Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.377
Filtrar
1.
Heliyon ; 10(12): e32509, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38952384

RESUMEN

The combination of solid oxide fuel cells (SOFCs) and wood gasification has the potential to significantly increase renewable electricity production and decrease emissions. Depending on the quality of the wood gas, degradation processes have a significant impact on the reliability and lifetime of the SOFC. Using electrochemical impedance spectroscopy (EIS) and subsequent distribution of relaxation times (DRT) analysis, the impact on the degradation of coupling wood gasification with a commercial SOFC stack is determined in this study. The thermal behavior of the SOFC stack under various operating conditions, as well as various synthetic wood gas mixtures classified by their hydrogen-to-carbon (H/C) ratio, was assessed. The decrease in the H/C ratio from 8 to 1, observed during syngas and real wood gas operation, leads to a rightward shift in the Nyquist plots, suggesting an increase in the SOFC stack's impedance. Correlations between variations in the H/C ratio and their effects on anodic electrooxidation, ionic conduction, gas transport, and diffusion were identified using DRT analysis to interpret the EIS results. By incorporating an upstream desulfurization system and ensuring an H/C ratio greater than 2, the coupling of biomass gasification with the SOFC stack was stable to degradation issues.

2.
Biosens Bioelectron ; 262: 116526, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38954905

RESUMEN

Neurotransmitters (NTs) are molecules produced by neurons that act as the body's chemical messengers. Their abnormal levels in the human system have been associated with many disorders and neurodegenerative diseases, which makes the monitoring of NTs fundamentally important. Specifically for clinical analysis and understanding of brain behavior, simultaneous detection of NTs at low levels quickly and reliably is imperative for disease prevention and early diagnosis. However, the methods currently employed are usually invasive or inappropriate for multiple NTs detection. Herein, we developed a MXene-based impedimetric electronic tongue (e-tongue) for sensitive NT monitoring, using Nb2C, Nb4C3, Mo2C, and Mo2Ti2C3 MXenes as sensing units of the e-tongue, and Principal Component Analysis (PCA) as the data treatment method. The high specific surface area, distinct electrical properties, and chemical stability of the MXenes gave rise to high sensitivity and good reproducibility of the sensor array toward NT detection. Specifically, the e-tongue detected and differentiated multiple NTs (acetylcholine, dopamine, glycine, glutamate, histamine, and tyrosine) at concentrations as low as 1 nmol L-1 and quantified NTs present in a mixture. Besides, analyses performed with interferents and actual samples confirmed the system's potential to be used in clinical diagnostics. The results demonstrate that the MXene-based e-tongue is a suitable, rapid, and simple method for NT monitoring with high accuracy and sensitivity.

3.
J Electr Bioimpedance ; 15(1): 85-88, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38962505

RESUMEN

There are various methods for cell growth monitoring. However, most of these methods have drawbacks, such as being invasive, not providing real-time results, or being costly. In this study, we present an alternate method of cell growth monitoring, which is low-cost, non-invasive, real-time, and uses Electrical Impedance Spectro-scopy (EIS). In this work, commercially available culture plates were fitted with custom tetrapolar electrodes, and mouse cells were cultured on them. The variation of culture media impedance, resulting from cell growth, proliferation and other metabolic activities, was recorded over a period of seven days. The results demonstrated an initial increase in impedance corresponding with the cell growth phase, followed by a decrease during the cell death (apoptosis) phase, as confirmed by microscope images. Overall, the results show that our method to monitor cell growth using tetrapolar electrodes is promising and can be further refined for related applications.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38972960

