Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.745
Filtrar
1.
Front Immunol ; 15: 1416961, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983862

RESUMEN

Depression, projected to be the predominant contributor to the global disease burden, is a complex condition with diverse symptoms including mood disturbances and cognitive impairments. Traditional treatments such as medication and psychotherapy often fall short, prompting the pursuit of alternative interventions. Recent research has highlighted the significant role of gut microbiota in mental health, influencing emotional and neural regulation. Fecal microbiota transplantation (FMT), the infusion of fecal matter from a healthy donor into the gut of a patient, emerges as a promising strategy to ameliorate depressive symptoms by restoring gut microbial balance. The microbial-gut-brain (MGB) axis represents a critical pathway through which to potentially rectify dysbiosis and modulate neuropsychiatric outcomes. Preclinical studies reveal that FMT can enhance neurochemicals and reduce inflammatory markers, thereby alleviating depressive behaviors. Moreover, FMT has shown promise in clinical settings, improving gastrointestinal symptoms and overall quality of life in patients with depression. The review highlights the role of the gut-brain axis in depression and the need for further research to validate the long-term safety and efficacy of FMT, identify specific therapeutic microbial strains, and develop targeted microbial modulation strategies. Advancing our understanding of FMT could revolutionize depression treatment, shifting the paradigm toward microbiome-targeting therapies.


Asunto(s)
Eje Cerebro-Intestino , Depresión , Disbiosis , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Depresión/terapia , Depresión/microbiología , Disbiosis/terapia , Animales , Resultado del Tratamiento
2.
J Nanobiotechnology ; 22(1): 398, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970103

RESUMEN

Diabetic wounds are characterized by incomplete healing and delayed healing, resulting in a considerable global health care burden. Exosomes are lipid bilayer structures secreted by nearly all cells and express characteristic conserved proteins and parent cell-associated proteins. Exosomes harbor a diverse range of biologically active macromolecules and small molecules that can act as messengers between different cells, triggering functional changes in recipient cells and thus endowing the ability to cure various diseases, including diabetic wounds. Exosomes accelerate diabetic wound healing by regulating cellular function, inhibiting oxidative stress damage, suppressing the inflammatory response, promoting vascular regeneration, accelerating epithelial regeneration, facilitating collagen remodeling, and reducing scarring. Exosomes from different tissues or cells potentially possess functions of varying levels and can promote wound healing. For example, mesenchymal stem cell-derived exosomes (MSC-exos) have favorable potential in the field of healing due to their superior stability, permeability, biocompatibility, and immunomodulatory properties. Exosomes, which are derived from skin cellular components, can modulate inflammation and promote the regeneration of key skin cells, which in turn promotes skin healing. Therefore, this review mainly emphasizes the roles and mechanisms of exosomes from different sources, represented by MSCs and skin sources, in improving diabetic wound healing. A deeper understanding of therapeutic exosomes will yield promising candidates and perspectives for diabetic wound healing management.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Cicatrización de Heridas , Exosomas/metabolismo , Humanos , Animales , Células Madre Mesenquimatosas/metabolismo , Diabetes Mellitus/metabolismo , Piel/metabolismo , Estrés Oxidativo , Complicaciones de la Diabetes
3.
Front Immunol ; 15: 1423510, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975338

RESUMEN

Over the course of evolution, many proteins have undergone adaptive structural changes to meet the increasing homeostatic regulatory demands of multicellularity. Aminoacyl tRNA synthetases (aaRS), enzymes that catalyze the attachment of each amino acid to its cognate tRNA, are such proteins that have acquired new domains and motifs that enable non-canonical functions. Through these new domains and motifs, aaRS can assemble into large, multi-subunit complexes that enhance the efficiency of many biological functions. Moreover, because the complexity of multi-aminoacyl tRNA synthetase (mARS) complexes increases with the corresponding complexity of higher eukaryotes, a contribution to regulation of homeostatic functions in multicellular organisms is hypothesized. While mARS complexes in lower eukaryotes may enhance efficiency of aminoacylation, little evidence exists to support a similar role in chordates or other higher eukaryotes. Rather, mARS complexes are reported to regulate multiple and variegated cellular processes that include angiogenesis, apoptosis, inflammation, anaphylaxis, and metabolism. Because all such processes are critical components of immune homeostasis, it is important to understand the role of mARS complexes in immune regulation. Here we provide a conceptual analysis of the current understanding of mARS complex dynamics and emerging mARS complex roles in immune regulation, the increased understanding of which should reveal therapeutic targets in immunity and immune-mediated disease.


