Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 263: 122180, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106620

RESUMEN

Water occurrence states in sewage sludge, influenced by sludge physicochemical properties, are crucial for sludge dewaterability and have recently been regarded as a research hotspot. Here, the multifold characteristics of sludge flocs during hydrothermal treatment, including rheological properties, solid-water interfacial interactions, and the polarity distribution and molecular structure of extracellular polymeric substances (EPS), were systematically investigated, and the impact of these characteristics on sludge dewaterability was explored in depth. Hydrothermal treatment at 80 °C and 100 °C induced the conversion of free water into bound water, while an increase in temperature to 180 °C resulted in a significant decrease in bound water content, approximately 4-fold lower than at 100 °C. In addition to the conventional view of decreased sludge surface hydrophilicity at high temperatures, the decline in bound water was associated with the reduction in sludge apparent viscosity. XAD resin fractionation identified the hydrophobic/hydrophilic EPS (HPO-/HPI) ratio as an important factor determining water occurrence states. Especially, hydrolysis of HPI-related hydrophilic proteins and subsequent increase in HPO-related tryptophan-like substances played a dominant role in reducing sludge viscosity and facilitating the release of bound water. Protein conformational analysis revealed that the disruption of α-helix structures and disulfide bonds significantly reduced EPS water-holding capacity, providing strong evidence for the potential of targeting these dense structure units to enhance sludge dewaterability. These findings provide a holistic understanding of multidimensional drivers of water occurrence states in sludge, and guide directions for optimizing sludge treatment efficiency through EPS modification.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Matriz Extracelular de Sustancias Poliméricas/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Eliminación de Residuos Líquidos , Viscosidad
2.
Proc Natl Acad Sci U S A ; 121(36): e2409955121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190351

RESUMEN

Facing complex and variable emerging antibiotic pollutants, the traditional development of functional materials is a "trial-and-error" process based on physicochemical principles, where laborious steps and long timescales make it difficult to accelerate technical breakthroughs. Notably, natural biomolecular coronas derived from highly tolerant organisms under significant contamination scenarios can be used in conjunction with nanotechnology to tackling emerging contaminants of concern. Here, super worms (Tubifex tubifex) with high pollutant tolerance were integrated with nano-zero valent iron (nZVI) to effectively reduce the content of 17 antibiotics in wastewater within 7 d. Inspired by the synergistic remediation, nZVI-augmented worms were constructed as biological nanocomposites. Neither nZVI (0.3 to 3 g/L) nor worms (104 to 105 per liter) alone efficiently degraded florfenicol (FF, as a representative antibiotic), while their composite removed 87% of FF (3 µmol/L). Under antibiotic exposure, biomolecules secreted by worms formed a corona on and modified the nZVI particle surface, enabling the nano-bio interface greater functionality, including responsiveness, enrichment, and reduction. Mechanistically, FF exposure activated glucose-alanine cycle pathways that synthesize organic acids and amines as major metabolites, which were assembled into vesicles and secreted, thereby interacting with nZVI in a biologically response design strategy. Lactic acid and urea formed hydrogen bonds with FF, enriched analyte presence at the heterogeneous interface. Succinic and lactic acids corroded the nZVI passivation layer and promoted electron transfer through surface conjugation. This unique strategy highlights biomolecular coronas as a complex resource to augment nano-enabled technologies and will provide shortcuts for rational manipulation of nanomaterial surfaces with coordinated multifunctionalities.


Asunto(s)
Antibacterianos , Hierro , Antibacterianos/química , Antibacterianos/farmacología , Animales , Hierro/química , Hierro/metabolismo , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Oligoquetos/metabolismo , Biodegradación Ambiental , Restauración y Remediación Ambiental/métodos , Nanocompuestos/química
3.
J Environ Manage ; 367: 122041, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39083934

