Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 624: 450-459, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35667207

RESUMEN

Zinc ion batteries (ZIBs) suffer from severe corrosion effects and dendrite growth on the unstable anode/electrolyte interface (AEI) during the plating/stripping process. Therefore, it is of great significance to build a stable AEI enabling a long lifetime for ZIBs. Herein, trace tea polyphenols (TP) were introduced firstly as additive of zinc acetate electrolyte to protect zinc anode from corrosion invasion and boost uniform zinc deposition, thus achieving reversible dendrite-free zinc anode. In situ synchrotron radiation X-ray imaging was conducted to illustrate the positive role of TP molecules in the uniform plating process of zinc. The stable AEI induced by the specific adsorption of TP molecules reduced hydrogen and oxygen evolution side reactions and increased the coulombic efficiency. The TP additive with an ultralow dosage of 0.028 g L-1 delivered favorable cycling stability of 720 h at 0.5 mA cm-2 and 0.5 mAh cm-2. The Zn-Na3V2(PO4)3 full cell assembled with the hybrid Zn(Ac)2-TP electrolyte contributed an energy density of 130 mAh g-1 at the current density of 0.2C and enhanced cycling stability of 78% retention after 300 cycles. These results will provide new insights into additive engineering for aqueous electrolytes and the fundamental understanding of AEI phenomena for high performance ZIBs.


Asunto(s)
Polifenoles , Zinc , Electrodos , Electrólitos ,
2.
Materials (Basel) ; 15(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35207856

RESUMEN

Synchrotron and laboratory-based X-ray imaging techniques have been increasingly used for in situ investigations of alloy solidification and other metal processes. Several reviews have been published in recent years that have focused on the development of in situ X-ray imaging techniques for metal solidification studies. Instead, this work provides a comprehensive review of knowledge provided by in situ X-ray imaging for improved understanding of solidification theories and emerging metal processing technologies. We first review insights related to crystal nucleation and growth mechanisms gained by in situ X-ray imaging, including solute suppressed nucleation theory of α-Al and intermetallic compound crystals, dendritic growth of α-Al and the twin plane re-entrant growth mechanism of faceted Fe-rich intermetallics. Second, we discuss the contribution of in situ X-ray studies in understanding microstructural instability, including dendrite fragmentation induced by solute-driven, dendrite root re-melting, instability of a planar solid/liquid interface, the cellular-to-dendritic transition and the columnar-to-equiaxed transition. Third, we review investigations of defect formation mechanisms during near-equilibrium solidification, including porosity and hot tear formation, and the associated liquid metal flow. Then, we discuss how X-ray imaging is being applied to the understanding and development of emerging metal processes that operate further from equilibrium, such as additive manufacturing. Finally, the outlook for future research opportunities and challenges is presented.

3.
Materials (Basel) ; 13(6)2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32245272

RESUMEN

In this study, the effects of ultrasonic on melt pool dynamic, microstructure, and properties of underwater wet flux-cored arc welding (FCAW) joints were investigated. Ultrasonic vibration enhanced melt flow and weld pool oscillation. Grain fragmentation caused by cavitation changed microstructure morphology and decreased microstructure size. The proportion of polygonal ferrite (PF) reduced or even disappeared. The width of grain boundary ferrite (GBF) decreased from 34 to 10 µm, and the hardness increased from 204 to 276 HV. The tensile strength of the joint increased from 545 to 610 MPa, and the impact toughness increased from 65 to 71 J/mm2 due to the microstructure refinement at the optimum ultrasonic power.

4.
J Synchrotron Radiat ; 26(Pt 1): 238-243, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30655491

RESUMEN

A new experimental triaxial cell for in situ synchrotron X-ray micro-computed tomography aimed at imaging small samples of (6 mm × 19 mm) at high temperatures (up to 400°C) and pressures (up to 24 MPa confining) is presented. The system has flow-through capabilities, independent axial and radial pressure control, and has been developed and tested at the 8.3.2. beamline at the Advanced Light Source. The characteristics of this new experimental rig are described, along with the challenges, mainly concerning the combination of X-ray transparency with vessel strength at high temperature, and solutions found during the development stage. An experiment involving oil shale pyrolysis under subsurface conditions, highlighting the importance of a device able to operate in this pressure and temperature range, is also introduced. The availability of this cell enables an unprecedented range of experiments in the Earth Sciences, with a special focus on subsurface geothermal processes.

