Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Front Physiol ; 15: 1475152, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39328831

RESUMEN

Ion channels and cytoskeletal proteins in the cardiac dyad play a critical role in maintaining excitation-contraction (E-C) coupling and provide cardiac homeostasis. Functional changes in these dyad proteins, whether induced by genetic, epigenetic, metabolic, therapeutic, or environmental factors, can disrupt normal cardiac electrophysiology, leading to abnormal E-C coupling and arrhythmias. Animal models and heterologous cell cultures provide platforms to elucidate the pathogenesis of arrhythmias for basic cardiac research; however, these traditional systems do not truly reflect human cardiac electro-pathophysiology. Notably, patients with the same genetic variants of inherited channelopathies (ICC) often exhibit incomplete penetrance and variable expressivity which underscores the need to establish patient-specific disease models to comprehend the mechanistic pathways of arrhythmias and determine personalized therapies. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) inherit the genetic background of the patient and reflect the electrophysiological characteristics of the native cardiomyocytes. Thus, iPSC-CMs provide an innovative and translational pivotal platform in cardiac disease modeling and therapeutic screening. In this review, we will examine how patient-specific iPSC-CMs historically evolved to model arrhythmia syndromes in a dish, and their utility in understanding the role of specific ion channels and their functional characteristics in causing arrhythmias. We will also examine how CRISPR/Cas9 have enabled the establishment of patient-independent and variant-induced iPSC-CMs-based arrhythmia models. Next, we will examine the limitations of using human iPSC-CMs with respect to in vitro arrhythmia modeling that stems from variations in iPSCs or toxicity due to gene editing on iPSC or iPSC-CMs and explore how such hurdles are being addressed. Importantly, we will also discuss how novel 3D iPSC-CM models can better capture in vitro characteristics and how all-optical platforms provide non-invasive and high- throughput electrophysiological data that is useful for stratification of emerging arrhythmogenic variants and drug discovery. Finally, we will examine strategies to improve iPSC-CM maturity, including powerful gene editing and optogenetic tools that can introduce/modify specific ion channels in iPSC-CMs and tailor cellular and functional characteristics. We anticipate that an elegant synergy of iPSCs, novel gene editing, 3D- culture models, and all-optical platforms will offer a high-throughput template to faithfully recapitulate in vitro arrhythmogenic events necessary for personalized arrhythmia monitoring and drug screening process.

2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732146

RESUMEN

The ubiquitin-proteasome system (UPS) is an essential mechanism responsible for the selective degradation of substrate proteins via their conjugation with ubiquitin. Since cardiomyocytes have very limited self-renewal capacity, as they are prone to protein damage due to constant mechanical and metabolic stress, the UPS has a key role in cardiac physiology and pathophysiology. While altered proteasomal activity contributes to a variety of cardiac pathologies, such as heart failure and ischemia/reperfusion injury (IRI), the environmental cues affecting its activity are still unknown, and they are the focus of this work. Following a recent study by Ciechanover's group showing that amino acid (AA) starvation in cultured cancer cell lines modulates proteasome intracellular localization and activity, we tested two hypotheses in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs, CMs): (i) AA starvation causes proteasome translocation in CMs, similarly to the observation in cultured cancer cell lines; (ii) manipulation of subcellular proteasomal compartmentalization is associated with electrophysiological abnormalities in the form of arrhythmias, mediated via altered intracellular Ca2+ handling. The major findings are: (i) starving CMs to AAs results in proteasome translocation from the nucleus to the cytoplasm, while supplementation with the aromatic amino acids tyrosine (Y), tryptophan (W) and phenylalanine (F) (YWF) inhibits the proteasome recruitment; (ii) AA-deficient treatments cause arrhythmias; (iii) the arrhythmias observed upon nuclear proteasome sequestration(-AA+YWF) are blocked by KB-R7943, an inhibitor of the reverse mode of the sodium-calcium exchanger NCX; (iv) the retrograde perfusion of isolated rat hearts with AA starvation media is associated with arrhythmias. Collectively, our novel findings describe a newly identified mechanism linking the UPS to arrhythmia generation in CMs and whole hearts.