RESUMEN

RO process is commonly used to treat and reuse manganese-containing industrial wastewater. Nevertheless, even after undergoing multi-stage treatment, the secondary biochemical effluent still exhibits a high concentration of Mn2+ coupled with organics entering the RO system, leading to membrane fouling. In this work, we systematically analyze the RO membrane organic fouling processes and mechanisms, considering the coexistence of Mn2+ with humic acid (HA), sodium alginate (SA), bovine serum albumin (BSA) and their mixtures (HBS). The impact of Mn2+ on membrane fouling was HBS > SA > HA > BSA, controlling polysaccharide pollutant concentrations should be a priority for mitigating membrane fouling. In the presence of Mn2+ with HA, SA, or HBS, membrane fouling is primarily attributed to the complexation of organics and Mn2+ and the facilitation of interfacial interaction energy. RO membrane BSA fouling was not directly affected by Mn2+, the addition of Mn2+ induced a salting-out effect, leading to the deposition of BSA in a single molecular on the membrane. Simultaneously, adhesion energy hinders the deposition of BSA on the membrane, resulting in milder membrane fouling. This study provided the theoretical basis and suggestions for RO membrane organic fouling control in the presence of Mn2+.


Asunto(s)
Sustancias Húmicas , Manganeso , Membranas Artificiales , Manganeso/química , Sustancias Húmicas/análisis , Albúmina Sérica Bovina/química , Alginatos/química , Aguas Residuales/química , Incrustaciones Biológicas/prevención & control
4.
Adv Mater ; 36(33): e2400178, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38843462

RESUMEN

The incorporation of functionalized nanofillers into polymers via photopolymerization approach has gained significant attention in recent years due to the unique properties of the resulting composite materials. Surface modification of nanofillers plays a crucial role in their compatibility and polymerization behavior within the polymer matrix during photopolymerization. This review focuses on the recent developments in surface modification of various nanofillers, enabling their integration into polymer systems through photopolymerization. The review discusses the key aspects of surface modification of nanofillers, including the selection of suitable surface modifiers, such as photoinitiators and polymerizable groups, as well as the optimization of modification conditions to achieve desired surface properties. The influence of surface modification on the interfacial interactions between nanofillers and the polymer matrix is also explored, as it directly impacts the final properties of the nanocomposites. Furthermore, the review highlights the applications of nanocomposites prepared by photopolymerization, such as sensors, gas separation membranes, purification systems, optical devices, and biomedical materials. By providing a comprehensive overview of the surface modification strategies and their impact on the photopolymerization process and the resulting nanocomposite properties, this review aims to inspire new research directions and innovative ideas in the development of high-performance polymer nanocomposites for diverse applications.

5.
Adv Mater ; 36(33): e2407648, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38900369

RESUMEN

Anode-free lithium (Li) metal batteries are promising alternatives to current Li-ion batteries due to their advantages such as high energy density, low cost, and convenient production. However, the copper (Cu) current collector accounts for more than 25 wt% of the total weight of the anode-free battery without capacity contribution, which severely reduces the energy and power densities. Here, a new family of ultralight composite current collectors with a low areal density of 0.78 mg cm-2, representing significant weight reduction of 49%-91% compared with the Cu-based current collectors for high-energy Li batteries, is presented. Rational molecular engineering of the polyacylsemicarbazide substrate enables enhanced interfacial interaction with the sputtered Cu layer, which results in excellent interfacial stability, flexibility, and safety for the obtained anode-free batteries. The battery-level energy density has been significantly improved by 36%-61%, and a maximum rate capability reaches 5 C (10 mA cm-2) attributed to the homogeneous Li+ flux and smooth Li deposition on the nanostructured Cu layer. The results not only open a new avenue to improve the energy and power densities of anode-free batteries via composite current collector innovation but, in a broader context, provide a new paradigm to pursue high-performance, high-safety, and flexible batteries.