Asunto(s)
Aminoacil-ARNt Sintetasas , Homeostasis , Homeostasis/inmunología , Animales , Humanos , Aminoacil-ARNt Sintetasas/inmunología , Aminoacil-ARNt Sintetasas/metabolismo , Inmunomodulación
4.
Front Immunol ; 15: 1385319, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962004

RESUMEN

The immune system comprises a complex yet tightly regulated network of cells and molecules that play a critical role in protecting the body from infection and disease. The activity and development of each immune cell is regulated in a myriad of ways including through the cytokine milieu, the availability of key receptors, via tailored intracellular signalling cascades, dedicated transcription factors and even by directly modulating gene accessibility and expression; the latter is more commonly known as epigenetic regulation. In recent years, epigenetic regulators have begun to emerge as key players involved in modulating the immune system. Among these, the lysine methyltransferase DOT1L has gained significant attention for its involvement in orchestrating immune cell formation and function. In this review we provide an overview of the role of DOT1L across the immune system and the implications of this role on health and disease. We begin by elucidating the general mechanisms of DOT1L-mediated histone methylation and its impact on gene expression within immune cells. Subsequently, we provide a detailed and comprehensive overview of recent studies that identify DOT1L as a crucial regulator of immune cell development, differentiation, and activation. Next, we discuss the potential mechanisms of DOT1L-mediated regulation of immune cell function and shed light on how DOT1L might be contributing to immune cell homeostasis and dysfunction. We then provide food for thought by highlighting some of the current obstacles and technical limitations precluding a more in-depth elucidation of DOT1L's role. Finally, we explore the potential therapeutic implications of targeting DOT1L in the context of immune-related diseases and discuss ongoing research efforts to this end. Overall, this review consolidates the current paradigm regarding DOT1L's role across the immune network and emphasises its critical role in governing the healthy immune system and its potential as a novel therapeutic target for immune-related diseases. A deeper understanding of DOT1L's immunomodulatory functions could pave the way for innovative therapeutic approaches which fine-tune the immune response to enhance or restore human health.


Asunto(s)
Epigénesis Genética , N-Metiltransferasa de Histona-Lisina , Sistema Inmunológico , Humanos , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Animales , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunomodulación , Histonas/metabolismo , Histonas/inmunología
5.
Adv Exp Med Biol ; 1445: 11-36, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967747

RESUMEN

Although V(D)J recombination and immunoglobulin (Ig) production are traditionally recognised to occur only in B lymphocytes and plasma cells, the expression of Igs in non-lymphoid cells, which we call non B cell-derived Igs (non B Igs), has been documented by growing studies. It has been demonstrated that non B-Igs can be widely expressed in most cell types, including, but not limited to, epithelial cells, cardiomyocytes, hematopoietic stem/progenitor cells, myeloid cells, and cells from immune-privileged sites, such as neurons and spermatogenic cells. In particular, malignant tumour cells express high level of IgG. Moreover, different from B-Igs that mainly localised on the B cell membrane and in the serum and perform immune defence function mainly, non B-Igs have been found to distribute more widely and play critical roles in immune defence, maintaining cell proliferation and survival, and promoting progression. The findings of non B-Igs may provide a wealthier breakthrough point for more therapeutic strategies for a wide range of immune-related diseases.


Asunto(s)
Inmunoglobulinas , Humanos , Animales , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Inmunoglobulinas/inmunología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/inmunología , Células Mieloides/inmunología , Células Mieloides/metabolismo
6.
Eur J Immunol ; : e2350685, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890809

RESUMEN

Unsaturated fatty acids (UFA) are crucial for T-cell effector functions, as they can affect the growth, differentiation, survival, and function of T cells. Nonetheless, the mechanisms by which UFA affects T-cell behavior are ill-defined. Therefore, we analyzed the processing of oleic acid, a prominent UFA abundantly present in blood, adipocytes, and the fat pads surrounding lymph nodes, in CD4+ T cells. We found that exogenous oleic acid increases proliferation and enhances the calcium flux response upon CD3/CD28 activation. By using a variety of techniques, we found that the incorporation of oleic acid into membrane lipids, rather than regulation of cellular metabolism or TCR expression, is essential for its effects on CD4+ T cells. These results provide novel insights into the mechanism through which exogenous oleic acid enhances CD4+ T-cell function.