Asunto(s)
Arritmias Cardíacas , Calcio , Miocitos Cardíacos , Complejo de la Endopetidasa Proteasomal , Miocitos Cardíacos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Humanos , Calcio/metabolismo , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/etiología , Células Madre Pluripotentes Inducidas/metabolismo , Estrés Fisiológico , Transporte de Proteínas , Ratas , Aminoácidos/metabolismo
3.
J Pharm Anal ; 14(3): 335-347, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38618242

RESUMEN

Hyaluronan and proteoglycan link protein 1 (Hapln1) supports active cardiomyogenesis in zebrafish hearts, but its regulation in mammal cardiomyocytes is unclear. This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) and an adult mouse model of myocardial infarction. HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models, respectively. Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration. The results showed that recombinant human Hapln1 (rhHapln1) promotes the proliferation of hiPSC-CMs in a dose-dependent manner. As a physical binding protein of Hapln1, versican interacted with Nodal growth differentiation factor (NODAL) and growth differentiation factor 11 (GDF11). GDF11, but not NODAL, was expressed by hiPSC-CMs. GDF11 expression was unaffected by rhHapln1 treatment. However, this molecule was required for rhHapln1-mediated activation of the transforming growth factor (TGF)-ß/Drosophila mothers against decapentaplegic protein (SMAD)2/3 signaling in hiPSC-CMs, which stimulates cell dedifferentiation and proliferation. Recombinant mouse Hapln1 (rmHapln1) could induce cardiac regeneration in the adult mouse model of myocardial infarction. In addition, rmHapln1 induced hiPSC-CM proliferation. In conclusion, Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-ß/SMAD2/3 signaling pathway. Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts.

4.
Toxicol Sci ; 200(1): 79-94, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38547396

RESUMEN

Many oncology drugs have been found to induce cardiotoxicity in a subset of patients, which significantly limits their clinical use and impedes the benefit of lifesaving anticancer treatments. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) carry donor-specific genetic information and have been proposed for exploring the interindividual difference in oncology drug-induced cardiotoxicity. Herein, we evaluated the inter- and intraindividual variability of iPSC-CM-related assays and presented a proof of concept to prospectively predict doxorubicin (DOX)-induced cardiotoxicity (DIC) using donor-specific iPSC-CMs. Our findings demonstrated that donor-specific iPSC-CMs exhibited greater line-to-line variability than the intraindividual variability in impedance cytotoxicity and transcriptome assays. The variable and dose-dependent cytotoxic responses of iPSC-CMs resembled those observed in clinical practice and largely replicated the reported mechanisms. By categorizing iPSC-CMs into resistant and sensitive cell lines based on their time- and concentration-related phenotypic responses to DOX, we found that the sensitivity of donor-specific iPSC-CMs to DOX may predict in vivo DIC risk. Furthermore, we identified a differentially expressed gene, DND microRNA-mediated repression inhibitor 1 (DND1), between the DOX-resistant and DOX-sensitive iPSC-CMs. Our results support the utilization of donor-specific iPSC-CMs in assessing interindividual differences in DIC. Further studies will encompass a large panel of donor-specific iPSC-CMs to identify potential novel molecular and genetic biomarkers for predicting DOX and other oncology drug-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Prueba de Estudio Conceptual , Doxorrubicina/toxicidad , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Antibióticos Antineoplásicos/toxicidad , Relación Dosis-Respuesta a Droga , Antineoplásicos/toxicidad
5.
Am J Physiol Heart Circ Physiol ; 326(5): H1146-H1154, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488520

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are a promising tool to study arrhythmia-related factors, but the variability of action potential (AP) recordings from these cells limits their use as an in vitro model. In this study, we use recently published brief (10 s), dynamic voltage-clamp (VC) data to provide mechanistic insights into the ionic currents contributing to AP heterogeneity; we call this approach rapid ionic current phenotyping (RICP). Features of this VC data were correlated to AP recordings from the same cells, and we used computational models to generate mechanistic insights into cellular heterogeneity. This analysis uncovered several interesting links between AP morphology and ionic current density: both L-type calcium and sodium currents contribute to upstroke velocity, rapid delayed rectifier K+ current is the main determinant of the maximal diastolic potential, and an outward current in the activation range of slow delayed rectifier K+ is the main determinant of AP duration. Our analysis also identified an outward current in several cells at 6 mV that is not reproduced by iPSC-CM mathematical models but contributes to determining AP duration. RICP can be used to explain how cell-to-cell variability in ionic currents gives rise to AP heterogeneity. Because of its brief duration (10 s) and ease of data interpretation, we recommend the use of RICP for single-cell patch-clamp experiments that include the acquisition of APs.NEW & NOTEWORTHY We present rapid ionic current phenotyping (RICP), a current quantification approach based on an optimized voltage-clamp protocol. The method captures a rich snapshot of the ionic current dynamics, providing quantitative information about multiple currents (e.g., ICa,L, IKr) in the same cell. The protocol helped to identify key ionic determinants of cellular action potential heterogeneity in iPSC-CMs. This included unexpected results, such as the critical role of IKr in establishing the maximum diastolic potential.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Potenciales de Acción/fisiología , Arritmias Cardíacas/metabolismo , Transporte Iónico
6.
Chemosphere ; 353: 141567, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417488

