. As a proof-of-principle, we KI IL-15 under the endogenous B2M promoter and show that it results in high expression of the sIL-15 in iNK cells but minimal expression in iPSCs. Furthermore, given that it is known that knockout (KO) of TGFßR2 in immune cells can enhance resistance to the suppressive TGF-ß signaling in the tumor microenvironment, we develop a customized medium containing Nodal that can maintain the pluripotency of iPSCs with TGFßR2 KO, enabling banking of these iPSC clones. Ultimately, we show that the dual-edited IL-15+/+/TGFßR2-/- iPSCs can be efficiently differentiated into NK cells that show enhanced autonomous growth and are resistant to the suppressive TGF-ß signaling.
Asunto(s)
Células Madre Pluripotentes Inducidas , Interleucina-15 , Células Asesinas Naturales , Receptor Tipo II de Factor de Crecimiento Transformador beta , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Humanos , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Diferenciación Celular , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Edición Génica/métodosAsunto(s)
Cardiomiopatía Dilatada , Lamina Tipo A , Transducción de Señal , Vitamina D , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Transducción de Señal/genética , Vitamina D/metabolismo , Masculino , Femenino , Mutación , AdultoRESUMEN
Over a hundred risk genes underlie risk for autism spectrum disorder (ASD) but the extent to which they converge on shared downstream targets to increase ASD risk is unknown. To test the hypothesis that cellular context impacts the nature of convergence, here we apply a pooled CRISPR approach to target 29 ASD loss-of-function genes in human induced pluripotent stem cell (hiPSC)-derived neural progenitor cells, glutamatergic neurons, and GABAergic neurons. Two distinct approaches (gene-level and network-level analyses) demonstrate that convergence is greatest in mature glutamatergic neurons. Convergent effects are dynamic, varying in strength, composition, and biological role between cell types, increasing with functional similarity of the ASD genes examined, and driven by cell-type-specific gene co-expression patterns. Stratification of ASD genes yield targeted drug predictions capable of reversing gene-specific convergent signatures in human cells and ASD-related behaviors in zebrafish. Altogether, convergent networks downstream of ASD risk genes represent novel points of individualized therapeutic intervention.
RESUMEN
BACKGROUND: Atrial fibrillation (AF) poses a major risk for heart failure, myocardial infarction, and stroke. Several studies have linked SCN5A variants to AF, but their precise mechanistic contribution remains unclear. Human induced pluripotent stem cells (hiPSCs) provide a promising platform for modeling AF-linked SCN5A variants and their functional alterations. OBJECTIVE: The purpose of this study was to assess the electrophysiological impact of 3 AF-linked SCN5A variants (K1493R, M1875T, N1986K) identified in 3 unrelated individuals. METHODS: CRISPR-Cas9 was used to generate a new hiPSC line in which NaV1.5 was knocked out. Following differentiation into specific atrial cardiomyocyte by using retinoic acid, the adult wild-type (WT) and 3 AF variants were introduced into the NaV1.5 knockout (KO) line through transfection. Subsequent analysis including molecular biology, optical mapping, and electrophysiology were performed. RESULTS: The absence of NaV1.5 channels altered the expression of key cardiac genes. NaV1.5 KO atrial-like cardiomyocytes derived from human induced pluripotent stem cells displayed slower conduction velocities, altered action potential (AP) parameters, and impaired calcium transient propagation. The transfection of the WT channel restored sodium current density, AP characteristics and the expression of several cardiac genes. Among the AF variants, 1 induced a loss of function (N1986K) while the other 2 induced a gain of function in NaV1.5 channel activity. Cellular excitability alterations and early afterdepolarizations were observed in AF variants. CONCLUSION: Our findings suggest that distinct alterations in NaV1.5 channel properties may trigger altered atrial excitability and arrhythmogenic activity in AF. Our KO model offers an innovative approach for investigating SCN5A variants in an adult human cardiac environment.
RESUMEN
Human induced pluripotent stem cells (hiPSCs) are an invaluable tool to study molecular mechanisms on a human background. Culturing stem cells at an oxygen level different from their microenvironmental niche impacts their viability. To understand this mechanistically, dermal skin fibroblasts of 52 probands were reprogrammed into hiPSCs, followed by either hyperoxic (20 % O2) or physioxic (5 % O2) culture and proteomic profiling. Analysis of chromosomal stability by Giemsa-banding revealed that physioxic -cultured hiPSC clones exhibited less pathological karyotypes than hyperoxic (e.g. 6 % vs. 32 % mosaicism), higher pluripotency as evidenced by higher Stage-Specific Embryonic Antigen 3 positivity, higher glucose consumption and lactate production. Global proteomic analysis demonstrated lower abundance of several subunits of NADH:ubiquinone oxidoreductase (complex I) and an underrepresentation of pathways linked to oxidative phosphorylation and cellular senescence. Accordingly, release of the pro-senescent factor IGFBP3 and ß-galactosidase staining were lower in physioxic hiPSCs. RNA- and ATAC-seq profiling revealed a distinct hypoxic transcription factor-binding footprint, amongst others higher expression of the HIF1α-regulated target NDUFA4L2 along with increased chromatin accessibility of the NDUFA4L2 gene locus. While mitochondrial DNA content did not differ between groups, physioxic hiPSCs revealed lower polarized mitochondrial membrane potential, altered mitochondrial network appearance and reduced basal respiration and electron transfer capacity. Blue-native polyacrylamide gel electrophoresis coupled to mass spectrometry of the mitochondrial complexes detected higher abundance of NDUFA4L2 and ATP5IF1 and loss of incorporation into complex IV or V, respectively. Taken together, physioxic culture of hiPSCs improved chromosomal stability, which was associated with downregulation of oxidative phosphorylation and senescence and extensive re-wiring of mitochondrial complex composition.