RESUMEN

BACKGROUND: The combination of highly localized impedance (LI) and contact force (CF) may improve tissue characterization and lesion prediction during radiofrequency (RF) pulmonary vein isolation (PVI) in patients with atrial fibrillation (AF). OBJECTIVE: We report the outcomes of our acute and long-term clinical evaluation of CF-LI-guided PVI in consecutive AF ablation cases from an international multicenter clinical setting. METHODS: Three hundred twenty-four consecutive patients from 20 European centers undergoing RF catheter ablation with the Stablepoint™ catheter were enrolled in the CHARISMA registry. Of these, 275 had a minimum follow-up of 1 year and were included in the primary analysis. RESULTS: The mean procedure duration was 115 ± 47 min, and the mean fluoroscopy time was 9.9 ± 6 min. At the end of the procedures, all PVs had been successfully isolated in all study patients. Minor complications were reported in 12 patients (4.4%). At 1 year, 36 (13.1%) patients had had an AF recurrence, and freedom from antiarrhythmic drugs and AF recurrence was achieved in 228 (82.9%) patients. The recurrence rate was higher in patients with persistent AF (21/116, 18.1%) than in those with paroxysmal AF (15/159, 9.4%; p = 0.0459). On multivariate logistic analysis adjusted for baseline confounders, only time > 6 months from first diagnosis of AF to ablation (HR = 2.93, 95%CI 1.03 to 8.36, p = 0.0459) was independently associated with recurrences. CONCLUSION: An ablation strategy for PVI guided by CF-LI technology proved safe and effective and resulted in a low recurrence rate of AF over 1-year follow-up, irrespective of the underlying AF type. CLINICAL TRIAL REGISTRATION: Catheter Ablation of Arrhythmias with a High-Density Mapping System in Real-World Practice. (CHARISMA). URL: http://clinicaltrials.gov/ Identifier: NCT03793998.

5.
Clin Nutr ESPEN ; 63: 214-225, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38970786

RESUMEN

BACKGROUND: Bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA) serves as common modalities for body composition assessment. This study was aimed to evaluate the agreement between BIA and DXA measures in UK Biobank. METHODS: UK Biobank participants with body fat mass (FM) and fat-free mass (FFM) estimates obtained through BIA (Tanita BC418MA) and DXA concurrently were included. Correlation between BIA and DXA-derived estimates were assessed with Lin's concordance correlation coefficients. Bland-Altman and Passing-Boblok analyses were performed to quantify the difference and agreement between BIA and DXA. Multivariable linear regression was used to identify predictors influencing the differences. Finally, prediction models were developed to calibrate BIA measures against DXA. RESULTS: The analysis included 34437 participants (female 51.4%, mean age 64.1 years at imaging assessment). BIA and DXA measurements were highly correlated (Lin's concordance correlation coefficient 0.94 for FM and 0.94 for FFM). BIA (Tanita BC418MA) underestimates FM overall by 1.84 kg (23.77 vs. 25.61, p < 0.01), and overestimated FFM overall by 2.56 kg (52.49 vs. 49.93, p < 0.01). The BIA-DXA differences were associated with FM, FFM, BMI and waist circumference. The developed prediction models showed overall good performance in calibrating BIA data. CONCLUSION: Our analysis exhibited strong correlation between BIA (Tanita BC418MA)- and DXA-derived body composition measures at a population level in UK Biobank. However, the BIA-DXA differences were observed at individual level and associated with individual anthropometric measures. Future studies may explore the use of prediction models to enhance the calibration of BIA measures for more accurate assessments in UK Biobank.

6.
Ultrasonics ; 142: 107386, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38971006

RESUMEN

An experimental study of the dependence of the electrical impedance of a lateral electric field resonator on its thickness and the size of the gap between the electrodes was carried out. The resonator was made of PZT-19 piezoceramics in the form of a rectangular parallelepiped with the shear dimensions of 18 × 20 mm2. Two rectangular electrodes with a gap that varied in the range from 4 to 14 mm were applied on one side of the resonator. For each gap width, the frequency dependences of the real and imaginary parts of the electrical impedance were measured using an impedance analyzer. It has been found that increasing the gap width leads to an increase in the resonant frequency and to an increase in the maximum value of the real part of the impedance. Three series of such experiments were carried out for three values of the resonator thickness: 3.02, 2.38 and 1.9 mm. The resonant characteristics of the resonator were also theoretically analyzed by finite element analysis using two models. One resonator model was based on a two-dimensional finite element method. In this case, the vibration modes that existed due to the finite size of the plate in the direction parallel to the gap between the electrodes were not taken into account. The second model of the resonator used a three-dimensional finite element method, which correctly took into account all vibration modes existing in the resonator. Comparison of theory with experiment has shown that the three-dimensional model provides a better agreement between theoretical and experimental results.