RESUMEN

Bisphenol A (BPA) and its analogs are common environmental chemicals with various adverse health impacts, including cardiac toxicity. In this study, we examined the long term effect of low dose BPA and three common BPA analogs, bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF), in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) based models. HiPSC-CMs and human cardiac organoids were exposed to these chemicals for 4-5 or 20 days. 1 nM BPA, BPS, and BPAF, but not BPF, resulted in suppressed myocyte contractility, retarded contraction kinetics, and aberrant Ca2+ transients in hiPSC-CMs. In cardiac organoids, BPAF and BPA, but not the other bisphenols, resulted in suppressed contraction and Ca2+ transients, and aberrant contraction kinetics. The order of toxicities was BPAF > BPA>∼BPS > BPF and the toxicities of BPAF and BPA were more pronounced under longer exposure. The impact of BPAF on myocyte contraction and Ca2+ handling was mediated by reduction of sarcoplasmic reticulum Ca2+ load and inhibition of L-type Ca2+ channel involving alternation of Ca2+ handling proteins. Impaired myocyte Ca2+ handling plays a key role in cardiac pathophysiology and is a characteristic of cardiac hypertrophy; therefore we examined the potential pro-hypertrophic cardiotoxicity of these bisphenols. Four to five day exposure to BPAF did not cause hypertrophy in normal hiPSC-CMs, but significantly exacerbated the hypertrophic phenotype in myocytes with existing hypertrophy induced by endothelin-1, characterized by increased cell size and elevated expression of the hypertrophic marker proBNP. This pro-hypertrophic cardiotoxicity was also occurred in cardiac organoids, with BPAF having the strongest toxicity, followed by BPA. Our findings demonstrate that long term exposures to BPA and some of its analogs cause contractile dysfunction and abnormal Ca2+ handling, and have potential pro-hypertrophic cardiotoxicity in human heart cells/tissues, and suggest that some bisphenol chemicals may be a risk factor for cardiac hypertrophy in human hearts.


Asunto(s)
Fluorocarburos , Células Madre Pluripotentes Inducidas , Fenoles , Humanos , Miocitos Cardíacos , Cardiotoxicidad , Compuestos de Bencidrilo/toxicidad , Cardiomegalia , Organoides
8.
JACC Clin Electrophysiol ; 10(2): 359-364, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38069976

RESUMEN

The authors demonstrate the feasibility of technological innovation for personalized medicine in the context of drug-induced arrhythmia. The authors use atomistic-scale structural models to predict rates of drug interaction with ion channels and make predictions of their effects in digital twins of induced pluripotent stem cell-derived cardiac myocytes. The authors construct a simplified multilayer, 1-dimensional ring model with sufficient path length to enable the prediction of arrhythmogenic dispersion of repolarization. Finally, the authors validate the computational pipeline prediction of drug effects with data and quantify drug-induced propensity to repolarization abnormalities in cardiac tissue. The technology is high throughput, computationally efficient, and low cost toward personalized pharmacologic prediction.