6.
Nanomaterials (Basel) ; 14(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38869571

RESUMEN

Due to their unique physical and chemical properties, complex nanostructures based on carbon nanotubes and transition metal oxides are considered promising electrode materials for the fabrication of high-performance supercapacitors with a fast charge rate, high power density, and long cycle life. The crucial role in determining their efficiency is played by the properties of the interface in such nanostructures, among them, the type of chemical bonds between their components. The complementary theoretical and experimental methods, including dispersion-corrected density functional theory (DFT-D3) within GGA-PBE approximation, scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman, X-ray photoelectron, and X-ray absorption spectroscopies, were applied in the present work for the comprehensive investigation of surface morphology, structure, and electronic properties in CuOx/MWCNTs and NiOx/MWCNTs. As a result, the type of interfacial interaction and its correlation with electrochemical characteristics were determined. It was found that the presence of both Ni-O-C and Ni-C bonds can increase the contact between NiO and MWCNTs, and, through this, promote electron transfer between NiO and MWCNTs. For NiOx/MWCNTs, better electrochemical characteristics were observed than for CuOx/MWCNTs, in which the interfacial interaction is determined only by bonding through Cu-O-C bonds. The electrochemical properties of CuOx/MWCNTs and NiOx/MWCNTs were studied to demonstrate the effect of interfacial interaction on their efficiency as electrode materials for supercapacitor applications.

7.
Water Res ; 260: 121966, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38908312

RESUMEN

The efficient removal of antibiotics and its combined pollutants is essential for aquatic environment and human health. In this study, a lignin-based organic flocculant named PRL-VAc-DMC was synthesized using pulp reject as the raw material, with vinyl acetate (VAc) and methacryloxyethyltrimethyl ammonium chloride (DMC) as the grafting monomers. A series of modern characterization methods were used to confirm the successful preparation of PRL-VAc-DMC and elucidate its polymerization mechanism. It was found that the Ph-OH group and its contiguous carbon atoms of lignin served as the primary active sites to react with grafting monomers. Flocculation experiments revealed that PRL-VAc-DMC could react with tetracycline (TC) through π-π* interaction, hydrophobic interaction, hydrogen bonding, and electrostatic attraction. With the coexistence of humic acid (HA) and Kaolin, the aromatic ring, hydroxyl, and amide group of TC could react with the benzene ring, hydroxyl group, and carboxyl group of HA, forming TC@HA@Kaolin complexes with Kaolin particles acting as the hydrophilic shell. The increase in particle size, electronegativity, and hydrophily of TC@HA@Kaolin complexes facilitated their interaction with PRL-VAc-DMC through strong interfacial interactions. Consequently, the presence of HA and Kaolin promoted the removal of TC. The synergistic removal mechanism of TC, HA, and Kaolin by PRL-VAc-DMC was systematically analyzed from the perspective of muti-interface interactions. This paper is of great significance for the comprehensive utilization of pulp reject and provides new insights into the flocculation mechanism at the molecular scale.


Asunto(s)
Antibacterianos , Floculación , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Antibacterianos/química , Purificación del Agua/métodos
8.
Dent Mater ; 40(8): e1-e10, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821838

RESUMEN

OBJECTIVE: Although glass fibers are more common, quartz fibers (QFs) are also considered as the ideal reinforcing material in dentistry, due to their superior mechanical strength, high purity, and good photoconductive properties. However, the relatively inert surfaces limit their further applications. Therefore, the aim of this study is to modify the fiber surface properties to improve the interfacial interactions with polymeric resins. METHODS: In this study, we systematically introduced four different surface modification strategies onto short quartz fibers (SQFs) for the preparation of dental composites. Particularly, the acid etching was a facile way to create mechanical interlocking structures. In addition, the silanization process, the sol-gel treatment, and the polymer grafting were further proposed to increase the surface roughness and the reactive sites. The effect of surface modifications on the fiber surface morphological changes, mechanical properties, water stability, and in vitro cell viability of dental composites were investigated. RESULTS: Among all surface-modified SQFs, SQFs-POSS (SQFs modified with methacrylate-POSS) exhibited the roughest surface morphology and highest grafting rates compared with other three materials. Furthermore, all these SQFs were applied as reinforcements to make dimethacrylate-based dental resin composites. Of all fillers, SQFs-POSS demonstrated the best reinforcing effect, providing significantly higher improvements of 55.7 %, 114.3 %, and 164.7 % for flexural strength, flexural modulus, and breaking energy, respectively, over those of SQFs-filled composite. The related reinforcing mechanism was further investigated. The SQFs-POSS-filled composite also exhibited the best water stability performance and in vitro cell viability. SIGNIFICANCE: This work provided valuable insights into the optimization of filler-matrix interaction through fiber surface modifications. Specifically, SQFs-POSS markedly outperformed other formulations in terms of the physicochemical performance and in vitro cytotoxicity, which offers possibilities for developing high-performance dental composites for clinical applications in restorative dentistry.