7.
Sci Rep ; 14(1): 15455, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965333

RESUMEN

In the present work, the inhibition performance of Viola extract based on bulk and nano size as a green corrosion inhibitor on mild steel in 0.5 M phosphoric acid and 1M hydrochloric acid solutions is investigated using different techniques (potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and Optical microscopy). The gained results demonstrated that various concentrations of Viola Extract (bulk and nano) inhibited the corrosion of the alloy in both of the acid solutions. The temperature impact on corrosion rate without/with this extract was examined. Certain thermodynamic parameters were determined based on the temperature impact on inhibition and corrosion processes. The adsorption mechanism of the extract on the alloy was explored using the Langmuir adsorption isotherm. A mixed mode of adsorption was observed, wherein the nano-sized extract in 1.0 M HCl predominantly underwent chemisorption, while the bulk-sized extract in 1.0 M HCl and both bulk and nano-sized extracts in 0.5 M H3PO4 were primarily subjected to physisorption. Scanning electron microscopy (SEM) and Optical microscopy analyses were employed to scrutinize alloys' surface morphology.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124697, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38959691

RESUMEN

Terahertz (THz) technology integration with nanomaterials is receiving excellent attention for next-generation applications, including enhanced imaging and communication. The excellent optical properties in THz domain can lead to preparation of low-cost CMOS camera which can convert THz radiation into optical signal in very efficient manner. In the present study, we have studied the properties of Zinc Sulfide quantum dots (ZnS QDs) embedded with Polyvinyl Alcohol (PVA) composites films using THz Signal at room temperature. The optical characterizations such as refractive index, absorption coefficients and dielectric constants of these samples were measured in the 0.1-2.0 THz range. Additionally, optical impedance, surface roughness, and reflection coefficient in TE and TM mode between 0.1 and 2.0 THz range were determined for these samples based on surface roughness-based reflection and scattering properties. The surface roughness factor was used to measure the optical impedance of the ZnS QDs based polymer films. The measured values of the absorption coefficient at 266 nm are compared with THz radiation, and the refractive indices of these samples range from 1.75 to 2.0. Finally, these samples were subjected to UV light excitation (λexe = 266 nm) of 0.15 ns duration and 400 nm for the fluorescence and corresponding life time measurements. We observed two numbers of fluorescence lines in nanosecond based excited domain whereas 400 nm excitation-based fluorescence life time lies between 13.8-11.39 ns range along with shift in fluorescence lines between 538.7 to 560.7 nm, respectively.

9.
Sci Rep ; 14(1): 15077, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956216

RESUMEN

To treat hypovolemic shock, fluid infusion or blood transfusion is essential to address insufficient volume. Much controversy surrounds resuscitation in hypovolemic shock. We aimed to identify the ideal fluid combination for treating hypovolemic shock-induced swine model, analyzing bioelectrical impedance and hemodynamics. Fifteen female three-way crossbred pigs were divided into three different groups. The three resuscitation fluids were (1) balanced crystalloid, (2) balanced crystalloid + 5% dextrose water, and (3) balanced crystalloid + 20% albumin. The experiment was divided into three phases and conducted sequentially: (1) controlled hemorrhage (1 L bleeding, 60 min), (2) resuscitation phase 1 (1 L fluid infusion, 60 min), and (3) resuscitation phase 2 (1 L fluid infusion, 60 min). Bioelectrical impedance analysis was implemented with a segmental multifrequency bioelectrical impedance analyzer. A total of 61 impedance measurements were assessed for each pig at six different frequencies in five segments of the pig. Pulse rate (PR), mean arterial pressure (MAP), stroke volume (SV), and stroke volume variation (SVV) were measured using a minimally invasive hemodynamic monitoring device. The three-dimensional graph showed a curved pattern when infused with 1 L of balanced crystalloid + 1 L of 5% dextrose water and 1.6 L of balanced crystalloid + 400 ml of 20% albumin. The 1M impedance increased in all groups during the controlled hemorrhage, and continuously decreased from fluid infusion to the end of the experiment. Only balanced crystalloid + 20% albumin significantly restored MAP and SV to the same level as the start of the experiment after the end of fluid infusion. There were no significant differences in MAP and SV from the time of recovery to the initial value of 1M impedance to the end of fluid infusion in all groups. The change and the recovery of hemodynamic indices such as MAP and SV coincide with the change and the recovery of 1M impedance. Using balanced crystalloid mixed with 20% albumin in hypovolemic shock-induced swine model may be helpful in securing hemodynamic stability, compared with balanced crystalloid single administration.