RESUMEN
Amyotrophic lateral sclerosis (ALS) is a major neurodegenerative disease for which there is currently no curative treatment. The blood-brain barrier (BBB), multiple physiological functions formed by mainly specialized brain microvascular endothelial cells (BMECs), serves as a gatekeeper to protect the central nervous system (CNS) from harmful molecules in the blood and aberrant immune cell infiltration. The accumulation of evidence indicating that alterations in the peripheral milieu can contribute to neurodegeneration within the CNS suggests that the BBB may be a previously overlooked factor in the pathogenesis of ALS. Animal models suggest BBB breakdown may precede neurodegeneration and link BBB alteration to the disease progression or even onset. However, the lack of a useful patient-derived model hampers understanding the pathomechanisms of BBB dysfunction and the development of BBB-targeted therapies. In this study, we differentiated BMEC-like cells from human induced pluripotent stem cells (hiPSCs) derived from ALS patients to investigate BMEC functions in ALS patients. TARDBP N345K/+ carrying patient-derived BMEC-like cells exhibited increased permeability to small molecules due to loss of tight junction in the absence of neurodegeneration or neuroinflammation, highlighting that BMEC abnormalities in ALS are not merely secondary consequences of disease progression. Furthermore, they exhibited increased expression of cell surface adhesion molecules like ICAM-1 and VCAM-1, leading to enhanced immune cell adhesion. BMEC-like cells derived from hiPSCs with other types of TARDBP gene mutations (TARDBP K263E/K263E and TARDBP G295S/G295S) introduced by genome editing technology did not show such BMEC dysfunction compared to the isogenic control. Interestingly, transactive response DNA-binding protein 43 (TDP-43) was mislocalized to cytoplasm in TARDBP N345K/+ carrying model. Wnt/ß-catenin signaling was downregulated in the ALS patient (TARDBP N345K/+)-derived BMEC-like cells and its activation rescued the leaky barrier phenotype and settled down VCAM-1 expressions. These results indicate that TARDBP N345K/+ carrying model recapitulated BMEC abnormalities reported in brain samples of ALS patients. This novel patient-derived BMEC-like cell is useful for the further analysis of the involvement of vascular barrier dysfunctions in the pathogenesis of ALS and for promoting therapeutic drug discovery targeting BMEC.
RESUMEN
Elevated interleukin (IL-)6 levels during prenatal development have been linked to increased risk for neurodevelopmental disorders (NDD) in the offspring, but the mechanism remains unclear. Human-induced pluripotent stem cell (hiPSC) models offer a valuable tool to study the effects of IL-6 on features relevant for human neurodevelopment in vitro. We previously reported that hiPSC-derived microglia-like cells (MGLs) respond to IL-6, but neural progenitor cells (NPCs) in monoculture do not. Therefore, we investigated whether co-culturing hiPSC-derived MGLs with NPCs would trigger a cellular response to IL-6 stimulation via secreted factors from the MGLs. Using N=4 donor lines without psychiatric diagnosis, we first confirmed that NPCs can respond to IL-6 through trans-signalling when recombinant IL-6Ra is present, and that this response is dose-dependent. MGLs secreted soluble IL-6R, but at lower levels than found in vivo and below that needed to activate trans-signalling in NPCs. Whilst transcriptomic and secretome analysis confirmed that MGLs undergo substantial transcriptomic changes after IL-6 exposure and subsequently secrete a cytokine milieu, NPCs in co-culture with MGLs exhibited a minimal transcriptional response. Furthermore, there were no significant cell fate-acquisition changes when differentiated into post-mitotic cultures, nor alterations in synaptic densities in mature neurons. These findings highlight the need to investigate if trans-IL-6 signalling to NPCs is a relevant disease mechanism linking prenatal IL-6 exposure to increased risk for psychiatric disorders. Moreover, our findings underscore the importance of establishing more complex in vitro human models with diverse cell types, which may show cell-specific responses to microglia-released cytokines to fully understand how IL-6 exposure may influence human neurodevelopment.