7.
Front Endocrinol (Lausanne) ; 15: 1370387, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883603

RESUMEN

Background: Diabetes mellitus is an independent risk factor for heart failure, and diabetes-induced heart failure severely affects patients' health and quality of life. Cuproptosis is a newly defined type of programmed cell death that is thought to be involved in the pathogenesis and progression of cardiovascular disease, but the molecular mechanisms involved are not well understood. Therefore, we aimed to identify biomarkers associated with cuproptosis in diabetes mellitus-associated heart failure and the potential pathological mechanisms in cardiomyocytes. Materials: Cuproptosis-associated genes were identified from the previous publication. The GSE26887 dataset was downloaded from the GEO database. Methods: The consistency clustering was performed according to the cuproptosis gene expression. Differentially expressed genes were identified using the limma package, key genes were identified using the weighted gene co-expression network analysis(WGCNA) method, and these were subjected to immune infiltration analysis, enrichment analysis, and prediction of the key associated transcription factors. Consistency clustering identified three cuproptosis clusters. The differentially expressed genes for each were identified using limma and the most critical MEantiquewhite4 module was obtained using WGCNA. We then evaluated the intersection of the MEantiquewhite4 output with the three clusters, and obtained the key genes. Results: There were four key genes: HSDL2, BCO2, CORIN, and SNORA80E. HSDL2, BCO2, and CORIN were negatively associated with multiple immune factors, while SNORA80E was positively associated, and T-cells accounted for a major proportion of this relationship with the immune system. Four enriched pathways were found to be associated: arachidonic acid metabolism, peroxisomes, fatty acid metabolism, and dorsoventral axis formation, which may be regulated by the transcription factor MECOM, through a change in protein structure. Conclusion: HSDL2, BCO2, CORIN, and SNORA80E may regulate cardiomyocyte cuproptosis in patients with diabetes mellitus-associated heart failure through effects on the immune system. The product of the cuproptosis-associated gene LOXL2 is probably involved in myocardial fibrosis in patients with diabetes, which leads to the development of cardiac insufficiency.


Asunto(s)
Biología Computacional , Insuficiencia Cardíaca , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Humanos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/metabolismo , Biología Computacional/métodos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Ferroptosis/genética , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología
8.
Immun Inflamm Dis ; 12(6): e1321, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888451

RESUMEN

BACKGROUND: For decades, studies have demonstrated the anti-inflammatory potential of proteins secreted by helminths in allergies and asthma. Previous studies have demonstrated the immunomodulatory capabilities of Succinate Coenzyme A ligase beta-like protein (SUCLA-ß) derived from Trichinella spiralis, a crucial excretory product of this parasite. OBJECTIVE: To explore the therapeutic potential of SUCLA-ß in alleviating and controlling ovalbumin (OVA)-induced allergic asthma, as well as its influence on host immune modulation. METHODS: In this research, we utilized the rTs-SUCLA-ß protein derived from T. spiralis to investigate its potential in mitigating airway inflammation in a murine model of asthma induced by OVA sensitization/stimulation, both pre- and post-challenge. The treatment's efficacy was assessed by quantifying the extent of inflammation in the lungs. RESULTS: Treatment with rTs-SUCLA-ß demonstrated efficacy in ameliorating OVA-induced airway inflammation, as evidenced by a reduction in eosinophil infiltration, levels of OVA-specific Immunoglobulin E, interferon-γ, interleukin (IL)-9, and IL-17A, along with an elevation in IL-10. The equilibrium between Th17 and Treg cells plays a pivotal role in modulating the abundance of inflammatory cells within the organism, thereby ameliorating inflammation and alleviating symptoms associated with allergic asthma. CONCLUSIONS AND CLINICAL RELEVANCE: Our data revealed that T. spiralis-derived Ts-SUCLA-ß protein may inhibit the allergic airway inflammation by regulating host immune responses.