Asunto(s)
Arritmias Cardíacas , Células Madre Pluripotentes Inducidas , Humanos , Canales Iónicos , Miocitos Cardíacos , Tecnología
9.
Artículo en Inglés | MEDLINE | ID: mdl-38130942

RESUMEN

We present a simple low-cost system for comprehensive functional characterization of cardiac function under spontaneous and paced conditions, in standard 96 and 384-well plates. This full-plate actuator/imager, OptoDyCE-plate, uses optogenetic stimulation and optical readouts of voltage and calcium (parallel recordings from up to 100 wells in 384-well plates are demonstrated). The system is validated with syncytia of human induced pluripotent stem cell derived cardiomyocytes, iPSC-CMs, grown as monolayers, or in quasi-3D isotropic and anisotropic constructs using electrospun matrices, in 96 and 384-well format. Genetic modifications, e.g. interference CRISPR (CRISPRi), and nine compounds of acute and chronic action were tested, including five histone deacetylase inhibitors (HDACis). Their effects on voltage and calcium were compared across growth conditions and pacing rates. We also demonstrated optogenetic point pacing via cell spheroids to study conduction in 96-well format, as well as temporal multiplexing to register voltage and calcium simultaneously on a single camera. Opto-DyCE-plate showed excellent performance even in the small samples in 384-well plates. Anisotropic structured constructs may provide some benefits in drug testing, although drug responses were consistent across tested configurations. Differential voltage vs. calcium responses were seen for some drugs, especially for non-traditional modulators of cardiac function, e.g. HDACi, and pacing rate was a powerful modulator of drug response, highlighting the need for comprehensive multiparametric assessment, as offered by OptoDyCE-plate. Increasing throughput and speed and reducing cost of screening can help stratify potential compounds early in the drug development process and accelerate the development of safer drugs.

10.
Polymers (Basel) ; 15(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37960012

RESUMEN

Cardiovascular tissue engineering is providing many solutions to cardiovascular diseases. The complex disease demands necessitating tissue-engineered constructs with enhanced functionality. In this study, we are presenting the production of a dexamethasone (DEX)-loaded electrospun tubular polymeric poly(l-lactide) (PLA) or poly(d,l-lactide-co-glycolide) (PLGA) construct which contains iPSC-CMs (induced pluripotent stem cell cardiomyocytes), HUVSMCs (human umbilical vein smooth muscle cells), and HUVECs (human umbilical vein endothelial cells) embedded in fibrin gel. The electrospun tube diameter was calculated, as well as the DEX release for 50 days for 2 different DEX concentrations. Furthermore, we investigated the influence of the polymer composition and concentration on the function of the fibrin gels by imaging and quantification of CD31, alpha-smooth muscle actin (αSMA), collagen I (col I), sarcomeric alpha actinin (SAA), and Connexin 43 (Cx43). We evaluated the cytotoxicity and cell proliferation of HUVECs and HUVSMCs cultivated in PLA and PLGA polymeric sheets. The immunohistochemistry results showed efficient iPSC-CM marker expression, while the HUVEC toxicity was higher than the respective HUVSMC value. In total, our study emphasizes the combination of fibrin gel and electrospinning in a functionalized construct, which includes three cell types and provides useful insights of the DEX release and cytotoxicity in a tissue engineering perspective.

11.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686223

RESUMEN

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold enormous potential in cardiac disease modeling, drug screening, and regenerative medicine. Furthermore, patient-specific iPSC-CMS can be tested for personalized medicine. To provide a deeper understanding of the contractile force dynamics of iPSC-CMs, we employed Atomic Force Microscopy (AFM) as an advanced detection tool to distinguish the characteristics of force dynamics at a single cell level. We measured normal (vertical) and lateral (axial) force at different pacing frequencies. We found a significant correlation between normal and lateral force. We also observed a significant force-frequency relationship for both types of forces. This work represents the first demonstration of the correlation of normal and lateral force from individual iPSC-CMs. The identification of this correlation is relevant because it validates the comparison across systems and models that can only account for either normal or lateral force. These findings enhance our understanding of iPSC-CM properties, thereby paving the way for the development of therapeutic strategies in cardiovascular medicine.


