Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IUCrJ ; 11(Pt 4): 476-485, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38958014

RESUMEN

A series of events underscoring the significant advancements in micro-crystallization and in vivo crystallography were held during the 26th IUCr Congress in Melbourne, positioning microcrystallography as a pivotal field within structural biology. Through collaborative discussions and the sharing of innovative methodologies, these sessions outlined frontier approaches in macromolecular crystallography. This review provides an overview of this rapidly moving field in light of the rich dialogues and forward-thinking proposals explored during the congress workshop and microsymposium. These advances in microcrystallography shed light on the potential to reshape current research paradigms and enhance our comprehension of biological mechanisms at the molecular scale.


Asunto(s)
Cristalización , Cristalografía por Rayos X/métodos , Cristalografía/métodos , Sustancias Macromoleculares/química
2.
Materials (Basel) ; 17(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063870

RESUMEN

The high-temperature oxidation behaviour and phase stability of equi-atomic high entropy AlCrCoFeNi alloy (HEA) were studied using in situ high-temperature X-ray diffraction (HTXRD) combined with ThermoCalc thermodynamic calculation. HTXRD analyses reveal the formation of B2, BCC, Sigma and FCC, phases at different temperatures, with significant phase transitions observed at intermediate temperatures from 600 °C-100 °C. ThermoCalc predicted phase diagram closely matched with in situ HTXRD findings highlighting minor differences in phase transformation temperature. ThermoCalc predictions of oxides provide insights into the formation of stable oxide phases, predominantly spinel-type oxides, at high p(O2), while a lower volume of halite was predicted, and minor increase observed with increasing temperature. The oxidation behaviour was strongly dependent on the environment, with the vacuum condition favouring the formation of a thin, Al2O3 protective layer, while in atmospheric conditions a thick, double-layered oxide scale of Al2O3 and Cr2O3 formed. The formation of oxide scale was determined by selective oxidation of Al and Cr, as further confirmed by EDX analysis. The formation of thick oxide in air environment resulted in a thick layer of Al-depleted FFC phase. This comprehensive study explains the high-temperature phase stability and time-temperature-dependent oxidation mechanisms of AlCrCoFeNi HEA. The interplay between surface phase transformation beneath oxide scale and oxides is also detailed herein, contributing to further development and optimisation of HEA for high temperature applications.

3.
Small ; : e2402585, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860560

RESUMEN

Sodium-ion batteries (SIBs) have emerged as a compelling alternative to lithium-ion batteries (LIBs), exhibiting comparable electrochemical performance while capitalizing on the abundant availability of sodium resources. In SIBs, P2/O3 biphasic cathodes, despite their high energy, require furthur improvements in stability to meet current energy demands. This study introduces a systematic methodology that leverages the meta-heuristically assisted NSGA-II algorithm to optimize multi-element doping in electrode materials, aiming to transcend conventional trial-and-error methods and enhance cathode capacity by the synergistic integration of P2 and O3 phases. A comprehensive phase analysis of the meta-heuristically designed cathode material Na0.76Ni0.20Mn0.42Fe0.30Mg0.04Ti0.015Zr0.025O2 (D-NFMO) is presented, showcasing its remarkable initial reversible capacity of 175.5 mAh g-1 and exceptional long-term cyclic stability in sodium cells. The investigation of structural composition and the stabilizing mechanisms is performed through the integration of multiple characterization techniques. Remarkably, the irreversible phase transition of P2→OP4 in D-NFMO is observed to be dramatically suppressed, leading to a substantial enhancement in cycling stability. The comparison with the pristine cathode (P-NFMO) offers profound insights into the long-term electrochemical stability of D-NFMO, highlighting its potential as a high-voltage cathode material utilizing abundant earth elements in SIBs. This study opens up new possibilities for future advancements in sodium-ion battery technology.