Asunto(s)
Supervivencia Celular , Resinas Compuestas , Ensayo de Materiales , Cuarzo , Propiedades de Superficie , Resinas Compuestas/química , Cuarzo/química , Técnicas In Vitro , Animales , Ratones , Resinas Acrílicas/química , Materiales Dentales/química
9.
Adv Mater ; 36(28): e2310619, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718249

RESUMEN

The orthogonal structure of the widely used hole transporting material (HTM) 2,2',7,7'-tetrakis(N, N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) imparts isotropic conductivity and excellent film-forming capability. However, inherently weak intra- and inter-molecular π-π interactions result in low intrinsic hole mobility. Herein, a novel HTM, termed FTPE-ST, with a twist conjugated dibenzo(g,p)chrysene core and coplanar 3,4-ethylenedioxythiophene (EDOT) as extended donor units, is designed to enhance π-π interactions, without compromising on solubility. The three-dimensional (3D) configuration provides the material multi-direction charge transport as well as excellent solubility even in 2-methylanisole, and its large conjugated backbone endows the HTM with a high hole mobility. Moreover, the sulfur donors in EDOT units coordinate with lead ions on the perovskite surface, leading to stronger interfacial interactions and the suppression of defects at the perovskite/HTM interface. As a result, perovskite solar cells (PSCs) employing FTPE-ST achieve a champion power conversion efficiency (PCE) of 25.21% with excellent long-time stability, one of the highest PCEs for non-spiro HTMs in n-i-p PSCs. In addition, the excellent film-forming capacity of the HTM enables the fabrication of FTPE-ST-based large-scale PSCs (1.0 cm2) and modules (29.0 cm2), which achieve PCEs of 24.21% (certificated 24.17%) and 21.27%, respectively.

10.
Nano Lett ; 24(19): 5705-5713, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701226

RESUMEN

Ruthenium (Ru) is an ideal substitute to commercial Pt/C for the acidic hydrogen evolution reaction (HER), but it still suffers from undesirable activity due to the strong adsorption free energy of H* (ΔGH*). Herein, we propose crystalline phase engineering by loading Ru clusters on precisely prepared cubic and hexagonal molybdenum carbide (α-MoC/ß-Mo2C) supports to modulate the interfacial interactions and achieve high HER activity. Advanced spectroscopies demonstrate that Ru on ß-Mo2C shows a lower valence state and withdraws more electrons from the support than that of Ru on α-MoC, indicative of a strong interfacial interaction. Density functional theory reveals that the ΔGH* of Ru/ß-Mo2C approaches 0 eV, illuminating an enhancement mechanism at the Ru/ß-Mo2C interface. The resultant Ru/ß-Mo2C exhibits an encouraging performance in a proton exchange membrane water electrolyzer with a low cell voltage (1.58 V@ 1.0 A cm-2) and long stability (500 h@ 1.0 A cm-2).

11.
ACS Appl Mater Interfaces ; 16(14): 17483-17492, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38556943

RESUMEN

Interfacial metal-support interaction (MSI) significantly affects the dispersion of active metals on the surface of the catalyst support and impacts catalyst performance. Understanding MSI is crucial for developing highly active and stable catalysts with a low metal loading, particularly for noble metal catalysts. In this work, we synthesized LaRuxCr1-xO3 catalysts with low Ru loading (x = 0.005, 0.01, and 0.02) using the sol-gel self-combustion method. We found that all of the Ru atoms immediately above or below the metal-support interface are closely bonded to the perovskite LaCrO3 surface lattice through Ru-O bonds, enhancing the MSI via interfacial reaction and charge transfer mechanisms. We identified a variety of Ru species, including small 3D Ru nanoparticles, 2D dispersed Ru surface atoms, and even 0D Ru single atoms. These highly dispersed Ru species exhibit high activity and stability under dry reforming of methane (DRM) conditions. The LaRu0.01Cr0.99O3 catalyst with very low Ru loading (0.42 wt %) was stable over a 50 h DRM test and the carbon deposition was negligible. The CH4 and CO2 conversions at 750 °C reached 83 and 86%, respectively, approaching the theoretical thermodynamic equilibrium values.

