Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
J Sci Food Agric ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291451

RESUMEN

BACKGROUND: Hypertension is a chronic disease with high morbidity and mortality. Previously, we screened a walnut meal peptide FDWLR (PEP) with significant angiotensin-converting enzyme inhibitory activity. The present study further investigated the anti-hypertensive effects of PEP in vivo using spontaneously hypertensive rats. RESULTS: The results indicated that PEP reduced blood pressure and the indices in the renin-angiotensin-aldosterone system (RAAS) including angiotensin-converting enzyme (ACE) (decreased by 15.36%), angiotensin II (Ang II) (decreased by 31.56%), angiotensinogen (AGT) (decreased by 58.84%) and aldosterone (ALD) (decreased by 18.27%), whereas NO levels increased by 54.96%. The pathological analysis showed that PEP relieved cardiac and renal damage. PEP also alleviated oxidative stress, inflammation and fibrosis in the heart and kidney. Mechanistically, PEP mitigated cardiac and renal damage by simultaneously regulating ACE-Ang II-AT1R and the ACE2-Ang (1-7)-MAS axis. Additionally, PEP increased the levels of short chain fatty acids by 224.16% and improved gut microbiota by increasing the abundance of Prevotella, Phascolarctobacterium, Clostridium_sensu_stricto and Bifidobacterium, at the same time as decreasing Bacteroides and Alistipes abundances. CONCLUSION: This study indicated that PEP prevented hypertension and associated heart and kidney damage by modulating the RAAS system and gut microbiota, which is valuable in guiding future development and optimal utilization of walnut meal. © 2024 Society of Chemical Industry.

2.
Mar Drugs ; 22(9)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39330279

RESUMEN

Ulva prolifera, a type of green algae that can be consumed, was utilized in the production of an angiotensin-I converting enzyme (ACE) inhibitory peptide. The protein from the algae was isolated and subsequently hydrolyzed using a neutral protease. The resulting hydrolysate underwent several processes including Sephadex-G100 filtration chromatography, ultrafiltration, HPLC-Q-TOF-MS analysis, ADMET screening, UV spectrum detection test, molecular docking, and molecular dynamic simulation. Then, the ACE inhibitory peptide named KAF (IC50, 0.63 ± 0.26 µM) was identified. The effectiveness of this peptide in inhibiting ACE can be primarily attributed to two conventional hydrogen bonds. Additionally, it could activate endothelial nitric oxide synthase (eNOS) activity to promote the generation of nitric oxide (NO). Additionally, KAF primarily increased the intracellular calcium (Ca2+) level by acting on L-type Ca2+ channel (LTCC) and the ryanodine receptor (RyR) in the endoplasmic reticulum, and completed the activation of eNOS under the mediation of protein kinase B (Akt) signaling pathway. Our study has confirmed that KAF has the potential to be processed into pharmaceutical candidate functions on vasoconstriction.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Simulación del Acoplamiento Molecular , Péptidos , Ulva , Ulva/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación , Inhibidores de la Enzima Convertidora de Angiotensina/química , Péptidos/farmacología , Péptidos/química , Péptidos/aislamiento & purificación , Óxido Nítrico Sintasa de Tipo III/metabolismo , Animales , Óxido Nítrico/metabolismo , Vasodilatación/efectos de los fármacos , Calcio/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Vasodilatadores/farmacología , Vasodilatadores/aislamiento & purificación , Vasodilatadores/química , Humanos , Algas Comestibles
4.
Int J Biol Macromol ; 277(Pt 3): 134232, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098667

RESUMEN

In this study, double enzyme hydrolysis significantly enhanced the DPP-IV inhibition rate compared to single enzyme. The α + K enzymes exhibited the highest inhibition rate. Ultrasonic pretreatment for 30 min improved the hydrolysis efficiency and DPP-IV inhibition rate, potentially due to the structural changes in hydrolysates, such as the increased surface hydrophobicity, and reduced particle size, α-helix and ß-turn. Six peptides were screened and verified in vitro. QPY, WPEYL, and YPPQVM displayed competitive inhibition, while LPAAP and IPAPSFPRL displayed mixed competitive/non-competitive inhibition. The interactions between these six peptides and DPP-IV primarily occurred through hydrogen bonds, electrostatic and hydrophobic interactions. Network pharmacological analysis indicated that LPAAP might inhibit DPP-IV activity trough interactions with diabetes-related targets such as CASP3, HSP90AA1, MMP9, and MMP9. These results uncover the potential mechanism of regulating blood glucose by camel milk hydrolysates, establishing camel milk peptide as a source of DPP-IV inhibitory peptide.