4.
Nanotechnology ; 35(29)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631325

RESUMEN

We report on the fabrication of a novel design of GaAs/(In,Ga)As/GaAs radial nanowire heterostructures on a Si 111 substrate, where, for the first time, the growth of inhomogeneous shells on a lattice mismatched core results in straight nanowires instead of bent. Nanowire bending caused by axial tensile strain induced by the (In,Ga)As shell on the GaAs core is reversed by axial compressive strain caused by the GaAs outer shell on the (In,Ga)As shell. Progressive nanowire bending and reverse bending in addition to the axial strain evolution during the two processes are accessed byin situby x-ray diffraction. The diameter of the core, thicknesses of the shells, as well as the indium concentration and distribution within the (In,Ga)As quantum well are revealed by 2D energy dispersive x-ray spectroscopy using a transmission electron microscope. Shell(s) growth on one side of the core without substrate rotation results in planar-like radial heterostructures in the form of free standing straight nanowires.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38659200

RESUMEN

Solar steam generation (SSG) is a promising technology for the production of freshwater that can help alleviate global water scarcity. Nanostructured metals, known for their localized surface plasmon resonance effect, have generated significant interest, but low-cost metal films with excellent water evaporation properties are challenging. In this work, we present a one-step dealloying route for fabricating self-supporting black nanoporous zinc (NP-Zn) films with a bicontinuous ligament/channel structure, using Al-Zn solid solution alloys as the precursors. The influence of alloy composition on the formation and macro/microstructure of NP-Zn was investigated, and an optimal Al98Zn2 was selected. Additionally, in situ and ex situ characterizations were conducted to unveil the dealloying mechanism of Al98Zn2 and phase/microstructure evolution of NP-Zn during dealloying, including the phase transition of Al(Zn) → Zn, significant volume shrinkage (89.8%), and the development of high porosity (81.3%). The nanoscale ligament/channel structure and high porosity endow the NP-Zn films with good broadband absorption and superior hydrophilicity and, more importantly, give them excellent SSG performance. The NP-Zn2 film displays high evaporation efficiency, superior stability, and good seawater desalination performance. The efficient SSG performance, material abundance, and low cost suggest that NP-Zn films have promising applications in metal-based photothermal materials for SSG.

6.
Small ; 20(29): e2310997, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38353064

RESUMEN

Sodium-ion batteries (SIBs) are potential candidates for large energy storage usage because of the natural abundance and cheap sodium. Nevertheless, improving the energy density and cycling steadiness of SIB cathodes remains a challenge. In this work, F-doping Na3Al2/3V4/3(PO4)3(NAVP) microspheres (Na3Al2/3V4/3(PO4)2.9F0.3(NAVPF)) are synthesized via spray drying and investigated as SIB cathodes. XRD and Rietveld refinement reveal expanded lattice parameters for NAVPF compared to the undoped sample, and the successful cation doping into the Na superionic conductor (NASICON) framework improves Na+ diffusion channels. The NAVPF delivers an ultrahigh capacity of 148 mAh g-1 at 100 mA g-1 with 90.8% retention after 200 cycles, enabled by the activation of V2+/V5+ multielectron reaction. Notably, NAVPF delivers an ultrahigh rate performance, with a discharge capacity of 83.6 mAh g-1 at 5000 mA g-1. In situ XRD demonstrates solid-solution reactions occurred during charge-discharge of NAVPF without two-phase reactions, indicating enhanced structural stability after F-doped. The full cell with NAVPF cathode and Na+ preintercalated hard carbon anode shows a large discharge capacity of 100 mAh g-1 at 100 mA g-1 with 80.2% retention after 100 cycles. This anion doping strategy creates a promising SIB cathode candidate for future high-energy-density energy storage applications.