5.
Chemistry ; 23(50): 12275-12282, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28426151

RESUMEN

In this contribution, first synthesis of semiconducting ZnSiN2 and ZnGeN2 from solution is reported with supercritical ammonia as solvent and KNH2 as ammonobasic mineralizer. The reactions were conducted in custom-built high-pressure autoclaves made of nickel-based superalloy. The nitrides were characterized by powder X-ray diffraction and their crystal structures were refined by the Rietveld method. ZnSiN2 (a=5.24637(4), b=6.28025(5), c=5.02228(4) Å, Z=4, Rwp =0.0556) and isotypic ZnGeN2 (a=5.46677(10), b=6.44640(12), c=5.19080(10) Å, Z=4, Rwp =0.0494) crystallize in the orthorhombic space group Pna21 (no. 33). The morphology and elemental composition of the nitrides were examined by electron microscopy and energy-dispersive X-ray spectroscopy (EDX). Well-defined single crystals with a diameter up to 7 µm were grown by ammonothermal synthesis at temperatures between 870 and 1070 K and pressures up to 230 MPa. Optical properties have been analyzed with diffuse reflectance measurements. The band gaps of ZnSiN2 and ZnGeN2 were determined to be 3.7 and 3.2 eV at room temperature, respectively. In situ X-ray measurements were performed to exemplarily investigate the crystallization mechanism of ZnGeN2 . Dissolution in ammonobasic supercritical ammonia between 570 and 670 K was observed which is quite promising for the crystal growth of ternary nitrides under ammonothermal conditions.

6.
ACS Appl Mater Interfaces ; 8(46): 32031-32040, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27933970

RESUMEN

The dynamic interfacial growth, suppression, and dissolution of zinc dendrites have been studied with the imidazolium ionic liquids (ILs) as additives on the basis of in situ synchrotron radiation X-ray imaging. The phase contrast difference of real-time images indicates that zinc dendrites are preferentially developed on the substrate surface in the ammoniacal electrolytes. After adding imidazolium ILs, both nucleation overpotential and polarization extent increase in the order of additive-free < EMI-Cl < EMI-PF6 < EMI-TFSA < EMI-DCA. The real-time X-ray images show that the EMI-Cl can suppress zinc dendrites, but result in the formation of the loose deposits. The EMI-PF6 and EMI-TFSA additives can smooth the deposit morphology through suppressing the initiation and growth of dendritic zinc. The addition of EMI-DCA increases the number of dendrite initiation sites, whereas it decreases the growth rate of dendrites. Furthermore, the dissolution behaviors of zinc deposits are compared. The zinc dendrites show a slow dissolution process in the additive-free electrolyte, whereas zinc deposits are easily detached from the substrate in the presence of EMI-Cl, EMI-PF6, or EMI-TFSA due to the formation of the loose structure. Hence, the dependence of zinc dendrites on anions of imidazolium IL additives during both electrodeposition and dissolution processes has been elucidated. These results could provide the valuable information in perfecting the performance of zinc-based rechargeable batteries.

7.
J Synchrotron Radiat ; 21(Pt 1): 82-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24365920

RESUMEN

The degradation of cell performance of polymer electrolyte fuel cells under monochromatic X-ray irradiation at 13.5 keV was studied in galvanostatic and potentiostatic operation modes in a through-plane imaging direction over a range of two orders of magnitude beam intensity at the TOMCAT beamline of the Swiss Light Source. The performance degradation was found to be a function of X-ray dose and independent of beam intensity, whereas the degradation rate correlates with beam intensity. The cell performance was more sensitive to X-ray irradiation at higher temperature and gas feed humidity. High-frequency resistance measurements and the analysis of product water allow conclusions to be drawn on the dominating degradation processes, namely change of hydrophobicity of the electrode and sulfate contamination of the electrocatalyst.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...