Asunto(s)
Enfermedades Cardiovasculares , Células Madre Pluripotentes Inducidas , Humanos , Enfermedades Cardiovasculares/terapia , Medicina de Precisión , Miocitos Cardíacos , Análisis de la Célula Individual
12.
Stem Cell Res Ther ; 14(1): 241, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37679791

RESUMEN

BACKGROUND: Mutations in the cardiac sodium channel gene SCN5A cause Brugada syndrome (BrS), an arrhythmic disorder that is a leading cause of sudden death and lacks effective treatment. An association between SCN5A and Wnt/ß-catenin signaling has been recently established. However, the role of Wnt/ß-catenin signaling in BrS and underlying mechanisms remains unknown. METHODS: Three healthy control subjects and one BrS patient carrying a novel frameshift mutation (T1788fs) in the SCN5A gene were recruited in this study. Control and BrS patient-specific induced pluripotent stem cells (iPSCs) were generated from skin fibroblasts using nonintegrated Sendai virus. All iPSCs were differentiated into cardiomyocytes using monolayer-based differentiation protocol. Action potentials and sodium currents were recorded from control and BrS iPSC-derived cardiomyocytes (iPSC-CMs) by single-cell patch clamp. RESULTS: BrS iPSC-CMs exhibited increased burden of arrhythmias and abnormal action potential profile featured by slower depolarization, decreased action potential amplitude, and increased beating interval variation. Moreover, BrS iPSC-CMs showed cardiac sodium channel (Nav1.5) loss-of-function as compared to control iPSC-CMs. Interestingly, the electrophysiological abnormalities and Nav1.5 loss-of-function observed in BrS iPSC-CMs were accompanied by aberrant activation of Wnt/ß-catenin signaling. Notably, inhibition of Wnt/ß-catenin significantly rescued Nav1.5 defects and arrhythmic phenotype in BrS iPSC-CMs. Mechanistically, SCN5A-encoded Nav1.5 interacts with ß-catenin, and reduced expression of Nav1.5 leads to re-localization of ß-catenin in BrS iPSC-CMs, which aberrantly activates Wnt/ß-catenin signaling to suppress SCN5A transcription. CONCLUSIONS: Our findings suggest that aberrant activation of Wnt/ß-catenin signaling contributes to the pathogenesis of SCN5A-related BrS and point to Wnt/ß-catenin as a potential therapeutic target.


Asunto(s)
Síndrome de Brugada , Células Madre Pluripotentes Inducidas , Humanos , Síndrome de Brugada/genética , Miocitos Cardíacos , beta Catenina/genética
13.
bioRxiv ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37693544

RESUMEN

We present a simple low-cost system for comprehensive functional characterization of cardiac function under spontaneous and paced conditions, in standard 96 and 384-well plates. This full-plate actuator/imager, OptoDyCE-plate, uses optogenetic stimulation and optical readouts of voltage and calcium from all wells in parallel. The system is validated with syncytia of human induced pluripotent stem cell derived cardiomyocytes, iPSC-CMs, grown as monolayers, or in quasi-3D isotropic and anisotropic constructs using electrospun matrices, in 96 and 394-well format. Genetic modifications, e.g. interference CRISPR (CRISPRi), and nine compounds of acute and chronic action were tested, including five histone deacetylase inhibitors (HDACis). Their effects on voltage and calcium were compared across growth conditions and pacing rates. We also demonstrated deployment of optogenetic cell spheroids for point pacing to study conduction in 96-well format, and the use of temporal multiplexing to register voltage and calcium simultaneously on a single camera in this stand-alone platform. Opto-DyCE-plate showed excellent performance even in the small samples in 384-well plates, in the various configurations. Anisotropic structured constructs may provide some benefits in drug testing, although drug responses were consistent across tested configurations. Differential voltage vs. calcium responses were seen for some drugs, especially for non-traditional modulators of cardiac function, e.g. HDACi, and pacing rate was a powerful modulator of drug response, highlighting the need for comprehensive multiparametric assessment, as offered by OptoDyCE-plate. Increasing throughput and speed and reducing cost of screening can help stratify potential compounds early in the drug development process and accelerate the development of safer drugs.