Asunto(s)
Modelos Animales de Enfermedad , Impedancia Eléctrica , Fluidoterapia , Hemodinámica , Choque , Animales , Porcinos , Femenino , Choque/fisiopatología , Choque/terapia , Fluidoterapia/métodos , Resucitación/métodos , Soluciones Cristaloides/administración & dosificación , Albúminas
10.
Neurogastroenterol Motil ; : e14861, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988098

RESUMEN

BACKGROUND: Mean nocturnal baseline impedance (MNBI) can improve diagnostic accuracy for gastroesophageal reflux disease (GERD), but must be manually calculated and is not routinely reported. We aimed to determine how automated software-derived mean supine baseline impedance (MSBI), a potential novel GERD metric, is related to MNBI. METHODS: Consecutively obtained pH-impedance studies were assessed. Manually extracted MNBI was compared to MSBI using paired t-test and Spearman's correlations. KEY RESULTS: The correlation between MNBI and MSBI was very high (ρ = 0.966, p < 0.01). CONCLUSIONS & INFERENCES: The ease of acquisition and correlation with MNBI warrant the routine clinical use and reporting of MSBI with pH-impedance studies.

11.
Talanta ; 278: 126487, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39002258

RESUMEN

Early screening for pathogens is crucial during pandemic outbreaks. Nucleic acid testing (NAT) is a valuable method for keeping pathogens from spreading. However, the long detection time and large size of the instruments involved significantly limited the efficiency of detection. This work described an integrated NAT microsensor that facilitated rapid and extremely sensitive detection based on nucleic acid amplification (NAA) on a chip. The biochip consisted of two layers incorporating a heater, a thermometer, an interdigital electrode (IDE) and a reaction chamber. The Pt electrode based heater and thermometer were utilized to maintain a specific temperature for the sample in the chamber. The thermometer exhibited a good linear correlation with a sensitivity of 9.36 Ω/°C and the heater achieved a heating efficiency of approximately 6.5 °C/s. Multiple ions were released during NAA, resulting in a decrease in the impedance of the amplification system solution. A large signal of impedance was generated by the released ions due to its linear correlation with the logarithm of the ion concentration. With this detection principle, IDE was employed for real-time monitoring of the in-chip reaction system impedance and NAA process. Specific nucleic acids from two pathogens (SARS-CoV-2, Vibrio vulnificus) were detected with this microsensor. The samples were qualitatively analyzed on microchip within 3 min, with a limit of detection (LOD) of 103 copies/µL. The proposed sensor presented several advantages, including reduced NAT time and increased sensitivity. Consequently, it has shown significant potential in rapid and high-quality nucleic acid testing for the field of epidemic prevention.

12.
Biomed Phys Eng Express ; 10(5)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38955134

RESUMEN

Invasive ductal carcinoma (IDC) in breast specimens has been detected in the quadrant breast area: (I) upper outer, (II) upper inner, (III) lower inner, and (IV) lower outer areas by electrical impedance tomography implemented with Gaussian relaxation-time distribution (EIT-GRTD). The EIT-GRTD consists of two steps which are (1) the optimum frequencyfoptselection and (2) the time constant enhancement of breast imaging reconstruction.foptis characterized by a peak in the majority measurement pair of the relaxation-time distribution functionγ,which indicates the presence of IDC.γrepresents the inverse of conductivity and indicates the response of breast tissues to electrical currents across varying frequencies based on the Voigt circuit model. The EIT-GRTD is quantitatively evaluated by multi-physics simulations using a hemisphere container of mimic breast, consisting of IDC and adipose tissues as normal breast tissue under one condition with known IDC in quadrant breast area II. The simulation results show that EIT-GRTD is able to detect the IDC in four layers atfopt= 30, 170 Hz. EIT-GRTD is applied in the real breast by employed six mastectomy specimens from IDC patients. The placement of the mastectomy specimens in a hemisphere container is an important factor in the success of quadrant breast area reconstruction. In order to perform the evaluation, EIT-GRTD reconstruction images are compared to the CT scan images. The experimental results demonstrate that EIS-GRTD exhibits proficiency in the detection of the IDC in quadrant breast areas while compared qualitatively to CT scan images.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Impedancia Eléctrica , Tomografía , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Tomografía/métodos , Carcinoma Ductal de Mama/diagnóstico por imagen , Distribución Normal , Mama/diagnóstico por imagen , Simulación por Computador , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
13.
Clin Nutr ESPEN ; 63: 378-383, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971405