Asunto(s)
Asma , Proteínas del Helminto , Ovalbúmina , Trichinella spiralis , Trichinella spiralis/inmunología , Animales , Asma/inmunología , Asma/tratamiento farmacológico , Ratones , Ovalbúmina/inmunología , Proteínas del Helminto/inmunología , Proteínas del Helminto/farmacología , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Femenino , Citocinas/metabolismo , Citocinas/inmunología , Inmunoglobulina E/inmunología , Pulmón/inmunología , Pulmón/parasitología , Pulmón/patología , Linfocitos T Reguladores/inmunología , Hipersensibilidad/inmunología , Hipersensibilidad/tratamiento farmacológico , Células Th17/inmunología
9.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892139

RESUMEN

Maternal obesity and over/undernutrition can have a long-lasting impact on offspring health during critical periods in the first 1000 days of life. Children born to mothers with obesity have reduced immune responses to stimuli which increase susceptibility to infections. Recently, maternal western-style diets (WSDs), high in fat and simple sugars, have been associated with skewing neonatal immune cell development, and recent evidence suggests that dysregulation of innate immunity in early life has long-term consequences on metabolic diseases and behavioral disorders in later life. Several factors contribute to abnormal innate immune tolerance or trained immunity, including changes in gut microbiota, metabolites, and epigenetic modifications. Critical knowledge gaps remain regarding the mechanisms whereby these factors impact fetal and postnatal immune cell development, especially in precursor stem cells in bone marrow and fetal liver. Components of the maternal microbiota that are transferred from mothers consuming a WSD to their offspring are understudied and identifying cause and effect on neonatal innate and adaptive immune development needs to be refined. Tools including single-cell RNA-sequencing, epigenetic analysis, and spatial location of specific immune cells in liver and bone marrow are critical for understanding immune system programming. Considering the vital role immune function plays in offspring health, it will be important to understand how maternal diets can control developmental programming of innate and adaptive immunity.


Asunto(s)
Dieta Occidental , Desarrollo Fetal , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Embarazo , Dieta Occidental/efectos adversos , Animales , Desarrollo Fetal/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Epigénesis Genética , Microbioma Gastrointestinal/inmunología , Inmunidad Innata , Fenómenos Fisiologicos Nutricionales Maternos , Feto/inmunología
10.
Expert Opin Ther Targets ; : 1-13, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38943564

RESUMEN

INTRODUCTION: Systemic Lupus Erythematosus (SLE) is a multi-dimensional autoimmune disease involving numerous tissues throughout the body. The chromatin accessibility landscapes in immune cells play a pivotal role in governing their activation, function, and differentiation. Aberrant modulation of chromatin accessibility in immune cells is intimately associated with the onset and progression of SLE. AREAS COVERED: In this review, we described the chromatin accessibility landscapes in immune cells, summarized the recent evidence of chromatin accessibility related to the pathogenesis of SLE, and discussed the potential of chromatin accessibility as a valuable option to identify novel therapeutic targets for this disease. EXPERT OPINION: Dynamic changes in chromatin accessibility are intimately related to the pathogenesis of SLE and have emerged as a new direction for exploring its epigenetic mechanisms. The differently accessible chromatin regions in immune cells often contain binding sites for transcription factors (TFs) and cis-regulatory elements such as enhancers and promoters, which may be potential therapeutic targets for SLE. Larger scale cohort studies and integrating epigenomic, transcriptomic, and metabolomic data can provide deeper insights into SLE chromatin biology in the future.


Recently, there has been a growing body of studies that explore the influence of epigenetic factors including DNA methylation, histone post-translational modifications, and non-coding RNA regulation on Systemic Lupus Erythematosus (SLE). Unusual regulation of these common epigenetic modifications would change the chromatin accessibility landscapes in SLE immune cells. Many studies have mapped the chromatin accessibility of various immune cells in SLE patients to uncover potential regulators like transcription factors (TFs) and cis-regulatory elements. Higher chromatin accessibility of immune cells in SLE patients compared to healthy individuals provides new avenues for diagnosing this disease. TFs identified in differentially accessible chromatin regions and their regulated genes might serve as novel targets for therapies, where the phenotypes affected by these genes, like inflammatory cytokine release and immune activation, are reliable bases for evaluating the prognosis of such targeted therapies.In this review, we described the chromatin accessibility landscape in immune cells, summarized the recent evidence of chromatin accessibility related to the process by which SLE develops, and discussed the potential of chromatin accessibility as a valuable option to identify novel therapeutic targets for this disease. Larger scale studies and combining epigenomic, transcriptomic, and metabolomic data can provide deeper insights into SLE chromatin biology in the future.