12.
Small ; 20(34): e2401942, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38593325

RESUMEN

Solar energy conversion technologies, particularly solar-driven photothermal conversion, are both clean and manageable. Although much progress has been made in designing solar-driven photothermal materials, significant challenges remain, not least the photobleaching of organic dyes. To tackle these issues, micro-carbonized polysaccharide chains, with carbon dots (CDs) suspended from the chains, are conceived, just like grapes or tomatoes hanging from a vine. Carbonization of sodium carboxymethyl cellulose (CMC) produces just such a structure (termed CMC-g-CDs), which is used to produce an ultra-stable, robust, and efficient solar-thermal film by interfacial interactions within the CMC-g-CDs. The introduction of the CDs into the matrix of the photothermal material effectively avoided the problem of photobleaching. Manipulating the interfacial interactions (such as electrostatic interactions, van der Waals interactions, π-π stacking, and hydrogen bonding) between the CDs and the polymer chains markedly enhances the mechanical properties of the photothermal film. The CMC-g-CDs are complexed with Fe3+ to eliminate leakage of the photothermal reagent from the matrix and to solve the problem of poor water resistance. The resulting film (CMC-g-CDs-Fe) has excellent prospects for practical application as a photothermal film.

13.
ACS Appl Mater Interfaces ; 16(17): 22580-22592, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634565

RESUMEN

The application of high-performance rubber nanocomposites has attracted wide attention, but its development is limited by the imbalance of interface and network effects caused by fillers. Herein, an ultrastrong polymer nanocomposite is successfully designed by introducing a superhydrophobic and mesoporous silica aerogel (HSA) as the filler to poly(methyl vinyl phenyl) siloxane (PVMQ), which increased the PVMQ elongation at break (∼690.1%) by ∼9.3 times and the strength at break (∼6.6 MPa) by ∼24.3 times. Furthermore, HSA/PVMQ with a high dynamic storage modulus (G'0) of ∼12.2 MPa and high Payne effect (ΔG') of ∼9.4 MPa is simultaneously achieved, which is equivalent to 2-3 times that of commercial fumed silica reinforced PVMQ. The superior performance is attributed to the filler-rubber interfacial interaction and the robust filler-rubber entanglement network which is observed by scanning electron microscopy. When the HSA-PVMQ entanglement network is subjected to external stress, both the HSA and bound-PVMQ chains are synergistically involved in resisting structural evolution, resulting in the maximized energy dissipation and deformation resistance through the desorption of the polymer chain and the slip/interpenetrating of the exchange hydrogen bond pairs. Hence, highly aggregated nanoporous silica aerogels may soon be widely used in the application of reinforced silicone rubber or other polymers shortly.

14.
J Colloid Interface Sci ; 664: 916-927, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503077

RESUMEN

As a typical perovskite material, NaTaO3 has been regarded as a potential catalyst for photocatalytic hydrogen evolution (PHE) process, due to its excellent photoelectric property and superior chemical stability. However, the photocatalytic activity of pure NaTaO3 was largely restricted by its poor visible-light absorption ability and rapid recombination of photogenerated charge carriers. Therefore, a covalently bonded TpBpy covalent organic framework (COF)/NaTaO3 (TpBpy/NaTaO3) heterostructure was designed and synthesized by the post modification strategy with (3-aminopropyl) triethoxysilane (APTES) and the in situ solvothermal process. Benefiting from the enhanced built-in electric field by the interfacial covalent bonds and the formation of S-scheme heterostructure between TpBpy and NaTaO3, which were proved by the Ar+-cluster depth profile and X-ray photoelectron spectroscopy (XPS), as well as density functional theory (DFT) calculation results, both the charge transfer efficiency and the PHE performance of the TpBpy/NaTaO3 composites were significantly improved. Additionally, the composites exhibited an excellent absorption performance in the visible region, which was also beneficial for the photocatalytic process. As expected, the optimal TpBpy/20%NaTaO3 composite achieved a remarkable hydrogen evolution rate of 17.3 mmol·g-1·h-1 (10 mg of catalyst) under simulated sunlight irradiation, which was about 173 and 2.4 times higher than that of pure NaTaO3 and TpBpy, respectively. This work provided a novel strategy for constructing highly effective and stable semiconductor/COFs heterostructures with strong interfacial interaction for photocatalytic hydrogen evolution.