RESUMEN

BACKGROUND & AIMS: The extracellular water-to-total body water ratio (ECW/TBW) increases with age and after fractures. A high ECW/TBW may hinder improvements in physical function and skeletal muscle mass. However, the effects of ECW/TBW improvement have not been properly investigated. The aim of this study was to investigate the factors associated with ECW/TBW improvement in older adults with hip fractures. METHODS: This retrospective cohort study included 203 patients with hip fractures who were admitted to a convalescent rehabilitation ward. ECW/TBW and skeletal muscle mass index (SMI) were measured using bioelectrical impedance analysis. The patients were classified into two groups: those with an improvement in ECW/TBW (n = 123) and those without an improvement (n = 80). Decision tree analysis was performed to examine the factors associated with ECW/TBW improvement. As a secondary objective, a multiple regression analysis was performed to identify the factors associated with SMI gain. RESULTS: Decision tree analysis identified rehabilitation volume and protein intake as the first and second factors most significantly associated with an improvement in ECW/TBW, respectively. Multiple regression analysis showed that improved ECW/TBW (ß: 0.400, p < 0.001) was significantly associated with SMI gain. CONCLUSIONS: Rehabilitation volume and protein intake are clinically important for improving ECW/TBW in older adults with hip fractures.

14.
Ren Fail ; 46(2): 2375103, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38973376

RESUMEN

INTRODUCTION: Cardiovascular events resulting from volume overload are a primary cause of mortality in hemodialysis patients. Bioelectrical impedance analysis (BIA) is significantly valuable for assessing the volume status of hemodialysis (HD) patients. In this article, we explore the correlation between the volume index measured by BIA and the cardiac function index assessed by echocardiography (ECG) in HD patients. METHODS: Between April and November 2018, we conducted a cross-sectional study involving randomly selected 126 maintenance HD patients. Comprehensive data on medical history and laboratory test results were collected. Subsequently, we investigated the correlation between volume indices measured by BIA and cardiac function parameters by ECG. RESULTS: We discovered a significant correlation between the volume indices measured by BIA and various parameter of cardiac function. The Left Ventricular Hypertrophy (LVH) group exhibited higher levels of the percentage of Extracellular Water (ECW%) and the percentage of Total Body Water (TBW%) compared to the Non-LVH group. Extracellular Water (ECW) and Third Interstitial Fluid Volume (TSFV) were identified as independent risk factors for Left Ventricular Mass (LVM), and both demonstrated a high predictive value for LVM. ECW% emerged as an independent risk factor for the Left Ventricular Mass Index (LVMI), with a high predictive value for LVMI. CONCLUSION: ECW and TSFV were found to be positively associated with cardiac function parameters in HD patients.


Asunto(s)
Ecocardiografía , Impedancia Eléctrica , Hipertrofia Ventricular Izquierda , Fallo Renal Crónico , Diálisis Renal , Humanos , Diálisis Renal/efectos adversos , Femenino , Masculino , Estudios Transversales , Persona de Mediana Edad , Ecocardiografía/métodos , Anciano , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/etiología , Fallo Renal Crónico/terapia , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/fisiopatología , Agua Corporal , Adulto
15.
J Neurogastroenterol Motil ; 30(3): 352-360, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38972870

RESUMEN

Background/Aims: Diagnosing gastroesophageal reflux disease (GERD) is sometimes challenging because the performance of available tests is not entirely satisfactory. This study aims to directly measure the esophageal mucosal impedance during upper gastrointestinal endoscopy for the diagnosis of GERD. Methods: Sixty participants with typical symptoms of GERD underwent high-resolution esophageal manometry, 24-hour multichannel intraluminal impedance-pH monitoring, upper gastrointestinal endoscopy, and mucosal impedance measurement. Mucosal impedance measurement was performed at 2, 5, 10, and 18 cm above the esophagogastric junction during gastrointestinal endoscopy using a specific catheter developed based on devices described in the literature over the last decade. The patients were divided into groups A (acid exposure time < 4%) and B (acid exposure time ≥ 4%). Results: The mucosal impedance was significantly lower in group B at 2 cm (2264.4 Ω ± 1099.0 vs 4575.0 Ω ± 1407.6 [group A]) and 5 cm above the esophagogastric junction (4221.2 Ω ± 2623.7 vs 5888.2 Ω ± 2529.4 [group A]). There was no significant difference in the mucosal impedance between the 2 groups at 10 cm and 18 cm above the esophagogastric junction. Mucosal impedance value at 2 cm > 2970 Ω resulted in a sensitivity of 96.4% and a specificity of 87.5% to exclude GERD. Conclusions: Direct measurement of mucosal impedance during endoscopy is a simple and promising method for diagnosing GERD. Individuals with an abnormal acid exposure time have lower mucosal impedance measurements than those with a normal acid exposure time.

