Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35957063

RESUMEN

Ni thin films with different thicknesses were grown on a GaAs substrate using the magnetron sputtering technique followed by in situ X-ray diffraction (XRD) annealing in order to study the solid-state reaction between Ni and GaAs substrate. The thickness dependence on the formation of the intermetallic phases was investigated using in situ and ex situ XRD, pole figures, and atom probe tomography (APT). The results indicate that the 20 nm-thick Ni film exhibits an epitaxial relation with the GaAs substrate, which is (001) Ni//(001) GaAs and [111] Ni//[110] GaAs after deposition. Increasing the film's thickness results in a change of the Ni film's texture. This difference has an impact on the formation temperature of Ni3GaAs. This temperature decreases simultaneously with the thickness increase. This is due to the coherent/incoherent nature of the initial Ni/GaAs interface. The Ni3GaAs phase decomposes into the binary and ternary compounds xNiAs and Ni3-xGaAs1-x at about 400 °C. Similarly to Ni3GaAs, the decomposition temperature of the second phase also depends on the initial thickness of the Ni layer.

2.
Proc Math Phys Eng Sci ; 472(2190): 20160134, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27436981

RESUMEN

Often during phase growth, the rate of accretion, on the one hand, is determined by a competition between bulk diffusion and surface reaction rate. The morphology of the phase interface, on the other hand, is determined by an interplay between surface diffusivity and surface reaction rate. In this study, a framework to predict the growth and the morphology of an interface by modelling the interplay between bulk diffusion, surface reaction rate and surface diffusion is developed. The framework is demonstrated using the example of Cu-Sn intermetallic compound growth that is of significance to modern microelectronic assemblies. In particular, the dynamics and stability of the interface created when Cu and Sn react to form the compound Cu6Sn5 is explored. Prior experimental observations of the Cu6Sn5-Sn interface have shown it to possess either a scalloped, flat or needle-shaped morphology. Diffuse interface simulations are carried out to elucidate the mechanism behind the interface formation. The computational model accounts for the bulk diffusion of Cu through the intermetallic compound, reaction at the interface to form Cu6Sn5, surface diffusion of Cu6Sn5 along the interface and the influence of the electric current density in accelerating the bulk diffusion of Cu. A stability analysis is performed to identify the conditions under which the interface evolves into a flat, scalloped or needle-shaped structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...