11.
Cancers (Basel) ; 16(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893071

RESUMEN

Melanoma is commonly diagnosed in a younger population than most other solid malignancies and, in Australia and most of the world, is the leading cause of skin-cancer-related death. Melanoma is a cancer type with high immunogenicity; thus, immunotherapies are used as first-line treatment for advanced melanoma patients. Although immunotherapies are working well, not all the patients are benefitting from them. A lack of a comprehensive understanding of immune regulation in the melanoma tumour microenvironment is a major challenge of patient stratification. Overexpression of CD155 has been reported as a key factor in melanoma immune regulation for the development of therapy resistance. A more thorough understanding of the actions of current immunotherapy strategies, their effects on immune cell subsets, and the roles that CD155 plays are essential for a rational design of novel targets of anti-cancer immunotherapies. In this review, we comprehensively discuss current anti-melanoma immunotherapy strategies and the immune response contribution of different cell lineages, including tumour endothelial cells, myeloid-derived suppressor cells, cytotoxic T cells, cancer-associated fibroblast, and nature killer cells. Finally, we explore the impact of CD155 and its receptors DNAM-1, TIGIT, and CD96 on immune cells, especially in the context of the melanoma tumour microenvironment and anti-cancer immunotherapies.

12.
Front Med (Lausanne) ; 11: 1388959, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903817

RESUMEN

Phenotypic drug discovery (PDD) involves screening compounds for their effects on cells, tissues, or whole organisms without necessarily understanding the underlying molecular targets. PDD differs from target-based strategies as it does not require knowledge of a specific drug target or its role in the disease. This approach can lead to the discovery of drugs with unexpected therapeutic effects or applications and allows for the identification of drugs based on their functional effects, rather than through a predefined target-based approach. Ultimately, disease definitions are mostly symptom-based rather than mechanism-based, and the therapeutics should be likewise. In recent years, there has been a renewed interest in PDD due to its potential to address the complexity of human diseases, including the holistic picture of multiple metabolites engaging with multiple targets constituting the central hub of the metabolic host-microbe interactions. Although PDD presents challenges such as hit validation and target deconvolution, significant achievements have been reached in the era of big data. This article explores the experiences of researchers testing the effect of a thymic peptide hormone, thymosin alpha-1, in preclinical and clinical settings and discuss how its therapeutic utility in the precision medicine era can be accommodated within the PDD framework.

13.
Front Immunol ; 15: 1415573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835772

RESUMEN

Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.


Asunto(s)
Células Dendríticas , Macrófagos , Fagocitosis , Células Dendríticas/inmunología , Humanos , Fagocitosis/inmunología , Animales , Macrófagos/inmunología , Apoptosis/inmunología , Tolerancia Inmunológica , Eferocitosis
14.
Int J Biol Macromol ; 274(Pt 2): 133390, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38917915

RESUMEN

Paecilomyces hepiali is a precious health-care edible medicinal fungus with rich polysaccharides and exhibits various biological activities. Polysaccharides from P. hepiali fermentation broth (PHP) exhibits good immunomodulatory activity; however, the mechanism underlying PHP-mediated regulation of immunity and gut microbiota remains unclear. To reveal the mechanisms, PHP of different doses were used to intervene cyclophosphamide (CTX)-induced immunosuppressive model mice. The results revealed that PHP facilitated the secretion of serum cytokines, increased the mRNA and protein expression of TLR4/NF-κB signaling pathway. Furthermore, it improved the physical barrier function of the intestine by upregulating the expression of tight junction proteins. PHP increased the proliferation of beneficial bacteria, including, Actinobacteriota, Alistipes, Candidatus_Saccharimonas and unclassified_Clostridia_vadinBB60_group, and reduced the abundance of Proteobacteria, Deferribacterota, Mucispirillum and Escherichia_Shigella, promoted the production of short-chain fatty acids, which were positively associated with immune traits. Thus, as an immune enhancer, PHP has the potential to regulate the intestinal immune response in immunosuppressed mice through modulating gut microbiota.