Asunto(s)
Camelus , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Leche , Péptidos , Animales , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Leche/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Péptidos/química , Péptidos/farmacología , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Secuencia de Aminoácidos , Humanos
5.
Mar Drugs ; 22(8)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39195461

RESUMEN

Pinctada fucata meat is the main by-product of the pearl harvesting industry. It is rich in nutrition, containing a lot of protein and peptides, and holds significant value for both medicine and food. In this study, a new active protein was discovered and expressed heterogeneously through bioinformatics analysis. It was then identified using Western blot, molecular weight, and mass spectrometry. The antibacterial activity, hemolysis activity, antioxidant activity, and Angiotensin-Converting Enzyme II (ACE2) inhibitory activity were investigated. An unknown functional protein was screened through the Uniprot protein database, and its primary structure did not resemble existing proteins. It was an α-helical cationic polypeptide we named PFAP-1. The codon-optimized full-length PFAP-1 gene was synthesized and inserted into the prokaryotic expression vector pET-30a. The induced expression conditions were determined with a final isopropyl-ß-d-thiogalactoside (IPTG) concentration of 0.2 mM, an induction temperature of 15 °C, and an induction time of 16 h. The recombinant PFAP-1 protein, with low endotoxin and sterility, was successfully prepared. The recombinant PFAP-1 protein exhibited strong antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) in vitro, and the diameter of the inhibition zone was 15.99 ± 0.02 mm. Its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 37.5 µg/mL and 150 µg/mL, respectively, and its hemolytic activity was low (11.21%) at the bactericidal concentration. The recombinant PFAP-1 protein significantly inhibited the formation of MRSA biofilm and eradicated MRSA biofilm. It also demonstrated potent 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) scavenging activity with a half-maximal inhibitory concentration (IC50) of 40.83 µg/mL. The IC50 of ACE2 inhibition was 5.66 µg/mL. Molecular docking results revealed that the optimal docking fraction of PFAP-1 protein and ACE2 protein was -267.78 kcal/mol, with a confidence level of 0.913. The stable binding complex was primarily formed through nine groups of hydrogen bonds, three groups of salt bridges, and numerous hydrophobic interactions. In conclusion, recombinant PFAP-1 can serve as a promising active protein in food, cosmetics, or medicine.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Pinctada , Animales , Antibacterianos/farmacología , Antibacterianos/química , Pinctada/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Hemólisis/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/aislamiento & purificación , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación , Humanos
6.
J Comput Chem ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158951

RESUMEN

Orphan nuclear estrogen-related receptor γ (ERRγ) has been recognized as a potential therapeutic target for cancer, inflammation and metabolic disorder. The ERRγ contains a regulatory AF2 helical tail linked C-terminally to its ligand-binding domain (LBD), which is a self-binding peptide (SBP) and serves as molecular switch to dynamically regulate the receptor alternation between active and inactive states by binding to and unbinding from the AF2-binding site on ERRγ LBD surface, respectively. Traditional ERRγ modulators are all small-molecule chemical ligands that can be classified into agonists and inverse agonists in terms of their action mechanism; the agonists stabilize the AF2 in ABS site with an agonist conformation, while the inverse agonists lock the AF2 out of the site to largely abolish ERRγ transcriptional activity. Here, a class of ERRγ peptidic antagonists was described to compete with native AF2 for the ABS site, thus blocking the active state of AF2 binding to ERRγ LBD domain. Self-inhibitory peptide was derived from the SBP-covering AF2 region and we expected it can rebind potently to the ABS site by reducing its intrinsic disorder and entropy cost upon the rebinding. Hydrocarbon stapling was employed to do so, which employed an all-hydrocarbon bridge across the [i, i + 4]-anchor residue pair in the N-terminal, middle or C-terminal region of the self-inhibitory peptide. As might be expected, it is revealed that the stapled peptides are good binders of ERRγ LBD domain and can effectively compete with the native AF2 helical tail for ERRγ ABS site, which exhibit a basically similar binding mode with AF2 to the site and form diverse noncovalent interactions with the site, thus conferring stability and specificity to the domain-peptide complexes.

