Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 34(8): 1768-1777, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37452772

RESUMEN

A model to quantitatively predict ion abundances from atmospheric pressure chemical ionization (APCI) between hydrated protons and a volatile organic compound (VOC) was extended to binary mixtures of VOCs. The model includes differences in vapor concentrations, rate coefficients, and reaction times and is enhanced with cross reactions between neutral vapors and protonated monomers. In this model, two specific VOCs were considered, a ketone, 6-methyl-5-hepten-2-one (M, and an amine, 2,6-di-tert-butyl-pyridine (N), with measured "conditional rate coefficients" (in cm3·s-1) of kM = 1.11 × 10-9 and kN = 9.17 × 10-10, respectively. The cross reaction of MH+(H2O)x to NH+(H2O)y was measured as kcr = 1.31 × 10-12 at 60 °C. Cross reactions showed an impact on ion abundances at t > 30 ms for equal vapor concentrations of 100 ppb for M and N. In contrast, this impact was negligible for vapor concentrations of 1 ppb and did not exceed 5% change in product ion abundance up to 1000 ms reaction times. The model was validated with laboratory measurements to within ∼10% using an ion mobility spectrometer and effective reaction time obtained from computational fitting of experimental findings. This was necessitated by complex flow patterns in the ion source volume and was determined as ∼10.5 ms. The model has interpretative and predictive value for quantitative analysis of responses with ambient pressure ion sources for mass spectrometry and ion mobility spectrometry.

2.
Angew Chem Int Ed Engl ; 61(46): e202211066, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36102247

RESUMEN

Seemingly simple yet surprisingly difficult to probe, excess protons in water constitute complex quantum objects with strong interactions with the extended and dynamically changing hydrogen-bonding network of the liquid. Proton hydration plays pivotal roles in energy transport in hydrogen fuel cells and signal transduction in transmembrane proteins. While geometries and stoichiometry have been widely addressed in both experiment and theory, the electronic structure of these specific hydrated proton complexes has remained elusive. Here we show, layer by layer, how utilizing novel flatjet technology for accurate x-ray spectroscopic measurements and combining infrared spectral analysis and calculations, we find orbital-specific markers that distinguish two main electronic-structure effects: Local orbital interactions determine covalent bonding between the proton and neigbouring water molecules, while orbital-energy shifts measure the strength of the extended electric field of the proton.


Asunto(s)
Protones , Agua , Enlace de Hidrógeno , Agua/química , Análisis Espectral , Electricidad
3.
J Am Soc Mass Spectrom ; 32(8): 2218-2226, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34264074

RESUMEN

Gas phase reactions between hydrated protons H+(H2O)n and a substance M, as seen in atmospheric pressure chemical ionization (APCI) with mass spectrometry (MS) and ion mobility spectrometry (IMS), were modeled computationally using initial amounts of [M] and [H+(H2O)n], rate constants k1 to form protonated monomer (MH+(H2O)x) and k2 to form proton bound dimer (M2H+(H2O)z), and diffusion constants. At 1 × 1010 cm-3 (0.4 ppb) for [H+(H2O)n] and vapor concentrations for M from 10 ppb to 10 ppm, a maximum signal was reached at 4.5 µs to 4.6 ms for MH+(H2O)x and 7.8 µs to 46 ms for M2H+(H2O)z. Maximum yield for protonated monomer for a reaction time of 1 ms was ∼40% for k1 from 10-11 to 10-8 cm3·s-1, for k2/k1 = 0.8, and specific values of [M]. This model demonstrates that ion distributions could be shifted from [M2H+(H2O)z] to [MH+(H2O)x] using excessive levels of [H+(H2O)n], even for [M] > 10 ppb, as commonly found in APCI MS and IMS measurements. Ion losses by collisions on surfaces were insignificant with losses of <0.5% for protonated monomer and <0.1% for proton bound dimer of dimethyl methylphosphonate (DMMP) at 5 ms. In this model, ion production in an APCI environment is treated over ranges of parameters important in mass spectrometric measurements. The models establish a foundation for detailed computations on response with mixtures of neutral substances.

4.
Chemphyschem ; 22(8): 716-725, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33599024

RESUMEN

Infrared (IR) absorption in the 1000-3700 cm-1 range and 1 H NMR spectroscopy reveal the existence of an asymmetric protonated water trimer, H7+ O3, in acetonitrile. The core H7+ O3 motif persists in larger protonated water clusters in acetonitrile up to at least 8 water molecules. Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations reveal irreversible proton transport promoted by propagating the asymmetric H7+ O3 structure in solution. The QM/MM calculations allow for the successful simulation of the measured IR absorption spectra of H7+ O3 in the OH stretch region, which reaffirms the assignment of the H7+ O3 spectra to a hybrid-complex structure: a protonated water dimer strongly hydrogen-bonded to a third water molecule with the proton exchanging between the two possible shared-proton Zundel-like centers. The H7+ O3 structure lends itself to promoting irreversible proton transport in presence of even one additional water molecule. We demonstrate how continuously evolving H7+ O3 structures may support proton transport within larger water solvates.

5.
Acta Crystallogr C ; 69(Pt 10): 1192-5, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24096514

RESUMEN

The structures of the 1:1 hydrated proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with oxalic acid, 4-carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O(+)·C2HO4(-)·2H2O, (I), and with adipic acid, bis(4-carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O(+)·C6H8O4(2-)·2H2O, (II), are three-dimensional hydrogen-bonded constructs involving several different types of enlarged water-bridged cyclic associations. In the structure of (I), the oxalate monoanions give head-to-tail carboxylic acid O-H···O(carboxyl) hydrogen-bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N-H···O hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O-atom acceptors and amide and piperidinium N-H···O(carboxyl) hydrogen bonds, generating cyclic R4(3)(10) and R3(2)(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion-related cations are interlinked through the two water molecules, which act as acceptors in dual amide N-H···O(water) hydrogen bonds, to give a cyclic R4(2)(8) association which is conjoined with an R4(4)(12) motif. Further N-H···O(water), water O-H···O(amide) and piperidinium N-H···O(carboxyl) hydrogen bonds give the overall three-dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non-occurrence of the common hydrogen-bonded amide-amide dimer, promoting instead various expanded cyclic hydrogen-bonding motifs.

6.
J Phys Chem Lett ; 2(2): 81-6, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26295525

RESUMEN

Reactive molecular dynamics simulations have been utilized to calculate the infrared (IR) spectra of acidic HCl solutions of varying concentration with the goal of achieving a better understanding of the spectral features of the hydrated excess protons in bulk water. To incorporate the essential physics of the hydrated proton, we carried out the simulations using the specialized self-consistent iterative multistate empirical valence bond (SCI-MS-EVB) method, which is a form of multiconfigurational (reactive) molecular dynamics. After the pure water absorption background was removed, the calculated difference spectra are in good agreement with prior experimental results. The continuous broad absorption band in the acidic IR spectrum is, for the first time, interpreted based on the concept of a dynamically distorted Eigen cation, H9O4(+), which has been shown to provide the most accurate description for the charge defect character of the hydrated excess proton in liquid water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...