16.
Angew Chem Int Ed Engl ; : e202406054, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980317

RESUMEN

Electrochemical impedance spectroscopy (EIS), characterized by its non-destructive and in-situ nature, plays a crucial role in comprehending the thermodynamic and kinetic processes occurring with Li-ion batteries. However, there is a lack of consistent and coherent physical interpretations for the EIS of porous electrodes. Therefore, it is imperative to conduct thorough investigations into the underlying physical mechanisms of EIS. Herein, by employing reference electrode in batteries, we revisit the associated physical interpretation of EIS at different frequency. Combining different battery configurations, temperature-dependent experiments, and elaborated distribution of relaxation time analysis, we find that the ion transport in porous electrode channels and pseudo-capacitance behavior dominate the high-frequency and mid-frequency impedance arcs, respectively. This work offers a perspective for the physical interpretation of EIS and also sheds light on the understanding of EIS characteristics in other advanced energy storage systems.

17.
Discov Nano ; 19(1): 111, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970699

RESUMEN

Experimental and simulation studies demonstrated that the initial voltage setting significantly influences the open-circuit voltage (VOC) in triboelectric nanogenerators (TENGs). Utilizing diode configurations, we consistently observed two distinct VOCs independent of the initial settings. A lower VOC corresponded to the surface voltage (VSurface), while a higher VOC was amplified by the product of the VSurface and the TENG's characteristic impedance ratio. Notably, a lower measurement system capacitance provided a more precise representation of the inherent characteristics of the TENG. Conversely, an increase in system impedance led to a convergence of the two VOCs and a reduction in their magnitudes relative to VSurface. These findings suggest that optimizing the initial/repeated charge balancing and minimizing capacitive loads are crucial for maximizing TENG output power in practical applications.

18.
Respir Res ; 25(1): 264, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965590

RESUMEN

BACKGROUND: Bronchoscopic lung volume reduction (BLVR) with one-way endobronchial valves (EBV) has better outcomes when the target lobe has poor collateral ventilation, resulting in complete lobe atelectasis. High-inspired oxygen fraction (FIO2) promotes atelectasis through faster gas absorption after airway occlusion, but its application during BLVR with EBV has been poorly understood. We aimed to investigate the real-time effects of FIO2 on regional lung volumes and regional ventilation/perfusion by electrical impedance tomography (EIT) during BLVR with EBV. METHODS: Six piglets were submitted to left lower lobe occlusion by a balloon-catheter and EBV valves with FIO2 0.5 and 1.0. Regional end-expiratory lung impedances (EELI) and regional ventilation/perfusion were monitored. Local pocket pressure measurements were obtained (balloon occlusion method). One animal underwent simultaneous acquisitions of computed tomography (CT) and EIT. Regions-of-interest (ROIs) were right and left hemithoraces. RESULTS: Following balloon occlusion, a steep decrease in left ROI-EELI with FIO2 1.0 occurred, 3-fold greater than with 0.5 (p < 0.001). Higher FIO2 also enhanced the final volume reduction (ROI-EELI) achieved by each valve (p < 0.01). CT analysis confirmed the denser atelectasis and greater volume reduction achieved by higher FIO2 (1.0) during balloon occlusion or during valve placement. CT and pocket pressure data agreed well with EIT findings, indicating greater strain redistribution with higher FIO2. CONCLUSIONS: EIT demonstrated in real-time a faster and more complete volume reduction in the occluded lung regions under high FIO2 (1.0), as compared to 0.5. Immediate changes in the ventilation and perfusion of ipsilateral non-target lung regions were also detected, providing better estimates of the full impact of each valve in place. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Broncoscopía , Impedancia Eléctrica , Animales , Porcinos , Broncoscopía/métodos , Neumonectomía/métodos , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Pulmón/cirugía , Pulmón/fisiología , Tomografía/métodos , Atelectasia Pulmonar/diagnóstico por imagen , Atelectasia Pulmonar/fisiopatología , Mediciones del Volumen Pulmonar/métodos , Factores de Tiempo
19.
Front Med (Lausanne) ; 11: 1412891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021821