7.
Angew Chem Int Ed Engl ; 63(9): e202317941, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38197798

RESUMEN

Wadsley-Roth niobium oxide phases have attracted extensive research interest recently as promising battery anodes. We have synthesized the niobium-molybdenum oxide shear phase (Nb, Mo)13 O33 with superior electrochemical Li-ion storage performance, including an ultralong cycling lifespan of at least 15000 cycles. During electrochemical cycling, a reversible single-phase solid-solution reaction with lithiated intermediate solid solutions is demonstrated using in situ X-ray diffraction, with the valence and short-range structural changes of the electrode probed by in situ Nb and Mo K-edge X-ray absorption spectroscopy. This work reveals that the superior stability of niobium molybdenum oxides is underpinned by changes in octahedral distortion during electrochemical reactions, and we report an in-depth understanding of how this stabilizes the oxide structure during cycling with implications for future long-life battery material design.

8.
J Synchrotron Radiat ; 31(Pt 1): 77-84, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38010796

RESUMEN

A plug-flow fixed-bed cell for synchrotron powder X-ray diffraction (PXRD) and X-ray absorption fine structure (XAFS) idoneous for the study of heterogeneous catalysts at high temperature, pressure and under gas flow is designed, constructed and demonstrated. The operating conditions up to 1000°C and 50 bar are ensured by a set of mass flow controllers, pressure regulators and two infra-red lamps that constitute a robust and ultra-fast heating and cooling method. The performance of the system and cell for carbon dioxide hydrogenation reactions under specified temperatures, gas flows and pressures is demonstrated both for PXRD and XAFS at the P02.1 (PXRD) and the P64 (XAFS) beamlines of the Deutsches Elektronen-Synchrotron (DESY).

9.
Materials (Basel) ; 16(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37512315

RESUMEN

This paper utilizes in situ X-ray diffraction (XRD) to investigate the high-temperature oxidation behaviour of CrMnFeCoNi high-entropy alloy (HEA). We found that (1) Mn is the major oxide-forming element in both vacuum and air environments, leading to the formation of non-protective oxides that deplete the bulk alloy of Mn; (2) no oxides like Cr2O3, Fe2O3, or Fe3O4 were observed during the high-temperature oxidation behaviour of CrMnFeCoNi, which contradicts some previous studies on the isothermal oxidation of CrMnFeCoNi HEA. We also analysed and compared the experimental results with thermodynamic calculations by using ThermoCalc version 2022b software following the CALPHAD method. ThermoCalc predicted spinel oxide in a vacuum environment, along with halite oxides observed in experimental results; also, in an atmospheric environment, it predicted only spinel, indicating the need for further investigation into factors to validate the thermodynamic predictions. Our study shows that the in situ HTXRD technique is a powerful tool to accurately identify time-temperature-dependent phase formation/transformation for studying oxidation behaviours and understanding oxidation mechanisms in HEAs.

10.
Small ; 19(28): e2301731, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37173815

RESUMEN

The commercialization of high-energy Li-metal batteries is impeded by Li dendrites formed during electrochemical cycling and the safety hazards it causes. Here, a novel porous copper current collector that can effectively mitigate the dendritic growth of Li is reported. This porous Cu foil is fabricated via a simple two-step electrochemical process, where Cu-Zn alloy is electrodeposited on commercial copper foil and then Zn is electrochemically dissolved to form a 3D porous structure of Cu. The 3D porous Cu layers on average have a thickness of ≈14 um and porosity of ≈72%. This current collector can effectively suppress Li dendrites in cells cycled with a high areal capacity of 10 mAh cm-2 and under a high current density of 10 mA cm-2 . This electrochemical fabrication method is facile and scalable for mass production. Results of advanced in situ synchrotron X-ray diffraction reveal the phase evolution of the electrochemical deposition and dealloying processes.

11.
Nano Lett ; 23(8): 3267-3273, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37071064

RESUMEN

With increasing applications for voltage-controlled magnetism, the need to more fully understand magnetoelectric coupling and strain transfer in nanostructured multiferroic composites has also increased. Here, multiferroic nanocomposites were synthesized using block copolymer templating to create mesoporous cobalt ferrite (CFO), followed by partly filling the pores with ferroelectric zirconium-substituted hafnia (HZO) using atomic layer deposition (ALD) to produce a porous multiferroic composite with enhanced mechanical flexibility. Upon electrical poling of the nanocomposite, we observed large changes in the magnetization. These changes partly relaxed upon removing the electric field, suggesting a strain-mediated mechanism. Both the anisotropic strain transfer from HZO to CFO and the strain relaxation after the field was removed were confirmed using high-resolution X-ray diffraction measurements collected during in-situ poling. The in-situ observation of both anisotropic strain transfer and large magnetization changes allows us to directly characterize the strong multiferroic coupling that can occur in flexible, nanostructured composites.