7.
J Biosci Bioeng ; 138(4): 351-359, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39085020

RESUMEN

Inhibition of dipeptidyl peptidase IV (DPP-IV) is an effective pharmacotherapy for the management of type 2 diabetes. Recent findings have suggested that various dietary proteins can serve as precursors to peptides that inhibit DPP-IV. Although several DPP-IV inhibitory peptides derived from food materials have been reported, more effective inhibitory peptides remain to be discovered. This study aimed to identify potent DPP-IV inhibitory peptides that earlier approaches had overlooked by employing a screening method that combined peptide arrays and neutralizing antibodies. Octa-peptides covering the complete amino acid sequences of four casein proteins and two whey proteins were synthesized on arrays via a solid-phase method. These peptides were then reacted with a monoclonal antibody specifically engineered to recognize glucagon-like peptide 1 (GLP-1), a substrate of DPP-IV. The variable region of the anti-GLP-1 monoclonal antibody is utilized to mimic the substrate-binding region of DPP-IV, enabling the antibody to bind to peptides that interact with DPP-IV. Based on this feature, 26 peptides were selected as DPP-IV inhibitory peptide candidates, 11 of which showed strong DPP-IV inhibitory activity. Five of these peptides consistently contained cysteines positioned two to four residues from the N-terminus. Treatment with disulfide formation decreased the DPP-IV inhibitory activity of these cysteine-containing peptides, while the inhibitory activity of α-lactalbumin hydrolysates increased with reducing treatment. These results revealed that the thiol group is important for DPP-IV inhibitory activity. This study provides a useful screen for DPP-IV inhibitory peptides and indicates the importance of reductive cysteine residues within DPP-IV inhibitory peptides.


Asunto(s)
Anticuerpos Monoclonales , Cisteína , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Péptido 1 Similar al Glucagón , Péptidos , Péptido 1 Similar al Glucagón/química , Anticuerpos Monoclonales/química , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Cisteína/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Péptidos/química , Caseínas/química , Humanos , Proteína de Suero de Leche/química , Secuencia de Aminoácidos , Análisis por Matrices de Proteínas , Diabetes Mellitus Tipo 2/tratamiento farmacológico
8.
Clin Diabetes Endocrinol ; 10(1): 20, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39049087

RESUMEN

AIM: Type 2 diabetes is increasing in Sub-Saharan Africa, but the pathophysiology in this population is poorly investigated. In Western populations, the incretin effect is reduced in type 2 diabetes, leading to lowered insulin secretion. The aim of this study was to investigate the incretin effect in a group of Sub-Saharan Africans with type 2 diabetes. METHODS: Twenty adults diagnosed with type 2 diabetes, based on either an oral glucose tolerance test (n = 10) or on glycated hemoglobin A1c (n = 10), and 10 non-diabetic controls were included in an interventional study in Tanzania. We investigated the incretin effect as the difference between the plasma insulin area under the curve during an oral glucose tolerance test and that obtained during an intravenous glucose infusion. Differences between diabetes groups were analyzed by Kruskal-Wallis one-way analysis of variance. RESULTS: The incretin effect did not differ between groups (p = 0.45), and there was no difference in plasma concentrations of the incretin hormones during the OGTT. CONCLUSION: A reduced incretin effect appears not to contribute to hyperglycemia in type 2 diabetes in this Tanzanian population. More research is needed to explain the diabetes phenotype often seen in Sub-Saharan Africa. TRIAL REGISTRATION: Clinicaltrials.gov: NCT03106480 , date of registration: 04/10/2017.

9.
Food Chem ; 454: 139845, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820629

RESUMEN

Existing reviews address bioactive peptides of meat proteins; however, comprehensive reviews summarizing the released sequences and their corresponding parent meat proteins in the digesta are limited. This review explores the bioactive peptides released during the in vitro gastrointestinal (GI) digestion of meat, connecting with parent proteins. The primary bioactivities of meat-derived peptides include angiotensin-converting enzyme (ACE) and dipeptidyl peptidase (DPP)-IV inhibition and antioxidant effects. Myofibrillar, sarcoplasmic, and stromal proteins play a significant role in peptide release during digestion. The release of bioactive peptides varies according to the parent protein and cryptides had short chains, non-toxicity, and great bioavailability and GI absorption scores. Moreover, the structural stability and bioactivities of peptides can be influenced by the digestive properties and amino acid composition of parent proteins. Investigating the properties and origins of bioactive peptides provides insights for enhancing the nutritional quality of meat and understanding its potential health benefits.