14.
Gels ; 9(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37754359

RESUMEN

Atrioventricular block (AVB) is a severe disease for pediatric patients. The repetitive operations needed in the case of the pacemaker implantation to maintain the electrical signal at the atrioventricular node (AVN) affect the patient's life quality. In this study, we present a method of biofabrication of multi-cell-laden cylindrical fibrin-based fibers that can restore the electrical signal at the AVN. We used human umbilical vein smooth muscle cells (HUVSMCs), human umbilical vein endothelial cells (HUVECs) and induced pluripotent stem cell cardiomyocytes (iPSC-CMs) cultivated either statically or dynamically to mimic the native AVN. We investigated the influence of cell composition, construct diameter and cyclic stretch on the function of the fibrin hydrogels in vitro. Immunohistochemistry analyses showed the maturity of the iPSC-CMs in the constructs through the expression of sarcomeric alpha actinin (SAA) and electrical coupling through Connexin 43 (Cx43) signal. Simultaneously, the beating frequency of the fibrin hydrogels was higher and easy to maintain whereas the concentration of iPSC-CMs was higher compared with the other types of cylindrical constructs. In total, our study highlights that the combination of fibrin with the cell mixture and geometry is offering a feasible biofabrication method for tissue engineering approaches for the treatment of AVB.

15.
EBioMedicine ; 95: 104741, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544203

RESUMEN

BACKGROUND: Brugada syndrome (BrS) is a cardiac channelopathy that can result in sudden cardiac death (SCD). SCN5A is the most frequent gene linked to BrS, but the genotype-phenotype correlations are not completely matched. Clinical phenotypes of a particular SCN5A variant may range from asymptomatic to SCD. Here, we used comparison of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) derived from a SCN5A mutation-positive (D356Y) BrS family with severely affected proband, asymptomatic mutation carriers (AMCs) and healthy controls to investigate this variation. METHODS: 26 iPSC lines were generated from skin fibroblasts using nonintegrated Sendai virus. The generated iPSCs were differentiated into cardiomyocytes using a monolayer-based differentiation protocol. FINDINGS: D356Y iPSC-CMs exhibited increased beat interval variability, slower depolarization, cardiac arrhythmias, defects of Na+ channel function and irregular Ca2+ signaling, when compared to controls. Importantly, the phenotype severity observed in AMC iPSC-CMs was milder than that of proband iPSC-CMs, an observation exacerbated by flecainide. Interestingly, the iPSC-CMs of the proband exhibited markedly decreased Ca2+ currents in comparison with control and AMC iPSC-CMs. CRISPR/Cas9-mediated genome editing to correct D356Y in proband iPSC-CMs effectively rescued the arrhythmic phenotype and restored Na+ and Ca2+ currents. Moreover, drug screening using established BrS iPSC-CM models demonstrated that quinidine and sotalol possessed antiarrhythmic effects in an individual-dependent manner. Clinically, venous and oral administration of calcium partially reduced the malignant arrhythmic events of the proband in mid-term follow-up. INTERPRETATION: Patient-specific and genome-edited iPSC-CMs can recapitulate the varying phenotypic severity of BrS. Our findings suggest that preservation of the Ca2+ currents might be a compensatory mechanism to resist arrhythmogenesis in BrS AMCs. FUNDING: National Key R&D Program of China (2017YFA0103700), National Natural Science Foundation of China (81922006, 81870175), Natural Science Foundation of Zhejiang Province (LD21H020001, LR15H020001), National Natural Science Foundation of China (81970269), Key Research and Development Program of Zhejiang Province (2019C03022) and Natural Science Foundation of Zhejiang Province (LY16H020002).


Asunto(s)
Síndrome de Brugada , Células Madre Pluripotentes Inducidas , Humanos , Síndrome de Brugada/genética , Síndrome de Brugada/patología , Miocitos Cardíacos , Arritmias Cardíacas/patología , Mutación , Muerte Súbita Cardíaca/patología
16.
Front Bioeng Biotechnol ; 11: 1214493, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397961