12.
Angew Chem Int Ed Engl ; 62(26): e202303600, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37041661

RESUMEN

Bimetallic alloy nanomaterials are promising anode materials for potassium-ion batteries (KIBs) due to their high electrochemical performance. The most well-adopted fabrication method for bimetallic alloy nanomaterials is tube furnace annealing (TFA) synthesis, which can hardly satisfy the trade-off among granularity, dispersity and grain coarsening due to mutual constraints. Herein, we report a facile, scalable and ultrafast high-temperature radiation (HTR) method for the fabrication of a library of ultrafine bimetallic alloys with narrow size distribution (≈10-20 nm), uniform dispersion and high loading. The metal-anchor containing heteroatoms (i.e., O and N), ultrarapid heating/cooling rate (≈103  K s-1 ) and super-short heating duration (several seconds) synergistically contribute to the successful synthesis of small-sized alloy anodes. As a proof-of-concept demonstration, the as-prepared BiSb-HTR anode shows ultrahigh stability indicated by negligible degradation after 800 cycles. The in situ X-ray diffraction reveals the K+ storage mechanism of BiSb-HTR. This study can shed light on the new, rapid and scalable nanomanufacturing of high-quality bimetallic alloys toward extended applications of energy storage, energy conversion and electrocatalysis.


Asunto(s)
Aleaciones , Potasio , Biblioteca de Genes , Frío , Electrodos , Iones
13.
Small ; 19(25): e2300759, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919820

RESUMEN

SiOx anode has a more durable cycle life than Si, being considered competitive to replace the conventional graphite. SiOx usually serves as composites with carbon to achieve more extended cycle life. However, the carbon microstructure dependent Li-ion storage behaviors in SiOx /C anode have received insufficient attention. Herein, this work demonstrates that the disorder of carbon can determine the ratio of inter- and intragranular Li-ion diffusions. The resulted variation of platform characteristics will result in different compatibility when matching SiOx . Rational disorder induced intergranular diffusion can benefit phase transition of SiOx /C, benefiting the electrochemical performance. Through a series of quantitative calculations and in situ X-ray diffraction characterizations, this work proposes the rational strategy for the future optimization, thus achieving preferable performance of SiOx /C anode.

14.
Nanomaterials (Basel) ; 13(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36770504

RESUMEN

Molybdenum carbide (Mo2C) with a Pt-like d-band electron structure exhibits certain activities for oxygen reduction and evolution reactions (ORR/OER) in alkaline solutions, but it is questioned due to its poor OER stability. Combining Mo2C with transition metals alloy is a feasible way to stabilize its electrochemical activity. Herein, CoFe-Prussian blue analogues are used as a precursor to compound with graphitic carbon nitride and Mo6+ to synthesize FeCo alloy and Mo2C co-encapsulated N-doped carbon (NG-CoFe/Mo2C). The morphology of NG-CoFe/Mo2C (800 °C) shows that CoFe/Mo2C heterojunctions are well wrapped by N-doped graphitic carbon. Carbon coating not only inhibits growth and agglomeration of Mo2C/CoFe, but also enhances corrosion resistance of NG-CoFe/Mo2C. NG-CoFe/Mo2C (800 °C) exhibits an excellent half-wave potential (E1/2 = 0.880 V) for ORR. It also obtains a lower OER overpotential (325 mV) than RuO2 due to the formation of active species (CoOOH/ß-FeOOH, as indicated by in-situ X-ray diffraction tests). E1/2 shifts only 6 mV after 5000 ORR cycles, while overpotential for OER increases only 19 mV after 1000 cycles. ORR/OER performances of NG-CoFe/Mo2C (800 °C) are close to or better than those of many recently reported catalysts. It provides an interfacial engineering strategy to enhance the intrinsic activity and stability of carbides modified by transition-metals alloy for oxygen electrocatalysis.