15.
Int J Biol Macromol ; 265(Pt 1): 130942, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493813

RESUMEN

Leather shavings are generated as solid waste in the leather industry and may cause environmental pollution if not disposed judiciously. These solid wastes, primarily composed of collagen fibers (CFs), can be recycled as biomass composites. However, CFs are incompatible with natural rubber (NR) due to its hydrophilicity. Conventionally, the compatibility has been improved by utilizing silane coupling agents (SCAs) along with a large number of organic solvents, which further contribute to environmental pollution. In this study, we developed a novel complex coupling agent (CCA) to enhance the compatibility between CF and NR. The CCA was synthesized through a coordination reaction between Cr(III) and α-methacrylic acid (MAA). Cr(III) in the coupling agent coordinates with the active groups in CFs, while the unsaturated double bonds in MAA facilitate covalent crosslinking between the CCA and NR, improving compatibility. The coordination bonding between CF and NR exhibits strong interfacial interaction, endowing the composites with desirable mechanical properties. Moreover, the proposed method is an economical and green approach that can be used to synthesize CF-based composites without requiring organic solvents. Herein, a strategy promoted sustainable development in the leather industry has been established.


Asunto(s)
Residuos Industriales , Goma , Goma/química , Residuos Sólidos , Colágeno , Solventes
16.
ACS Nano ; 18(14): 10196-10205, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38526994

RESUMEN

Although numerous polymer-based composites exhibit excellent dielectric permittivity, their dielectric performance in various applications is severely hampered by high dielectric loss induced by interfacial space charging and a leakage current. Herein, we demonstrate that embedding molten salt etched MXene into a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE))/poly(methyl methacrylate) (PMMA) hybrid matrix induces strong interfacial interactions, forming a close-packed inner polymer layer and leading to significantly suppressed dielectric loss and markedly increased dielectric permittivity over a broad frequency range. The intensive molecular interaction caused by the dense electronegative functional terminations (-O and -Cl) in MXene results in restricted polymer chain movement and dense molecular arrangement, which reduce the transportation of the mobile charge carriers. Consequently, compared to the neat polymer, the dielectric constant of the composite with 2.8 wt % MXene filler increases from ∼52 to ∼180 and the dielectric loss remains at the same value (∼0.06) at 1 kHz. We demonstrate that the dielectric loss suppression is largely due to the formation of close-packed interfaces between the MXene and the polymer matrix.

17.
Small ; 20(29): e2310087, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38530052

RESUMEN

Simultaneously improving electrochemical activity and stability is a long-term goal for water splitting. Herein, hierarchical N-doped carbon nanotubes on carbon nanowires derived from PPy are grown on carbon cloth, serving as a support for NiCo oxides/sulfides. The hierarchical electrodes annealed in N2 or H2/N2 display improved intrinsic activity and stability for hydrogen evolution reaction (HER) and glucose oxidation reaction. Compared with Pt/C||Ir/C in alkaline media, the glucose electrolysis assembled with electrodes exhibits a cell voltage of 1.38 V at 10 mA cm-2, durability for >12 h at 50 mA cm-2, and resistance to glucose/gluconic acid poisoning. In addition, electrocatalysts can also be applied in ethanol oxidation reactions. Systematic characterizations reveal the strong interactions between NiCo and N-doped carbon support-induced partial charge transfer at the interface and regulate the local electronic structure of active sites. Density functional theory calculations demonstrate that the synergistic effect between N-doped carbon supports, metallic NiCo, and NiCo oxides/sulfides optimize the adsorption energy of H2O and the H* free energy for HER. The energy barrier of the dehydrogenation of glucose effectively decreased. This work will attract attention to the role of metal-support interactions in enhancing the intrinsic activity and stability of electrocatalysts.