RESUMEN

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent a scalable experimental model relevant to human physiology. Oxygen consumption of hiPSC-CMs has not been studied in high-throughput (HT) format plates used in pre-clinical studies. Here, we provide comprehensive characterization and validation of a system for HT long-term optical measurements of peri-cellular oxygen in cardiac syncytia (human iPSC-CM and human cardiac fibroblasts), grown in glass-bottom 96-well plates. Laser-cut oxygen sensors having a ruthenium dye and an oxygen-insensitive reference dye were used. Ratiometric measurements (409 nm excitation) reflected dynamic changes in oxygen, as validated with simultaneous Clark electrode measurements. Emission ratios (653 nm vs. 510 nm) were calibrated for percent oxygen using two-point calibration. Time-dependent changes in the Stern-Volmer parameter, ksv, were observed during the initial 40-90 min of incubation, likely temperature-related. Effects of pH on oxygen measurements were negligible in the pH range of 4-8, with a small ratio reduction for pH > 10. Time-dependent calibration was implemented, and light exposure time was optimized (0.6-0.8 s) for oxygen measurements inside an incubator. Peri-cellular oxygen dropped to levels <5% within 3-10 h for densely-plated hiPSC-CMs in glass-bottom 96-well plates. After the initial oxygen decrease, samples either settled to low steady-state or exhibited intermittent peri-cellular oxygen dynamics. Cardiac fibroblasts showed slower oxygen depletion and higher steady-state levels without oscillations, compared to hiPSC-CMs. Overall, the system has great utility for long-term HT monitoring of peri-cellular oxygen dynamics in vitro for tracking cellular oxygen consumption, metabolic perturbations, and characterization of the maturation of hiPSC-CMs.

17.
bioRxiv ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37214814

RESUMEN

Uncovering gene-phenotype relationships can be enabled by precise gene modulation in human induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) and follow up phenotyping using scalable all-optical electrophysiology platforms. Such efforts towards human functional genomics can be aided by recent CRISPR-derived technologies for reversible gene inhibition or activation (CRISPRi/a). We set out to characterize the performance of CRISPRi in post-differentiated iPSC-CMs, targeting key cardiac ion channel genes, KCNH2, KCNJ2, and GJA1, and providing a multiparametric quantification of the effects on cardiac repolarization, stability of the resting membrane potential and conduction properties using all-optical tools. More potent CRISPRi effectors, e.g. Zim3, and optimized viral delivery led to improved performance on par with the use of CRISPRi iPSC lines. Confirmed mild yet specific phenotype changes when CRISPRi is deployed in non-dividing differentiated heart cells is an important step towards more holistic pre-clinical cardiotoxicity testing and for future therapeutic use in vivo.

18.
Am J Physiol Cell Physiol ; 324(6): C1320-C1331, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37154493

RESUMEN

Radiation-induced heart disease (RIHD) progresses over time and may manifest decades after the initial radiation exposure, which is associated with significant morbidity and mortality. The clinical benefit of radiotherapy is always counterbalanced by an increased risk of cardiovascular events in survivors. There is an urgent need to explore the effect and the underlying mechanism of radiation-induced heart injury. Mitochondrial damage widely occurs in irradiation-induced injury, and mitochondrial dysfunction contributes to necroptosis development. Experiments were performed using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and rat H9C2 cells to investigate the effect of mitochondrial injury on necroptosis in irradiated cardiomyocytes and to further elucidate the mechanism underlying radiation-induced heart disease and discover possible preventive targets. After γ-ray irradiation, the expression levels of necroptosis markers were increased, along with higher oxidative stress and mitochondrial injury. These effects could be abated by overexpression of protein tyrosine phosphatase, mitochondrial 1 (PTPMT1). Inhibiting oxidative stress or increasing the expression of PTPMT1 could protect against radiation-induced mitochondrial injury and then decrease the necroptosis of cardiomyocytes. These results suggest that PTPMT1 may be a new target for the treatment of radiation-induced heart disease.NEW & NOTEWORTHY Effective strategies are still lacking for treating RIHD, with unclear pathological mechanisms. In cardiomyocytes model of radiation-induced injuries, we found γ-ray irradiation decreased the expression of PTPMT1, increased oxidative stress, and induced mitochondrial dysfunction and necroptosis in iPSC-CMs. ROS inhibition attenuated radiation-induced mitochondrial damage and necroptosis. PTPMT1 protected cardiomyocytes from necroptosis induced by γ-ray irradiation by alleviating mitochondrial injury. Therefore, PTPMT1 might be a potential strategy for treating RIHD.