Asunto(s)
Digestión , Productos de la Carne , Carne , Péptidos , Péptidos/química , Péptidos/metabolismo , Animales , Productos de la Carne/análisis , Humanos , Carne/análisis , Proteínas de la Carne/química , Proteínas de la Carne/metabolismo , Tracto Gastrointestinal/metabolismo
10.
Food Sci Anim Resour ; 44(3): 533-550, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38765288

RESUMEN

Peptides with bioactive effects are being researched for various purposes. However, there is a lack of overall research on pork-derived peptides. In this study, we reviewed the process of obtaining bioactive peptides, available analytical methods, and the study of bioactive peptides derived from pork. Pepsin and trypsin, two representative protein digestive enzymes in the body, are hydrolyzed by other cofactors to produce peptides. Bicinchoninic acid assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, chromatography, and in vitro digestion simulation systems are utilized to analyze bioactive peptides for protein digestibility and molecular weight distribution. Pork-derived peptides mainly exhibit antioxidant and antihypertensive activities. The antioxidant activity of bioactive peptides increases the accessibility of amino acid residues by disrupting the three-dimensional structure of proteins, affecting free radical scavenging, reactive oxygen species inactivation, and metal ion chelating. In addition, the antihypertensive activity decreases angiotensin II production by inhibiting angiotensin converting enzyme and suppresses blood pressure by blocking the AT1 receptor. Pork-derived bioactive peptides, primarily obtained using papain and pepsin, exhibit significant antioxidant and antihypertensive activities, with most having low molecular weights below 1 kDa. This study may aid in the future development of bioactive peptides and serve as a valuable reference for pork-derived peptides.

11.
Curr Top Med Chem ; 24(19): 1635-1664, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803170

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a widespread neurological illness in the elderly, which impacted about 50 million people globally in 2020. Type 2 diabetes has been identified as a risk factor. Insulin and incretins are substances that have various impacts on neurodegenerative processes. Preclinical research has shown that GLP-1 receptor agonists decrease neuroinflammation, tau phosphorylation, amyloid deposition, synaptic function, and memory formation. Phase 2 and 3 studies are now occurring in Alzheimer's disease populations. In this article, we present a detailed assessment of the therapeutic potential of GLP-1 analogues and DPP4 inhibitors in Alzheimer's disease. AIM: This study aimed to gain insight into how GLP-1 analogues and associated antagonists of DPP4 safeguard against AD. METHODS: This study uses terms from search engines, such as Scopus, PubMed, and Google Scholar, to explore the role, function, and treatment options of the GLP-1 analogue for AD. RESULTS: The review suggested that GLP-1 analogues may be useful for treating AD because they have been linked to anti-inflammatory, neurotrophic, and neuroprotective characteristics. Throughout this review, we discuss the underlying causes of AD and how GLP signaling functions. CONCLUSION: With a focus on AD, the molecular and pharmacological effects of a few GLP-1/GIP analogs, both synthetic and natural, as well as DPP4 inhibitors, have been mentioned, which are in the preclinical and clinical studies. This has been demonstrated to improve cognitive function in Alzheimer's patients.


Asunto(s)
Enfermedad de Alzheimer , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Péptido 1 Similar al Glucagón , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/síntesis química , Péptido 1 Similar al Glucagón/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Animales , Polipéptido Inhibidor Gástrico/farmacología , Polipéptido Inhibidor Gástrico/metabolismo
12.
Foods ; 13(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38672866

RESUMEN

Two novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (YPF and LLLP) were discovered from goat milk protein by peptidomics, in silico analysis, and in vitro assessment. A total of 698 peptides (<23 AA) were successfully identified by LC-MS/MS from goat milk hydrolysates (hydrolyzed by papaian plus proteinase K). Then, 105 potential DPP-IV inhibitory peptides were screened using PeptideRanker, the ToxinPred tool, Libdock, iDPPIV-SCM, and sequence characteristics. After ADME, physicochemical property evaluation, and a literature search, 12 candidates were efficiently selected and synthesized in vitro for functional validation. Two peptides (YPF and LLLP) were found to exert relatively high in vitro chemical system (IC50 = 368.54 ± 12.97 µM and 213.99 ± 0.64 µM) and in situ (IC50 = 159.46 ± 17.40 µM and 154.96 ± 8.41 µM) DPP-IV inhibitory capacities, and their inhibitory mechanisms were further explored by molecular docking. Our study showed that the formation of strong non-bonding interactions with the core residues from the pocket of DPP-IV (such as ARG358, PHE357, GLU205, TYR662, TYR547, and TYR666) might primarily account for the DPP-IV inhibitory activity of two identified peptides. Overall, the two novel DPP-IV inhibitory peptides rapidly identified in this study can be used as functional food ingredients for the control of diabetes.