18.
Glob Chall ; 8(2): 2300023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356682

RESUMEN

Self-powered wearable thermoelectric (TE) devices significantly reduce the inconvenience caused to users, especially in daily use of portable devices and monitoring personal health. The textile-based TE devices (TETs) exhibit the excellent flexibility, deformability, and light weight, which fulfill demands of long-term wearing for the human body. In comparison to traditional TE devices with their longstanding research history, TETs are still in an initial stage of growth. In recent years, TETs to provide electricity for low-power wearable electronics have attracted increasing attention. This review summarizes the recent progress of TETs from the points of selecting TE materials, scalable fabrication methods of TE fibers/yarns and TETs, structure design of TETs and reported high-performance TETs. The key points to develop TETs with outstanding TE properties and mechanical performance and better than available optimization strategies are discussed. Furthermore, remaining challenges and perspectives of TETs are also proposed to suggest practical applications for heat harvesting from human body.

19.
ACS Appl Mater Interfaces ; 16(7): 9414-9427, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38334708

RESUMEN

Owing to their superior stability compared to those of conventional molecular dyes, as well as their high UV-visible absorption capacity, which can be tuned to cover the majority of the solar spectrum through size adjustment, quantum dot (QD)/TiO2 composites are being actively investigated as photosensitizing components for diverse solar energy conversion systems. However, the conversion efficiencies and durabilities of QD/TiO2-based solar cells and photocatalytic systems are still inferior to those of conventional systems that employ organic/inorganic components as photosensitizers. This is because of the poor adsorption of QDs onto the TiO2 surface, resulting in insufficient interfacial interactions between the two. The mechanism underlying QD adsorption on the TiO2 surface and its relationship to the photosensitization process remain unclear. In this study, we established that the surface characteristics of the TiO2 semiconductor and the QDs (i.e., surface defects of the metal oxide and the surface structure of the QD core) directly affect the QD adsorption capacity by TiO2 and the interfacial interactions between the QDs and TiO2, which relates to the photosensitization process from the photoexcited QDs to TiO2 (QD* → TiO2). The interfacial interaction between the QDs and TiO2 is maximized when the shape/thickness-modulated triangular QDs are composited with defect-rich anatase TiO2. Comprehensive investigations through photodynamic analyses and surface evaluation using X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and photocatalysis experiments collectively validate that tuning the surface properties of QDs and modulating the TiO2 defect concentration can synergistically amplify the interfacial interaction between the QDs and TiO2. This augmentation markedly improved the efficiency of photoinduced electron transfer from the photoexcited QDs to TiO2, resulting in significantly increased photocatalytic activity of the QD/TiO2 composite. This study provides the first in-depth characterization of the physical adhesion of QDs dispersed on a heterogeneous metal-oxide surface. Furthermore, the prepared QD/TiO2 composite exhibits exceptional adsorption stability, resisting QD detachment from the TiO2 surface over a wide pH range (pH = 2-12) in aqueous media as well as in nonaqueous solvents during two months of immersion. These findings can aid the development of practical QD-sensitized solar energy conversion systems that require the long-term stability of the photosensitizing unit.

20.
Chemosphere ; 352: 141446, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354866

RESUMEN

Heterogeneous photocatalytic degradation of antibiotic involves the activation of antibiotic molecules and the photocatalytic oxidation process. However, the simultaneous improvement of these processes is still a challenge. Herein, S-scheme heterojunctions consisted of Cu2O nanocluster with defective WO3 nanosheets were constructed for efficient photocatalytic degradation of levofloxacin (LVX). The typical CNS-5 composite (5 wt% Cu2O/WO3) achieves an optimal LVX degradation efficiency of 97.9% within 80 min. The spatial charge separation and enhancement of redox capacity were realized by the formation of S-scheme heterojunction between Cu2O and WO3. Moreover, their interfacial interaction would lead to the loss of lattice oxygen and the generation of W5+ sites. It is witnessed that the C-N of piperazine ring and CO of carboxylic acid in LVX are coordinated with W5+ sites to build the electronic bridge to activate LVX, greatly promoting the further degradation. This work highlights the important role of selective coordination activation cooperated with S-type heterojunctions for the photocatalytic degradation and offers a new view to understand the degradation of antibiotics at molecular level.


Asunto(s)
Antibacterianos , Levofloxacino , Ácidos Carboxílicos , Electrónica , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...