15.
J Colloid Interface Sci ; 635: 208-220, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36587574

RESUMEN

Transition metal alloys have emerged as promising catalysts for oxygen reduction/evolution reactions (ORR/OER) because of their intermetallic synergy and tunable redox properties. However, for alloy nanoparticles, it is quite challenging to suppress the self-aggregation and promote the bifunctional activity. Anchoring alloys in heteroatoms-doped carbon matrix with excellent electro-conductibility is a powerful strategy to form strongly-coupled alloy-carbon nanohybrids. Here, highly-dispersed NiFe alloys are evenly in-situ anchored on the surface of Co, N co-doped carbon nanotubes (NiFe/Co-N@CNTs) via a gravity-guided chemical vapor deposition and self-assembly strategy. Stably-structured NiFe/Co-N@CNTs possesses a tubular skeleton with diameters of 80-100 nm and a hydrophilic surface. For ORR, half-wave potential of NiFe/Co-N@CNTs (0.87 V vs RHE) is higher than that of Pt/C (0.85 V). Strong synergies between NiFe alloys and Co-Nx species facilitate the charge transfer on one-dimensional conductive structure to boost the 4e- ORR kinetics. For OER, NiFe/Co-N@CNTs has a lower overpotential (300 mV) than RuO2 (400 mV) at 10 mA cm-2 due to in-situ formation of highly-active NiOOH/FeOOH species (as indicated by in-situ X-ray diffraction) at the catalytic sites on NiFe alloy. Rechargeable Zn-air battery (ZAB) with NiFe/Co-N@CNTs-based air-cathode exhibits promising open-circuit potential (1.52 V) and charge-discharge cycling stability (350 h). This alloy-carbon integrating strategy is meaningful for promoting dispersion, activity and stability of non-noble metal alloys for oxygen electrocatalysis.

16.
Chemistry ; 29(17): e202203932, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36718944

RESUMEN

The reduction of metal oxides with hydrogen is widely used for the production of fine chemicals and metals both on the laboratory and industry scale. In situ methods can help to elucidate reaction pathways and to gain control over such synthesis reactions. In this study, the reduction of WO3 and V2 O5 with hydrogen was investigated by in situ X-ray powder diffraction with regard to intermediates and the influence of heating rates and hydrogen flow rates. Mixtures of V4 O9 , V6 O13 and VO2 in two modifications were identified as intermediates on the way to phase-pure V2 O3 . None of the intermediates occurs in a single phase and therefore cannot be prepared this way. In contrast, the intermediates of the WO3 reduction, H0.23 WO3 and W10 O29 , appear consecutively and can be isolated. For both reactions, the heating and flow rates have little influence on the formation of intermediates.

17.
J Colloid Interface Sci ; 636: 73-82, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621130

RESUMEN

Pyrite FeS2 now emerges as a promising anode for potassium-ion batteries (PIBs) due to its low cost and high theoretical capacity. However, the significant volume expansion, low electrical conductivity, and the ambiguous mechanism related to potassium storage severely hinder its development for PIBs anodes. Herein, FeS2 nanostructures are skillfully dispersed on the graphene surface layer by layer (FeS2@C-rGO) to form a sandwich structure by using Fe-based metal organic framework (Fe-MOF) as precursors. The unique structural design can improve the transfer kinetics of K+ and effectively buffer the volume expansion during cycling, thereby enhancing the potassium storage performance. As a result, the FeS2@C-rGO delivers a high capacity of 550 mAh/g at a current density of 0.1 A/g. At a high rate of 2 A/g, the capacity can maintain 171 mAh/g even after 500 cycles. Moreover, the electrochemical reaction mechanism and potassium storage behavior are revealed by in-situ X-ray diffractionand density functional theory calculations. This work not only provides a novel insight into the structural design of electrode materials for high-performance PIBs, but also proposes a valuable understanding of the potassium storage mechanism of the FeS2-based anode.