13.
Heliyon ; 10(7): e28060, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560194

RESUMEN

In this research, we unveil the medical potential of pearls by identifying a novel bioactive peptide within them for the first time. The peptide, termed KKCHFWPFPW, emerges as a pioneering angiotensin I-converting enzyme (ACE) inhibitor, originating from the pearl matrix of Pinctada fucata. Employing quadrupole time-of-flight mass spectrometry, this peptide was meticulously selected and pinpointed. With a molecular weight of 1417.5 Da and a theoretical isoelectric point of 9.31, its inhibitory potency was demonstrated through a half-maximal inhibitory concentration (IC50) of 4.17 µM, established via high-performance liquid chromatography. The inhibition of ACE by this peptide was found to be competitive, as revealed by Lineweaver-Burk plot analysis, where an increase in peptide concentration correlated with an enhanced rate of ACE inhibition. To delve into the interaction between KKCHFWPFPW and ACE, molecular docking simulations were conducted using the Maestro 2022-1 Glide software, shedding light on the inhibitory mechanism. This investigation suggests that peptides derived from the P. martensii pearl matrix hold promise as a novel source for antihypertensive agents.

14.
Foods ; 13(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38472752

RESUMEN

Fermented dairy foods such as yogurt exhibit some beneficial effects on consumers, including relieving the symptoms of hypertension. This study aims to obtain fermented dairy products from a co-starter that have a great flavor and the auxiliary function of reducing blood pressure after longtime consumption. Commercial starter cultures composed of Lactobacillus delbrueckii subsp. bulgaricus CICC 6047 and Streptococcus thermophilus CICC 6038 were combined with Lactobacillus plantarum strains Y44, Y12, and Y16, respectively, as a combined starter culture to ferment the mixed milk of skim milk and soybean milk. The fermented milk produced using the combined starter culture mixed with L. plantarum Y44 showed an angiotensin-converting-enzyme (ACE) inhibitory activity (53.56 ± 0.69%). Some peptides that regulate blood pressure were released in the fermented milk, such as AMKPWIQPK, GPVRGPFPII, LNVPGEIVE, NIPPLTQTPV, and YQEPVL. In spontaneously hypertensive rat (SHR) oral-administration experiments compared with the gavage unfermented milk group, the gavage feeding of SHRs with the fermented milk produced using the combined starter culture mixed with L. plantarum Y44 significantly reduced the blood pressure of the SHRs after long-term intragastric administration, shown with the systolic blood pressure (SBP) and diastolic blood pressure (DBP) decreasing by 23.67 ± 2.49 mmHg and 15.22 ± 2.62 mmHg, respectively. Moreover, the abundance of short-chain fatty acids (SCFA), bacterial diversity in the gut microbiota, and SCFA levels including acetic acid, propionic acid, and butyric acid in the feces of the SHRs were increased via oral administration of the fermented milk produced using the combined starter culture containing L. plantarum Y44. Furthermore, the ACE-angiotensin II (Ang II)-angiotensin type 1 (AT 1) axis was downregulated, the angiotensin-converting-enzyme 2 (ACE 2)-angiotensin(1-7) (Ang1-7)-Mas receptor axis of the SHRs was upregulated, and then the RAS signal was rebalanced. The fermented milk obtained from the combined starter culture shows the potential to be a functional food with antihypertension properties.

15.
Food Chem ; 447: 138873, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38452536

RESUMEN

Food-derived angiotensin-converting enzyme-inhibitory (ACE-I) peptides have attracted extensive attention. Herein, the ACE-I peptides from Scomber japonicus muscle hydrolysates were screened, and their mechanisms of action and inhibition stability were explored. The quantitative structure-activity relationship (QSAR) model based on 5z-scale metrics was developed to rapidly screen for ACE-I peptides. Two novel potential ACE-I peptides (LTPFT, PLITT) were predicted through this model coupled with in silico screening, of which PLITT had the highest activity (IC50: 48.73 ± 7.59 µM). PLITT inhibited ACE activity with a mixture of non-competitive and competitive mechanisms, and this inhibition mainly contributed to the hydrogen bonding based on molecular docking study. PLITT is stable under high temperatures, pH, glucose, and NaCl. The zinc ions (Zn2+) and copper ions (Cu2+) enhanced ACE-I activity. The study suggests that the QSAR model is effective in rapidly screening for ACE-I inhibitors, and PLITT can be supplemented in foods to lower blood pressure.