15.
Front Immunol ; 15: 1401626, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868779

RESUMEN

Zinc finger Asp-His-His-Cys motif-containing (zDHHC) proteins, known for their palmitoyltransferase (PAT) activity, play crucial roles in diverse cellular processes, including immune regulation. However, their non-palmitoyltransferase immunomodulatory functions and involvement in teleost immune responses remain underexplored. In this study, we systematically characterized the zDHHC family in the large yellow croaker (Larimichthys crocea), identifying 22 members. Phylogenetic analysis unveiled that each of the 22 LczDHHCs formed distinct clusters with their orthologues from other teleost species. Furthermore, all LczDHHCs exhibited a highly conserved DHHC domain, as confirmed by tertiary structure prediction. Notably, LczDHHC23 exhibited the most pronounced upregulation following Pseudomonas plecoglossicida (P. plecoglossicida) infection of macrophage/monocyte cells (MO/MΦ). Silencing LczDHHC23 led to heightened pro-inflammatory cytokine expression and diminished anti-inflammatory cytokine levels in MO/MΦ during infection, indicating its anti-inflammatory role. Functionally, LczDHHC23 facilitated M2-type macrophage polarization, as evidenced by a significant skewing of MO/MΦ towards the pro-inflammatory M1 phenotype upon LczDHHC23 knockdown, along with the inhibition of MO/MΦ necroptosis induced by P. plecoglossicida infection. These findings highlight the non-PAT immunomodulatory function of LczDHHC23 in teleost immune regulation, broadening our understanding of zDHHC proteins in host-pathogen interactions, suggesting LczDHHC23 as a potential therapeutic target for immune modulation in aquatic species.


Asunto(s)
Proteínas de Peces , Macrófagos , Necroptosis , Perciformes , Animales , Perciformes/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Necroptosis/inmunología , Filogenia , Activación de Macrófagos/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Aciltransferasas/genética , Aciltransferasas/inmunología , Pseudomonas/fisiología , Citocinas/metabolismo
16.
Adv Mater ; : e2402738, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885961

RESUMEN

The diabetic wound healing is challenging due to the sabotaged delicate balance of immune regulation via an undetermined pathophysiological mechanism, so it is crucial to decipher multicellular signatures underlying diabetic wound healing and seek therapeutic strategies. Here, this work develops a strategy using novel trimethylamine N-oxide (TMAO)-derived zwitterionic hydrogel to promote diabetic wound healing, and explore the multi-cellular ecosystem around zwitterionic hydrogel, mapping out an overview of different cells in the zwitterionic microenvironment by single-cell RNA sequencing. The diverse cellular heterogeneity is revealed, highlighting the critical role of macrophage and neutrophils in managing diabetic wound healing. It is found that polyzwitterionic hydrogel can upregulate Ccl3+ macrophages and downregulate S100a9+ neutrophils and facilitate their interactions compared with polyanionic and polycationic hydrogels, validating the underlying effect of zwitterionic microenvironment on the activation of adaptive immune system. Moreover, zwitterionic hydrogel inhibits the formation of neutrophil extracellular traps (NETs) and promotes angiogenesis, thus improving diabetic wound healing. These findings expand the horizons of the sophisticated orchestration of immune systems in zwitterion-directed diabetic wound repair and uncover new strategies of novel immunoregulatory biomaterials.

17.
J Adv Res ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844120

RESUMEN

BACKGROUND: The human gut hosts a diverse microbial community, essential for maintaining overall health. However, antibiotics, commonly prescribed for infections, can disrupt this delicate balance, leading to antibiotic-associated diarrhea, inflammatory bowel disease, obesity, and even neurological disorders. Recognizing this, probiotics have emerged as a promising strategy to counteract these adverse effects. AIM OF REVIEW: This review aims to offer a comprehensive overview of the latest evidence concerning the utilization of probiotics in managing antibiotic-associated side effects. KEY SCIENTIFIC CONCEPTS OF REVIEW: Probiotics play a crucial role in preserving gut homeostasis, regulating intestinal function and metabolism, and modulating the host immune system. These mechanisms serve to effectively alleviate antibiotic-associated adverse effects and enhance overall well-being.