18.
Materials (Basel) ; 17(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203936

RESUMEN

The thermal decomposition processes of coprecipitated Cu-Ni-Al and Cu-Ni-Fe hydroxides and the formation of the mixed oxide phases were followed by thermogravimetry and derivative thermogravimetry analysis (TG - DTG) and in situ X-ray diffraction (XRD) in a temperature range from 25 to 800 °C. The as-prepared samples exhibited layered double hydroxide (LDH) with a rhombohedral structure for the Ni-richer Al- and Fe-bearing LDHs and a monoclinic structure for the CuAl LDH. Direct precipitation of CuO was also observed for the Cu-richest Fe-bearing samples. After the collapse of the LDHs, dehydration, dehydroxylation, and decarbonation occurred with an overlapping of these events to an extent, depending on the structure and composition, being more pronounced for the Fe-bearing rhombohedral LDHs and the monoclinic LDH. The Fe-bearing amorphous phases showed higher reactivity than the Al-bearing ones toward the crystallization of the mixed oxide phases. This reactivity was improved as the amount of embedded divalent cations increased. Moreover, the influence of copper was effective at a lower content than that of nickel.

19.
Nanomaterials (Basel) ; 12(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35957063

RESUMEN

Ni thin films with different thicknesses were grown on a GaAs substrate using the magnetron sputtering technique followed by in situ X-ray diffraction (XRD) annealing in order to study the solid-state reaction between Ni and GaAs substrate. The thickness dependence on the formation of the intermetallic phases was investigated using in situ and ex situ XRD, pole figures, and atom probe tomography (APT). The results indicate that the 20 nm-thick Ni film exhibits an epitaxial relation with the GaAs substrate, which is (001) Ni//(001) GaAs and [111] Ni//[110] GaAs after deposition. Increasing the film's thickness results in a change of the Ni film's texture. This difference has an impact on the formation temperature of Ni3GaAs. This temperature decreases simultaneously with the thickness increase. This is due to the coherent/incoherent nature of the initial Ni/GaAs interface. The Ni3GaAs phase decomposes into the binary and ternary compounds xNiAs and Ni3-xGaAs1-x at about 400 °C. Similarly to Ni3GaAs, the decomposition temperature of the second phase also depends on the initial thickness of the Ni layer.

20.
Small ; 18(39): e2203459, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36026577

RESUMEN

Tin chalcogenides are regarded as promising anode materials for potassium ion batteries (PIBs) due to their considerable specific capacity. However, the severe volume effect, limited electronic conductivity, and the shuttle effect of the potassiation product restrict the application prospect. Herein, based on the metal evaporation reaction, a facile structural engineering strategy for yolk-shell SnSe encapsulated in carbon shell (SnSe@C) is proposed. The internal void can accommodate the volume change of the SnSe core and the carbon shell can enhance the electronic conductivity. Combining qualitative and quantitative electrochemical analyses, the distinguished electrochemical performance of SnSe@C anode is attributed to the contribution of enhanced capacitive behavior. Additionally, first-principles calculations elucidate that the heteroatomic doped carbon exhibits a preferable affinity toward potassium ions and the potassiation product K2 Se, boosting the rate performance and capacity retention consequently. Furthermore, the phase evolution of SnSe@C electrode during the potassiation/depotassiation process is clarified by in situ X-ray diffraction characterization, and the crystal transition from the SnSe Pnma(62) to Cmcm(63) point group is discovered unpredictably. This work demonstrates a pragmatic avenue to tailor the SnSe@C anode via a facile structural engineering strategy and chemical regulation, providing substantial clarification for the phase evolution mechanism of SnSe-based anode for PIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...