Asunto(s)
Hidrolisados de Proteína , Relación Estructura-Actividad Cuantitativa , Simulación del Acoplamiento Molecular , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Péptidos/farmacología , Péptidos/química , Músculos/metabolismo , Iones , Angiotensinas , Peptidil-Dipeptidasa A/metabolismo
16.
Am J Physiol Endocrinol Metab ; 326(4): E528-E536, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477667

RESUMEN

Nausea and vomiting are primitive aspects of mammalian physiology and behavior that ensure survival. Unfortunately, both are ubiquitously present side effects of drug treatments for many chronic diseases with negative consequences on pharmacotherapy tolerance, quality of life, and prognosis. One of the most critical clinical examples is the profound emesis and nausea that occur in patients undergoing chemotherapy, which continue to be among the most distressing side effects, even with the use of modern antiemetic medications. Similarly, antiobesity/diabetes medications that target the glucagon-like peptide-1 system, despite their remarkable metabolic success, also cause nausea and vomiting in a significant number of patients. These side effects hinder the ability to administer higher dosages for optimal glycemic and weight management and represent the major reasons for treatment discontinuation. Our inability to effectively control these side effects highlights the need to anatomically, molecularly, and functionally characterize novel neural substrates that drive and inhibit nausea and emesis. Here, we discuss clinical and preclinical evidence that highlights the glucose-dependent insulinotropic peptide receptor system as a novel therapeutic central target for the management of nausea and emesis.


Asunto(s)
Antieméticos , Receptores de la Hormona Gastrointestinal , Animales , Humanos , Antieméticos/efectos adversos , Vómitos/inducido químicamente , Vómitos/tratamiento farmacológico , Calidad de Vida , Náusea/inducido químicamente , Náusea/tratamiento farmacológico , Mamíferos
17.
J Agric Food Chem ; 72(8): 4155-4169, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38366990

RESUMEN

In this study, we used traditional laboratory methods, bioinformatics, and cellular models to screen novel ACE inhibitory (ACEI) peptides with strong ACEI activity, moderate absorption rates, and multiple targets from bovine colostrum immunoglobulin G (IgG). The purified fraction of the compound proteinase hydrolysate of IgG showed good ACEI activity. After nano-UPLC-MS/MS identification and in silico analysis, eight peptides were synthesized and verified. Among them, SFYPDY, TSFYPDY, FSWF, WYQQVPGSGL, and GVHTFP were identified as ACEI peptides, as they exhibited strong ACEI activity (with IC50 values of 104.7, 80.0, 121.2, 39.8, and 86.3 µM, respectively). They displayed good stability in an in vitro simulated gastrointestinal digestion assay. In a Caco-2 monolayer model, SFYPDY, FSWF, and WYQQVPGSGL exhibited better absorption rates and lower IC50 values than the other peptides and were thereby identified as novel ACEI peptides. Subsequently, in a H2O2-induced endothelial dysfunction (ED) model based on HUVECs, SFYPDY, FSWF, and WYQQVPGSGL regulated ED by reducing apoptosis and ROS accumulation while upregulating NOS3 mRNA expression. Network pharmacology analysis and RT-qPCR confirmed that they regulated multiple targets. Overall, our results suggest that SFYPDY, FSWF, and WYQQVPGSGL can serve as novel multitarget ACEI peptides.


Asunto(s)
Inmunoglobulina G , Enfermedades Vasculares , Humanos , Femenino , Embarazo , Animales , Bovinos , Farmacología en Red , Espectrometría de Masas en Tándem , Células CACO-2 , Calostro/metabolismo , Peróxido de Hidrógeno , Péptidos/química , Peptidil-Dipeptidasa A/química , Hidrolisados de Proteína/química , Simulación del Acoplamiento Molecular
18.
Int J Biol Macromol ; 262(Pt 1): 129811, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302018