Asunto(s)
Cardiopatías , Miocitos Cardíacos , Animales , Ratas , Cardiopatías/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Necroptosis , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/farmacología
19.
Stem Cell Res Ther ; 14(1): 92, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061738

RESUMEN

BACKGROUND: Although human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are a promising cell resource for cardiovascular research, these cells exhibit an immature phenotype that hampers their potential applications. The inwardly rectifying potassium channel Kir2.1, encoded by the KCNJ2 gene, has been thought as an important target for promoting electrical maturation of iPSC-CMs. However, a comprehensive characterization of morphological and functional changes in iPSC-CMs overexpressing KCNJ2 (KCNJ2 OE) is still lacking. METHODS: iPSC-CMs were generated using a 2D in vitro monolayer differentiation protocol. Human KCNJ2 construct with green fluorescent protein (GFP) tag was created and overexpressed in iPSC-CMs via lentiviral transduction. The mixture of iPSC-CMs and mesenchymal cells was cocultured with decellularized natural heart matrix for generation of 3D human engineered heart tissues (EHTs). RESULTS: We showed that mRNA expression level of KCNJ2 in iPSC-CMs was dramatically lower than that in human left ventricular tissues. KCNJ2 OE iPSC-CMs yielded significantly increased protein expression of Kir2.1 and current density of Kir2.1-encoded IK1. The larger IK1 linked to a quiescent phenotype that required pacing to elicit action potentials in KCNJ2 OE iPSC-CMs, which can be reversed by IK1 blocker BaCl2. KCNJ2 OE also led to significantly hyperpolarized maximal diastolic potential (MDP), shortened action potential duration (APD) and increased maximal upstroke velocity. The enhanced electrophysiological maturation in KCNJ2 OE iPSC-CMs was accompanied by improvements in Ca2+ signaling, mitochondrial energy metabolism and transcriptomic profile. Notably, KCNJ2 OE iPSC-CMs exhibited enlarged cell size and more elongated and stretched shape, indicating a morphological phenotype toward structural maturation. Drug testing using hERG blocker E-4031 revealed that a more stable MDP in KCNJ2 OE iPSC-CMs allowed for obtaining significant drug response of APD prolongation in a concentration-dependent manner. Moreover, KCNJ2 OE iPSC-CMs formed more mature human EHTs with better tissue structure and cell junction. CONCLUSIONS: Overexpression of KCNJ2 can robustly enhance maturation of iPSC-CMs in electrophysiology, Ca2+ signaling, metabolism, transcriptomic profile, cardiomyocyte structure and tissue engineering, thus providing more accurate cellular model for elucidating cellular and molecular mechanisms of cardiovascular diseases, screening drug-induced cardiotoxicity, and developing personalized and precision cardiovascular medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas , Canales de Potasio de Rectificación Interna , Humanos , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Técnicas de Cocultivo , Cardiotoxicidad , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo
20.
Chemosphere ; 328: 138562, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37004823

RESUMEN

Bisphenol A (BPA) and its analogs are common environmental chemicals with many potential adverse health effects. The impact of environmentally relevant low dose BPA on human heart, including cardiac electrical properties, is not understood. Perturbation of cardiac electrical properties is a key arrhythmogenic mechanism. In particular, delay of cardiac repolarization can cause ectopic excitation of cardiomyocytes and malignant arrhythmia. This can occur as a result of genetic mutations (i.e., long QT (LQT) syndrome), or cardiotoxicity of drugs and environmental chemicals. To define the impact of low dose BPA on electrical properties of cardiomyocytes in a human-relevant model system, we examined the rapid effects of 1 nM BPA in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using patch-clamp and confocal fluorescence imaging. Acute exposure to BPA delayed repolarization and prolonged action potential duration (APD) in hiPSC-CMs through inhibition of the hERG K+ channel. In nodal-like hiPSC-CMs, BPA acutely increased pacing rate through stimulation of the If pacemaker channel. Existing arrhythmia susceptibility determines the response of hiPSC-CMs to BPA. BPA resulted in modest APD prolongation but no ectopic excitation in baseline condition, while rapidly promoted aberrant excitations and tachycardia-like events in myocytes that had drug-simulated LQT phenotype. In hiPSC-CM-based human cardiac organoids, the effects of BPA on APD and aberrant excitation were shared by its analog chemicals, which are often used in "BPA-free" products, with bisphenol AF having the largest effects. Our results reveal that BPA and its analogs have repolarization delay-associated pro-arrhythmic toxicity in human cardiomyocytes, particularly in myocytes that are prone to arrhythmias. The toxicity of these chemicals depends on existing pathophysiological conditions of the heart, and may be particularly pronounced in susceptible individuals. An individualized approach is needed in risk assessment and protection.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Humanos , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/patología , Arritmias Cardíacas/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...