18.
Front Immunol ; 15: 1421092, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911856

RESUMEN

Immune checkpoint blockades (ICBs) have revolutionized cancer therapy through unleashing anti-tumor adaptive immunity. Despite that, they are usually effective only in a small subset of patients and relapse can occur in patients who initially respond to the treatment. Recent breakthroughs in this field have identified innate immune checkpoints harnessed by cancer cells to escape immunosurveillance from innate immunity. MHC1 appears to be such a molecule expressed on cancer cells which can transmit a negative signal to innate immune cells through interaction with leukocyte immunoglobulin like receptor B1 (LILRB1). The review aims to summarize the current understanding of MHC1/LILRB1 axis on mediating cancer immune evasion with an emphasis on the therapeutic potential to block this axis for cancer therapy. Nevertheless, one should note that this field is still in its infancy and more studies are warranted to further verify the effectiveness and safety in clinical as well as the potential to combine with existing immune checkpoints.


Asunto(s)
Inmunidad Innata , Receptor Leucocitario Tipo Inmunoglobulina B1 , Neoplasias , Humanos , Receptor Leucocitario Tipo Inmunoglobulina B1/metabolismo , Receptor Leucocitario Tipo Inmunoglobulina B1/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Animales , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Escape del Tumor , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoterapia/métodos , Transducción de Señal , Antígenos CD
19.
Dev Comp Immunol ; 159: 105217, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901503

RESUMEN

Norepinephrine (NE) is involved in regulating cytokine expression and phagocytosis of immune cells in the innate immunity of vertebrates. In the present study, the modulation mechanism of NE on the biosynthesis of TNFs in oyster granulocytes was explored. The transcripts of CgTNF-1, CgTNF-2 and CgTNF-3 were highly expressed in granulocytes, and they were significantly up-regulated after LPS stimulation, while down-regulated after NE treatment. The phagocytic rate and apoptosis index of oyster granulocytes were also triggered by LPS stimulation and suppressed by NE treatment. The mRNA expressions of CgMAPK14 and CgRelish were significantly induced after NE treatment, and the translocation of CgRelish from cytoplasm to nucleus was observed. The concentration of intracellular Ca2+ in granulocytes was significantly up-regulated upon NE incubation, and this trend reverted after the treatment with DOX (specific antagonist for NE receptor, CgA1AR-1). No obvious significance was observed in intracellular cAMP concentrations in the PBS, NE and NE + DOX groups. Once CgA1AR-1 was blocked by DOX, the mRNA expressions of CgMAPK14 and CgRelish were significantly inhibited, and the translocation of CgRelish from cytoplasm to nucleus was also dramatically suppressed, while the mRNA expression of CgTNF-1 and the apoptosis index increased significantly to the same level with those in LPS group, respectively. These results collectively suggested that NE modulated TNF expression in oyster granulocyte through A1AR-p38 MAPK-Relish signaling pathway.

20.
Front Immunol ; 15: 1333666, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915415

RESUMEN

The identification of diagnostic and therapeutic biomarkers for Alzheimer's Disease (AD) remains a crucial area of research. In this study, utilizing the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm, we identified RHBDF2 and TNFRSF10B as feature genes associated with AD pathogenesis. Analyzing data from the GSE33000 dataset, we revealed significant upregulation of RHBDF2 and TNFRSF10B in AD patients, with correlations to age and gender. Interestingly, their expression profile in AD differs notably from that of other neurodegenerative conditions. Functional analysis unveiled their involvement in immune response and various signaling pathways implicated in AD pathogenesis. Furthermore, our study demonstrated the potential of RHBDF2 and TNFRSF10B as diagnostic biomarkers, exhibiting high discrimination power in distinguishing AD from control samples. External validation across multiple datasets confirmed the robustness of the diagnostic model. Moreover, utilizing molecular docking analysis, we identified dinaciclib and tanespimycin as promising small molecule drugs targeting RHBDF2 and TNFRSF10B for potential AD treatment. Our findings highlight the diagnostic and therapeutic potential of RHBDF2 and TNFRSF10B in AD management, shedding light on novel strategies for precision medicine in AD.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Aprendizaje Automático , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Transcriptoma , Femenino , Masculino , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...