RESUMEN

Effects of fermentation by Lactobacillus Plantarum NCU116 on the antihypertensive potential of black sesame seed (BSS) and structure characteristics of fermented black sesame seed protein (FBSSP) were investigated. Angiotensin-I-converting enzyme (ACE) inhibition and zinc chelating ability of fermented black sesame seed hydrolysate (FBSSH) reached the highest of 60.78 ± 3.67 % and 2.93 ± 0.04 mg/mL at 48 h and 60 h of fermentation, respectively. Additionally, the antioxidant activities of FBSSH and surface hydrophobicity of FBSSP were increased noticeably by fermentation. The α-helix and ß-rotation of FBSSP tended to decrease and increase, respectively, during fermentation. Correlation analysis indicated strong positive relationships between ß-turn and ACE inhibition activity as well as zinc chelating ability with correlation coefficients r of 0.8976 and 0.8932. Importantly, novel ACE inhibitory peptides LLLPYY (IC50 = 12.20 µM) and ALIPSF (IC50 = 558.99 µM) were screened from FBSSH at 48 h using in silico method. Both peptides showed high antioxidant activities in vitro. Molecular docking analysis demonstrated that the hydrogen bond connected with zinc ions of ACE mainly attributed to the potent ACE inhibitory activity of LLLPYY. The findings indicated that fermentation by Lactobacillus Plantarum NCU116 is an effective method to enhance the antihypertensive potential of BSS.


Asunto(s)
Lactobacillus plantarum , Sesamum , Antihipertensivos/farmacología , Lactobacillus plantarum/metabolismo , Fermentación , Inhibidores de la Enzima Convertidora de Angiotensina/química , Antioxidantes/farmacología , Antioxidantes/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/química , Zinc/metabolismo , Peptidil-Dipeptidasa A/metabolismo
19.
Proteomics ; 24(9): e2300257, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38263811

RESUMEN

With the notable surge in therapeutic peptide development, various peptides have emerged as potential agents against virus-induced diseases. Viral entry inhibitory peptides (VEIPs), a subset of antiviral peptides (AVPs), offer a promising avenue as entry inhibitors (EIs) with distinct advantages over chemical counterparts. Despite this, a comprehensive analytical platform for characterizing these peptides and their effectiveness in blocking viral entry remains lacking. In this study, we introduce a groundbreaking in silico approach that leverages bioinformatics analysis and machine learning to characterize and identify novel VEIPs. Cross-validation results demonstrate the efficacy of a model combining sequence-based features in predicting VEIPs with high accuracy, validated through independent testing. Additionally, an EI type model has been developed to distinguish peptides specifically acting as Eis from AVPs with alternative activities. Notably, we present iDVEIP, a web-based tool accessible at http://mer.hc.mmh.org.tw/iDVEIP/, designed for automatic analysis and prediction of VEIPs. Emphasizing its capabilities, the tool facilitates comprehensive analyses of peptide characteristics, providing detailed amino acid composition data for each prediction. Furthermore, we showcase the tool's utility in identifying EIs against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).


Asunto(s)
Antivirales , Biología Computacional , Aprendizaje Automático , Péptidos , SARS-CoV-2 , Internalización del Virus , Internalización del Virus/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Humanos , Péptidos/química , Péptidos/farmacología , Biología Computacional/métodos , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , Simulación por Computador , COVID-19/virología , Programas Informáticos
20.
Foods ; 13(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38254517

RESUMEN

The choice of appropriate proteases and pretreatment methods significantly influences the preparation of bioactive peptides. This study aimed to investigate the effects of different pretreatment methods on the hydrolytic performance of diverse proteases during the production of dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides derived from wheat and their foaming and emulsion properties. Dry heating, aqueous heating, and ultrasound treatment were employed as pretreatments for the protein prior to the enzymatic hydrolysis of wheat gluten. FTIR analysis results indicated that all pretreatment methods altered the secondary structure of the protein; however, the effects of dry heating treatment on the secondary structure content were opposite to those of aqueous heating and ultrasound treatment. Nevertheless, all three methods enhanced the protein solubility and surface hydrophobicity. By using pretreated proteins as substrates, five different types of proteases were employed for DPP-IV inhibitory peptide production. The analysis of the DPP-IV inhibitory activity, degree of hydrolysis, and TCA-soluble peptide content revealed that the specific pretreatments had a promoting or inhibiting effect on DPP-IV inhibitory peptide production depending on the protease used. Furthermore, the pretreatment method and the selected type of protease collectively influenced the foaming and emulsifying properties of the prepared peptides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...