RESUMEN

Introduction: Patients with cirrhosis undergoing liver transplantation frequently exhibit systemic inflammation, coagulation derangements, and edema, indicating endothelial dysfunction. This syndrome may worsen after ischemia-reperfusion injury of the liver graft, coincident with organ dysfunction that worsens patient outcomes. Little is known about changes in endothelial permeability during liver transplantation. We hypothesized that sera from these patients would increase permeability in cultured human endothelial cells ex vivo. Methods: Adults with cirrhosis presenting for liver transplantation provided consent for blood collection during surgery. Sera were prepared at five time points spanning the entire operation. The barrier function of human pulmonary microvascular endothelial cells in culture was assessed by transendothelial resistance measured using the ECIS ZΘ system. Confluent cells from two different endothelial cell donors were stimulated with human serum from liver transplant patients. Pooled serum from healthy men and purified inflammatory agonists served as controls. The permeability response to serum was quantified as the area under the normalized resistance curve. Responses were compared between time points and analyzed for associations with clinical characteristics of liver transplant patients and their grafts. Results: Liver transplant sera from all time points during surgery-induced permeability in both endothelial cell lines. The magnitude of permeability change was heterogeneous between patients, and there were differences in the effects of sera on the two endothelial cell lines. In one of the cell lines, the severity of liver disease was associated with greater permeability at the start of surgery. In the same cell line, serum collected 15 min after liver reperfusion induced significantly more permeability as compared to that collected at the start of surgery. Early postreperfusion sera from patients undergoing living donor transplants induced more permeability than sera from deceased donor transplants. Sera from two exemplary cases of patients on preoperative dialysis, and one patient with an unexpectedly long warm ischemia time of the liver graft, induced exaggerated and prolonged endothelial permeability. Discussion: Serum from patients with cirrhosis undergoing liver transplantation induces permeability of cultured human pulmonary microvascular endothelial cells. Increased endothelial permeability during liver transplantation may contribute to organ injury and present a target for future therapeutics.

20.
Heliyon ; 10(12): e32846, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39021917

RESUMEN

With the rapid development of power technology and the complexity of power system equipment, efficient and accurate assessment of the quality and condition of electric power equipment oil (EPEO) has become particularly critical. EPEO is an important factor to ensure the stable operation of power equipment, and its quality and state directly affect the safety and reliability of equipment. However, there are many challenges with traditional oil measuring techniques, which often rely on destructive testing, which not only increases maintenance costs, but can also cause damage to the equipment itself. In the face of these limitations, there is an urgent need to study new oil detection technologies and methods to meet the high standards of modern power systems for high efficiency, non-destructive and comprehensive analytical capabilities. In this paper, a new EPEO measuring technique based on multivariable impedance spectroscopy (MIS) is proposed. Through in-depth analysis of oil's impedance response characteristics under electric field excitation with different frequency., a new approach is provided for the comprehensive evaluation of oil's performance. MIS technology not only has the characteristics of non-destructive testing, ensuring the non-destructive measuring of EPEO, but also its rapid response and real-time analysis ability significantly improves the monitoring efficiency. Based on the proposed MIS detection method, a detection system and experimental prototype which can detect and evaluate the performance and quality of power oil more accurately are designed. Compared with the traditional measuring device, the measuring device utilized in this method can employ three variables. Specifically, it covers a frequency range for the detectable excitation signal spanning from 1 to 100 kHz, an amplitude range from 0.1 to 11.7 V, and a temperature range from -100 °C to 100 °C. The MIS detection method has the capability to identify a variety of parameters, including the dielectric constant, volume resistivity, and dielectric loss factor, among others. This method encompasses a broader spectrum of parameters compared to traditional detection methods, which typically focus on one or two detectable indicators. The correctness and feasibility of the proposed multivariable impedance spectrum detection technique are verified, which provides a new way for the comprehensive evaluation of oil's performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...